北师大版数学选修2-2全套教案

合集下载

数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第1节归纳与类比

数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第1节归纳与类比

§1归纳与类比1.1 归纳推理学习目标核心素养1.了解归纳推理的含义,能利用归纳推理进行简单的推理.(重点)2.了解归纳推理在数学发展中的作用.(难点) 1.通过归纳推理概念的学习,体现了数学抽象的核心素养.2.通过归纳推理的应用的学习,体现了逻辑推理的核心素养.1.归纳推理的定义根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,这种推理方式称为归纳推理.2.归纳推理的特征归纳推理是由部分到整体,由个别到一般的推理.思考:由归纳推理得到的结论一定是正确的吗?[提示]不一定正确.因为归纳推理是由部分到整体、由个别到一般的推理,其结论还需要证明其正确性.1.下列关于归纳推理的说法错误的是( )①归纳推理是由一般到一般的推理过程;②归纳推理是一种由特殊到特殊的推理;③归纳推理得出的结论具有或然性,不一定正确;④归纳推理具有由具体到抽象的认识功能.A.①②B.②③C.①③ D.③④A[归纳推理是由特殊到一般的推理,故①②不正确,易知③④均正确,故选A.]2.若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.至多等于3 B.至多等于4C.等于5 D.大于5B [n =2时,可以;n =3时,为正三角形,可以;n =4时,为正四面体,可以;n =5时,为四棱锥,侧面为正三角形,底面为菱形且对角线长与边长相等,不可能.]3.由集合{a 1},{a 1,a 2},{a 1,a 2,a 3},……的子集个数归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为________.2n[集合{a 1}有两个子集和{a 1},集合{a 1,a 2}的子集有,{a 1},{a 2},{a 1,a 2}共4个子集,集合{a 1,a 2,a 3}有8个子集,由此可归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为2n个.]数式中的归纳推理+b 10=( )A .28B .76C .123D .199(2)已知f(x)=x1-x ,设f 1(x)=f(x),f n (x)=f n -1(f n -1(x))(n>1,且n∈N +),则f 3(x)的表达式为________,猜想f n (x)(n∈N +)的表达式为________.思路探究:(1)记a n+b n=f(n),观察f(1),f(2),f(3),f(4),f(5)之间的关系,再归纳得出结论. (2)写出前几项发现规律,归纳猜想结果.(1)C (2)f 3(x)=x 1-4x f n (x)=x 1-2n -1x [(1)记a n +b n =f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n -1)+f(n -2)(n∈N+,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a 10+b 10=123. (2)f 1(x)=f(x)=x1-x,f 2(x)=f 1(f 1(x))=x 1-x 1-x 1-x =x1-2x ,f 3(x)=f 2(f 2(x))=x 1-2x 1-2·x 1-2x=x1-4x,由f 1(x),f 2(x),f 3(x)的表达式,归纳f n (x)=x1-2n -1x.]已知等式或不等式进行归纳推理的方法1.要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律; 2.要特别注意所给几个等式(或不等式)中结构形式的特征; 3.提炼出等式(或不等式)的综合特点; 4.运用归纳推理得出一般结论.1.经计算发现下列不等式:2+18<210, 4.5+15.5<210,3+2+17-2<210,……根据以上不等式的规律,试写出一个对正实数a ,b 都成立的条件不等式:________.当a +b =20时,有a +b<210,a ,b∈R + [从上面几个不等式可知,左边被开方数的和均为20,故可以归纳为a +b =20时,a +b<210.]数列中的归纳推理【例2】 (1)在数列{a n }中,a 1=1,a n +1=-1a n +1,则a 2 019等于( )A .2B .-12C .-2D .1(2)古希腊人常用小石子在沙滩上摆成各种形状来研究数,如图:由于图中1,3,6,10这些数能够表示成三角形,故被称为三角形数,试结合组成三角形数的特点,归纳第n 个三角形数的石子个数.思路探究:(1)写出数列的前几项,再利用数列的周期性解答.(2)可根据图中点的分布规律归纳出三角形数的形成规律,如1=1,3=1+2,6=1+2+3;也可以直接分析三角形数与n 的对应关系,进而归纳出第n 个三角形数.C [(1)a 1=1,a 2=-12,a 3=-2,a 4=1,…,数列{a n }是周期为3的数列,2 019=673×3,∴a 2 019=a 3=-2.](2)[解] 法一:由1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4,可归纳出第n 个三角形数为1+2+3+…+n =n (n +1)2.法二:观察项数与对应项的关系特点如下:项数 1 2 3 4 对应项1×222×323×424×52分析:各项的分母均为2,分子分别为相应项数与相应项数加1的积. 归纳:第n 个三角形数的石子数应为n (n +1)2.数列中的归纳推理在数列问题中,常常用到归纳推理猜测数列的通项公式或前n 项和. (1)通过已知条件求出数列的前几项或前几项和;(2)根据数列中的前几项或前几项和与对应序号之间的关系求解; (3)运用归纳推理写出数列的通项公式或前n 项和公式.2.已知数列{a n }满足a 1=1,a n +1=2a n +1(n =1,2,3,…). (1)求a 2,a 3,a 4,a 5; (2)归纳猜想通项公式a n . [解] (1)当n =1时,知a 1=1, 由a n +1=2a n +1, 得a 2=3,a 3=7,a 4=15,a 5=31.(2)由a 1=1=21-1,a 2=3=22-1,a 3=7=23-1,a 4=15=24-1,a 5=31=25-1, 可归纳猜想出a n =2n-1(n∈N +).几何图形中的归纳推理1.某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按如图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f(n)表示第n 堆的乒乓球总数,试求f(1),f(2),f(3),f(4)的值.[提示] 观察图形可知,f(1)=1,f(2)=4,f(3)=10,f(4)=20. 2.上述问题中,试用n 表示出f(n)的表达式.[提示] 由题意可得:下一堆的个数是上一堆个数加下一堆第一层的个数,即f(2)=f(1)+3;f(3)=f(2)+6;f(4)=f(3)+10;…;f(n)=f(n -1)+n (n +1)2.将以上(n -1)个式子相加可得 f(n)=f(1)+3+6+10+…+n (n +1)2=12[(12+22+…+n 2)+(1+2+3+…+n)] =12⎣⎢⎡⎦⎥⎤16n (n +1)(2n +1)+n (n +1)2=n (n +1)(n +2)6.【例3】 有两种花色的正六边形地面砖,按如图的规律拼成若干个图案,则第6个图案中有菱形纹的正六边形的个数是( )A .26B .31C .32D .36思路探究:解答本题可先通过观察、分析找到规律,再利用归纳得到结论. B [法一:有菱形纹的正六边形个数如下表:图案 123 … 个数6 1116…由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第6个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.法二:由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1)外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形),故第6个图案中有菱形纹的正六边形的个数为:6+5×(6-1)=31.]在题干不变的条件下,第6个图案中周围的边有多少条? [解] 各个图形周围的边的条数如下表:图案123…边条数18 26 34 …由表可知,周围边的条数依次组成一个以18为首项,8为公差的等差数列,解得第6个图形周围的边的条数为18+8×(6-1)=58条.归纳推理在图形中的应用策略通过一组平面或空间图形的变化规律,研究其一般性结论,通常需形状问题数字化,展现数字之间的规律、特征,然后进行归纳推理.解答该类问题的一般策略是:3.根据图中线段的排列规则,试猜想第8个图形中线段的条数为________.509 [分别求出前4个图形中线段的数目,发现规律,得出猜想.图形①到④中线段的条数分别为1,5,13,29,因为1=22-3,5=23-3,13=24-3,29=25-3,因此可猜想第8个图形中线段的条数应为28+1-3=509.]1.归纳推理是由部分到整体、由个别到一般的推理.(1)由归纳推理得到的结论带有猜测的性质,所以“前提真而结论假”的情况是有可能发生的,结论是否正确,需要经过理论证明或实践检验,因此,归纳推理不能作为数学证明的工具.(2)一般地,如果归纳的个别情况越多,越具有代表性,那么推广的一般性命题就越可能为真.(3)归纳推理能够发现新事实,获得新结论,是科学发现的重要手段.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.2.归纳推理的思维过程大致是:实验、观察→概括、推广→猜测一般性结论.该过程包括两个步骤: (1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想).1.判断(正确的打“√”,错误的打“×”)(1)统计学中,从总体中抽取样本,然后用样本估计总体,这种估计属于归纳推理. (2)由个别到一般的推理称为归纳推理. ( ) (3)由归纳推理所得到的结论一定是正确的. ( )[答案] (1)√ (2)√ (3)× 2.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +2C [a 1=8,a 2=14,a 3=20,猜想a n =6n +2.]3.已知12=16×1×2×3,12+22=16×2×3×5,12+22+32=16×3×4×7,12+22+34+42=16×4×5×9,则12+22+…+n 2=________.(其中n∈N *).16n(n +1)(2n +1) [根据题意归纳出12+22+…+n 2=16n(n +1)(2n +1),下面给出证明:(k +1)3-k 3=3k 2+3k +1,则23-13=3×12+3×1+1,33-23=3×22+3×2+1,……,(n +1)3-n 3=3n 2+3n +1,累加得(n +1)3-13=3(12+22+…+n 2)+3(1+2+…+n)+n ,整理得12+22+…+n 2=16n(n +1)(2n +1).]4.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2, (62+82)(22+122)≥(6×2+8×12)2, (202+102)(1022+72)≥(20×102+10×7)2.请你观察这三个不等式,猜想出一个一般性的结论,并证明你的结论. [解] 结论为:(a 2+b 2)(c 2+d 2)≥(ac+bd)2.证明:(a 2+b 2)(c 2+d 2)-(ac +bd)2=a 2c 2+a 2d 2+b 2c 2+b 2d 2-(a 2c 2+b 2d 2+2abcd) =a 2d 2+b 2c 2-2abcd =(ad -bc)2≥0.所以(a2+b2)(c2+d2)≥(ac+bd)2.1.2 类比推理学 习 目 标核 心 素 养1.通过具体实例理解类比推理的意义.(重点) 2.会用类比推理对具体问题作出判断.(难点)1.通过类比推理的意义的学习,体现了数学抽象的核心素养.2.通过应用类比推理对具体问题判断的学习,体现了逻辑推理的核心素养.1.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.类比推理是两类事物特征之间的推理. 2.合情推理合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.合情推理的结果不一定正确.思考:合情推理的结果为什么不一定正确?[提示] 合情推理是由特殊到一般的推理,简单地说就是直接看出来的,没有通过证明,只归纳了一部分,属于不完全归纳,所以不一定正确.1.下面使用类比推理恰当的是( )A .“若a·3=b·3,则a =b ”类比推出“若a·0=b·0,则a =b”B .“(a+b)c =ac +bc”类比推出“(a·b)c=ac·bc”C .“(a+b)c =ac +bc”类比推出“a +b c =a c +bc (c≠0)”D .“(ab)n=a n b n”类比推出“(a+b)n=a n+b n” C [由实数运算的知识易得C 项正确.] 2.下列推理是合情推理的是( ) (1)由圆的性质类比出球的有关性质;(2)由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°; (3)a≥b,b≥c,则a≥c;(4)三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸n 边形内角和是(n -2)×180°.A .(1)(2)B .(1)(3)(4)C .(1)(2)(4)D .(2)(4)C [(1)为类比推理,(2)(4)为归纳推理,(3)不是合情推理,故选C.]3.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是________.(填序号)①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.①②③ [正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.]类比推理在数列中的应用【例1】 在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100.类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.试写出相应的结论,判断该结论是否正确,并加以证明.思路探究:结合已知等比数列的特征可类比等差数列每隔10项和的有关性质.[解] 数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下: ∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20)同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300.1.本例是由等比类比等差,你能由等差类比出等比结论吗?完成下题:设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n (T n ≠0),则T 4,_______,_______,T 16T 12成等比数列.T 8T 4 T 12T 8[等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.]2.在本例条件不变的情况下,你能写出一个更为一般的结论吗?(不用论证)[解] 对于任意k∈N +,都有数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 是等差数列,且公差为k 2d.1.在等比数列与等差数列的类比推理中,要注意等差与等比、加与乘、减与除、乘法与乘方的类比特点.2.类比推理的思维过程观察、比较→联想、类推→猜测新的结论.即在两类不同事物之间进行对比,找出若干相同或相似之处后,推测这两类事物在其他方面的相同或相似之处.1.在等差数列{a n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有a m +a n +a p =3a r ,类比该结论,写出在等比数列{b n }中类似的结论,并用数列知识加以证明.[解] 类似结论如下:在等比数列{b n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有b m b n b p=b 3r .证明如下:设等比数列{b n }的公比为q ,则b m =b 1q m -1,b n =b 1q n -1,b p =b 1qp -1,b r =b 1qr -1,于是b m b n b p =b 1qm -1·b 1qn -1·b 1q p -1=b 31qm +n +p -3=b 31q3r -3=(b 1qr -1)3=b 3r ,故结论成立.类比推理在几何中的应用【例2】 如图所示,在平面上,设h a ,h b ,h c 分别是△ABC 三条边上的高,P 为△ABC 内任意一点,P 到相应三边的距离分别为p a ,p b ,p c ,可以得到结论p a h a +p b h b +p ch c=1.证明此结论,通过类比写出在空间中的类似结论,并加以证明.思路探究:三角形类比四面体,三角形的边类比四面体的面,三角形边上的高类比四面体以某一面为底面的高.[解] p a h a =12BC·p a12BC·h a =S △PBCS △ABC,同理,p b h b =S △P AC S △ABC ,p c h c =S △PABS △ABC .∵S △PBC +S △PAC +S △PAB =S △ABC ,∴p a h a +p b h b +p c h c =S △PBC +S △PAC +S △PAB S △ABC=1. 类比上述结论得出以下结论:如图所示,在四面体ABCD 中,设h a ,h b ,h c ,h d 分别是该四面体的四个顶点到对面的距离,P 为该四面体内任意一点,P 到相应四个面的距离分别为p a ,p b ,p c ,p d ,可以得到结论p a h a +p b h b +p c h c +p dh d=1.证明:p a h a =13S △BCD ·p a13S △BCD ·h a =V P­BCDV A­BCD,同理,p b h b =V P­ACD V A­BCD ,p c h c =V P­ABD V A­BCD ,p d h d =V P­ABCV A­BCD .∵V P­BCD +V P­ACD +V P­ABD +V P­ABC =V A­BCD , ∴p a h a +p b h b +p c h c +p d h d =V P­BCD +V P­ACD +V P­ABD +V P­ABCV A­BCD=1.1.在本例中,若△ABC 的边长分别为a ,b ,c ,其对角分别为A ,B ,C ,那么由a =b·cos C+c·cos B 可类比四面体的什么性质?[解] 在如图所示的四面体中,S 1,S 2,S 3,S 分别表示△PAB,△PBC,△PCA,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.猜想S =S 1·cos α+S 2·cos β+S 3·cos γ.2.在本例中,若r 为三角形的内切圆半径,则S △=12(a +b +c)r ,请类比出四面体的有关相似性质.[解] 四面体的体积为V =13(S 1+S 2+S 3+S 4)r(r 为四面体内切球的半径,S 1,S 2,S 3,S 4为四面体的四个面的面积.1.平面图形与空间图形类比平面图形 点 线 边长 面积 线线角 三角形 空间图形线面面积体积二面角四面体2.类比推理的一般步骤(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.类比推理在其他问题中的应用1.鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.你认为该过程为归纳推理还是类比推理?[提示] 类比推理.2.已知以下过程可以求1+2+3+…+n 的和.因为(n +1)2-n 2=2n +1, n 2-(n -1)2=2(n -1)+1, ……22-12=2×1+1,有(n +1)2-1=2(1+2+…+n)+n , 所以1+2+3+…+n =n 2+2n -n 2=n (n +1)2.类比以上过程试求12+22+32+…+n 2的和. [提示] 因为(n +1)3-n 3=3n 2+3n +1, n 3-(n -1)3=3(n -1)2+3(n -1)+1, ……23-13=3×12+3×1+1,有(n +1)3-1=3(12+22+…+n 2)+3(1+2+3+…+n)+n , 所以12+22+…+n 2=13⎝ ⎛⎭⎪⎫n 3+3n 2+3n -3n 2+5n 2=2n 3+3n 2+n 6=n (n +1)(2n +1)6.【例3】 已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值,试写出双曲线x2a 2-y2b2=1(a>0,b>0)具有类似特征的性质,并加以证明. 思路探究:双曲线与椭圆类比→椭圆中的结论 →双曲线中的相应结论→理论证明[解] 类似性质:若M ,N 为双曲线x 2a 2-y2b 2=1(a>0,b>0)上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标分别为(m ,n),(x ,y),则 N(-m ,-n).因为点M(m ,n)是双曲线上的点, 所以n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2,则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b2a2(定值).1.两类事物能进行类比推理的关键是两类对象在某些方面具备相似特征.2.进行类比推理时,首先,找出两类对象之间可以确切表达的相似特征.然后,用一类对象的已知特征去推测另一类对象的特征,从而得到一个猜想.2.我们知道: 12=1,22=(1+1)2=12+2×1+1, 32=(2+1)2=22+2×2+1, 42=(3+1)2=32+2×3+1, ……n 2=(n -1)2+2(n -1)+1,将以上各式的左右两边分别相加,整理得n 2=2×[1+2+3+…+(n -1)]+n , 所以1+2+3+…+(n -1)=n (n -1)2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解] 已知: 13=1,23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1, ……n 3=(n -1)3+3(n -1)2+3(n -1)+1, 将以上各式的左右两边分别相加,得(13+23+…+n 3)=[13+23+…+(n -1)3]+3[12+22+…+(n -1)2]+3[1+2+…+(n -1)]+n , 整理得n 3=3(12+22+…+n 2)-3n 2+3[1+2+…+(n -1)]+n , 将1+2+3+…+(n -1)=n (n -1)2代入整理可得12+22+…+n 2=2n 3+3n 2+n 6,即12+22+…+n 2=n (2n +1)(n +1)6.1.类比推理的特点(1)类比推理是从人们已经掌握的事物的特征,推测被研究的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.(2)类比推理以旧的知识作基础,推测新的结果,具有发现的功能,因此类比在数学发现中具有重要作用,但必须明确,类比并不等于论证.2.类比推理与归纳推理的比较 归纳推理类比类推相同点 根据已有的事实,经过观察、分析、比较、联想,提出猜想,都属于归纳推理不 同 点特点 由部分到整体,由个别到一般 由特殊到特殊推理过程 从一类事物中的部分事物具有的属性,猜测该类事物都具有这种属性两类对象具有类似的特征,根据其中一类对象的特征猜测另一类对象具有相应的类似特征1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误B [根据合情推理可知,合情推理必须有前提有结论.]2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可知扇形面积公式为( )A.r22 B.l 22 C.lr 2D .无法确定C [扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S =lr2.]3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.1∶8 [由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.]4.在计算“1×2+2×3+…+n(n +1)”时,有如下方法:先改写第k 项:k(k +1)=13[k(k +1)(k +2)-(k -1)k·(k+1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),……n(n +1)=13[n(n +1)(n +2)-(n -1)n(n +1)],相加得1×2+2×3+…+n(n +1)=13n(n +1)(n +2).类比上述方法,请你计算“1×3+2×4+…+n(n +2)”,将其结果写成关于n 的一次因式的积的形式.[解] 1×3=16×(1×2×9-0×1×7),2×4=16×(2×3×11-1×2×9),3×5=16×(3×4×13-2×3×11),……n(n +2)=16[n(n +1)(2n +7)-(n -1)n(2n +5)],各式相加,得1×3+2×4+3×5+…+n(n +2)=16n(n +1)(2n +7).。

数学归纳法-北师大版选修2-2教案

数学归纳法-北师大版选修2-2教案

数学归纳法-北师大版选修2-2教案一、教学目标1.了解数学归纳法的概念与特点;2.能够使用数学归纳法证明简单的命题;3.能够理解和应用数学归纳法解决实际问题。

二、教学内容1.数学归纳法的概念与特点;2.数学归纳法的推广和严密化;3.数学归纳法的应用。

三、教学重点1.数学归纳法的概念与特点;2.能够使用数学归纳法证明简单的命题。

四、教学难点1.数学归纳法的推广和严密化;2.数学归纳法的应用。

五、教学方法1.观察与讨论法:通过生动的例子,引导学生认识和理解数学归纳法的基本概念和特点;2.讲授与演示法:通过讲授和演示归纳法的具体步骤,使学生掌握如何运用归纳法证明命题;3.练习与探究法:通过练习和探究,让学生掌握数学归纳法的应用技巧。

第一步:引入1.引入数学归纳法的基本概念;2.通过实际例子,引导学生理解数学归纳法的重要性。

第二步:讲解1.讲解数学归纳法基本的步骤;2.分析数学归纳法的特点,包括归纳假设、基本步骤、归纳证明、结论;第三步:演示1.带领学生完成归纳法的几个简单例子,让学生深入掌握归纳法的基本操作;2.带领学生完成一道较为复杂的归纳证明练习,让学生掌握归纳法的应用技巧。

第四步:练习1.让学生分组自主练习归纳法的应用;2.教师辅助解答学生的问题。

第五步:总结1.对本节课所学的内容进行总结;2.强调数学归纳法在理解和应用中的重要性。

七、教学评价1.课堂参与度(20%):检测学生是否认真听讲、积极互动,师生互动是否频繁;2.练习与应用(40%):检测学生掌握归纳法的技巧和应用能力;3.课堂表现(40%):检测学生是否能够在课上正确展现自己的学习成果。

通过本节课的教学,我发现学生对于数学归纳法的概念和特点有了更加深入的理解和认识。

同时,在练习中也发现了一些问题,比如有些学生在归纳证明中容易犯错,需要加强指导和训练。

因此,在教学中需要更加强化实践,多引入真实案例来加强学生对归纳法的认识和理解,同时通过练习和探究来让学生得到更好的应用和提高。

高中数学(北师大版)选修2-2教案:第1章 归纳推理 参考教案1

高中数学(北师大版)选修2-2教案:第1章 归纳推理 参考教案1

归纳推理一、教学目标1.知识与技能:(1)结合已学过的数学实例,了解归纳推理的含义;(2)能利用归纳进行简单的推理;(3)体会并认识归纳推理在数学发现中的作用.2.方法与过程:归纳推理是从特殊到一般的一种推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。

3.情感态度与价值观:通过本节学习正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析事物、发现事物之间的质的联系的良好品质,善于发现问题,探求新知识。

二、教学重点:了解归纳推理的含义,能利用归纳进行简单的推理。

教学难点:培养学生“发现—猜想—证明”的归纳推理能力。

三、教学方法:探析归纳,讲练结合四、教学过程(一)、引入新课归纳推理的前提是一些关于个别事物或现象的命题,而结论则是关于该类事物或现象的普遍性命题。

归纳推理的结论所断定的知识范围超出了前提所断定的知识范围,因此,归纳推理的前提与结论之间的联系不是必然性的,而是或然性的。

也就是说,其前提真而结论假是可能的,所以,归纳推理乃是一种或然性推理。

拿任何一种草药来说吧,人们为什么会发现它能治好某种疾病呢?原来,这是经过我们先人无数次经验(成功的或失败的)的积累的。

由于某一种草无意中治好了某一种病,第二次,第三次,……都治好了这一种病,于是人们就把这几次经验积累起来,做出结论说,“这种草能治好某一种病。

”这样,一次次个别经验的认识就上升到对这种草能治某一种病的一般性认识了。

这里就有着归纳推理的运用。

从一个或几个已知命题得出另一个新命题的思维过程称为推理。

见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理 (二)、例题探析例1、在一个凸多面体中,试通过归纳猜想其顶点数、棱数、面数满足的关系。

解:考察一些多面体,如下图所示:将这些多面体的面数(F )、棱数(E )、顶点数(V )列出,得到下表: 多面体面数(F )棱数(E )顶点数(V )三棱锥 4 6 4 四棱锥 5 8 5 五棱锥 6 10 6 三棱柱 5 9 6 五棱柱 7 15 10 立方体 6 12 8 八面体 8 12 6 十二面体 123020从这些事实中,可以归纳出:V-E+F=2例2、如果面积是一定的,什么样的平面图形周长最小,试猜测结论。

数学选修2-2教案

数学选修2-2教案

数学选修2-2教案【篇一:北师大版数学选修2-2全套教案】第一章推理与证明课题:合情推理(一)——归纳推理课时安排:一课时课型:新授课教学目标:1、通过对已学知识的回顾,进一步体会合情推理这种基本的分析问题法,认识归纳推理的基本方法与步骤,并把它们用于对问题的发现与解决中去。

2.归纳推理是从特殊到一般的推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。

教学重点:了解合情推理的含义,能利用归纳进行简单的推理。

教学难点:用归纳进行推理,做出猜想。

教学过程:一、课堂引入:从一个或几个已知命题得出另一个新命题的思维过程称为推理。

见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理二、新课讲解:1、蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。

蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。

2、三角形的内角和是180?,凸四边形的内角和是360?,凸五边形的内角和是540?由此我们猜想:凸边形的内角和是(n?2)?180?3、22?122?222?1?,?,?,33?133?233?3,由此我们猜想:aa?m?(a,b,m均为正实数) bb?m这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称:归纳)归纳推理的一般步骤:⑴对有限的资料进行观察、分析、归纳整理;⑵提出带有规律性的结论,即猜想;⑶检验猜想。

三、例题讲解:例1已知数列?an?的通项公式an?1(n?n?),f(n)?(1?a1)(1?a2)???(1?an),试通过计算2(n?1)f(1),f(2),f(3)的值,推测出f(n)的值。

【学生讨论:】(学生讨论结果预测如下)(1)f(1)?1?a1?1?13? 4413824f(2)?(1?a1)(1?a2)?f(1)?(1?)????)9493612155f(3)?(1?a1)(1?a2)(1?a3)?f(2)?(1?)???1631681由此猜想,f(n)?n?2 2(n?1)学生讨论:1)哥德巴赫猜想:任何大于2的偶数可以表示为两个素数的之和。

高中数学(北师大版)选修2-2教案:第1章 归纳推理 参考教案3

高中数学(北师大版)选修2-2教案:第1章 归纳推理 参考教案3

1.1 归纳推理教学过程:一:创设情景,引入概念师:今天我们要学习第一章:推理与证明。

那么什么是推理呢?下面请大家仔细看这段flash,体验一下flash动画中,人物推理的过程。

(学生观看flash动画)。

师:有哪位同学能描述一下这段flash动画中的人物的推理过程吗?生:flash中人物通过观察,发现7只乌鸦是黑色的于是得到推理:天下乌鸦一般黑。

师:很好!那么能不能把这个推理的过程用一般化的语言表示出来呢?生:这是从一个或几个已有的判断得到一个新的判断的过程。

师:非常好!(引出推理的概念)。

师:推理包括合情推理和演绎推理,而我们今天要学的知识就是合情推理的一种——归纳推理。

那么,什么是归纳推理呢?下面我们通过介绍数学中的一个非常有名的猜想让大家体会一下归纳推理的思想。

(引入哥德巴赫猜想)师:据说哥德巴赫无意中观察到:3+7=10,3+17=20,13+17=30,这3个等式。

大家看这3个等式都是什么运算?生:加法运算。

师:对。

我们看来这些式子都是简单的加法运算。

但是哥德巴赫却把它做了一个简单的变换,他把等号两边的式子交换了一下位置,即变为:10=3+7,20=3+17,30=13+17。

大家观察这两组式子,他们有什么不同之处?生:变换之前是把两个数加起来,变换之后却是把一个数分解成两个数。

师:大家看等式右边的这些数有什么特点?生:都是奇数。

师:那么等式右边的数又有什么特点呢?生:都是偶数。

师:那我们就可以得到什么结论?生:偶数=奇数+奇数。

师:这个结论我们在小学就知道了。

大家在挖掘一下,等式右边的数除了都是奇数外,还有什么其它的特点?(学生观察,有人看出这些数还都是质数。

)师:那么我们是否可以得到一个结论:偶数=奇质数+奇质数?(学生思考,发现错误!)。

生:不对!2不能分解成两个奇质数之和。

师:非常好!那么我们看偶数4又行不行呢?生:不行!师:那么继续往下验证。

(学生发现6=3+3,8=5+3,10=5+5,12=5+7,14=7+7……)师:那我们可以发现一个什么样的规律?生:大于等于6的偶数可以分解为两个奇质数之和。

高中数学选修2-2 北师大版 数学归纳法 教学设计

高中数学选修2-2 北师大版 数学归纳法 教学设计
教学设计
在本阶段,我设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意到它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.为此,本节课我设想以思维过程为主线,发现为目标,把教学过程设计分为五个阶段.
2.1引入实例
事例(一)烽火,是古代军情报警的一种措施,烽火台一般相距10里左右,守台士兵发现敌人来犯时,立即于台上燃起烽火(或烟),邻台见到后依样随之,这样敌情便可迅速传递到军事中枢部门。简单的说,就是传报军情。
思考:敌情传递到军事中枢部门,需要满足哪两个条件?
(1);(2);
事例(二)多米诺骨牌是一种码放骨牌的游戏,码放时保证任意相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌倒下。只要推倒第一块骨牌,就可以导致第二块骨牌倒下,进而导致第三块骨牌倒下,……,最终所有骨牌都倒下。
2.3提升实例在上述实例的基础上,引导学生思考:现在我们把上例换成前面的数学问题,请问,要是这无穷多个等式都成立。
【自主探究】
多米诺骨牌游戏与我们前面所提到的要解决的问题有相似性吗?
多米诺骨牌游戏
通项公式为 的证明方法
(1)第一块骨牌倒下。
(2)若第k块倒下时,则相邻的第k+1块也倒下生活实例引入,描述数学归纳法(设计趣例,激发学生学习兴趣)
数学归纳法的引入是学习数学归纳法的过程中重要的一环.根据以往的经验,不论老师如何解释,学生对数学归纳法的原理往往迷惑不解,将信将疑,为了突破这一难点,我在教学中设计了一实例,使学生在比较熟悉的实际问题中领悟数学归纳法,同时也激发了学生的学习兴趣.具体教学安排如下:

高中数学(北师大版)选修2-2教案:第1章 复习点拨:利用数学归纳法解题举例

高中数学(北师大版)选修2-2教案:第1章 复习点拨:利用数学归纳法解题举例

利用数学归纳法解题举例归纳是一种有特殊事例导出一般原理的思维方法。

归纳推理分完全归纳推理与不完全归纳推理两种。

不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。

完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。

数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。

它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。

这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或且n∈N)结论都正确”。

由这两步可以看出,数学归纳法是由递推实现归纳n≥n的,属于完全归纳。

运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。

运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。

一、运用数学归纳法证明整除性问题例1.当n∈N,求证:11n+1+122n-1能被133整除。

证明:(1)当n=1时,111+1+1212×1-1=133能被133整除。

命题成立。

(2)假设n=k时,命题成立,即11k+1+122k-1能被133整除,当n=k+1时,根据归纳假设,11k+1+122k-1能被133整除。

又能被133整除。

所以,11(k+1)+122(k+1)-1能被133整除,即n=k+1时,命题成立。

由(1),(2)命题时n∈N都成立。

点评:同数学归纳法证明有关数或式的整除问题时,要充分利用整除的性质,若干个数(或整式)都能被某一个数(或整式)整除,则其和、差、积也能被这个数(或整式)整除。

高中数学北师大版选修2-2同步配套教学案第一章 §2 综合法与分析法

高中数学北师大版选修2-2同步配套教学案第一章 §2 综合法与分析法

§综合法与分析法阅读下面的例题.例:若实数,满足+=,证明:+≥.证明:因为+=,所以+≥===,故+≥成立.问题:本题利用什么公式?提示:基本不等式.问题:本题证明顺序是什么?提示:从已知到结论.综合法()含义:从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明的思维方法,称为综合法.()思路:综合法的基本思路是“由因导果”.()模式:综合法可以用以下的框图表示:→→→…→其中为条件,为结论.你们看过侦探小说《福尔摩斯探案集》吗?尤其是福尔摩斯在探案中的推理,给人印象太深刻了.有时,他先假定一个结论成立,然后逐步寻找这个结论成立的一个充分条件,直到找到一个明显的证据.问题:他的推理如何入手?提示:从结论成立入手.问题:他又是如何分析的?提示:逐步探寻每一结论成立的充分条件.问题:这种分析问题方法在数学问题证明中可以借鉴吗?提示:可以.分析法()含义:从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等.这种证明问题的思维方法称为分析法.()思路:分析法的基本思路是“执果索因”.()模式:若用表示要证明的结论,则分析法可以用如下的框图来表示:.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立..分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[例]已知,是正数,且+=,求证:+≥.[思路点拨]由已知条件出发,结合基本不等式,即可得出结论.[精解详析]法一:∵,为正数,且+=,∴+≥,∴≤,∴+==≥.法二:∵,为正数,∴+≥>,+≥>,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 推理与证明课题:合情推理(一)——归纳推理课时安排:一课时课型:新授课 教学目标:1、通过对已学知识的回顾,进一步体会合情推理这种基本的分析问题法,认识归纳推理的基本方法与步骤,并把它们用于对问题的发现与解决中去。

2.归纳推理是从特殊到一般的推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。

教学重点:了解合情推理的含义,能利用归纳进行简单的推理。

教学难点:用归纳进行推理,做出猜想。

教学过程: 一、课堂引入:从一个或几个已知命题得出另一个新命题的思维过程称为推理。

见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理 二、新课讲解:1、 蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。

蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。

2、 三角形的内角和是180︒,凸四边形的内角和是360︒,凸五边形的内角和是540︒ 由此我们猜想:凸边形的内角和是(2)180n -⨯︒3、221222221,,,331332333+++<<<+++,由此我们猜想:a a mb b m+<+(,,a b m 均为正实数) 这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称:归纳) 归纳推理的一般步骤:⑴ 对有限的资料进行观察、分析、归纳 整理; ⑵ 提出带有规律性的结论,即猜想; ⑶ 检验猜想。

例1已知数列{}n a 的通项公式21()(1)n a n N n +=∈+,12()(1)(1)(1)n f n a a a =--⋅⋅⋅-,试通过计算(1),(2),(3)f f f 的值,推测出()f n 的值。

【学生讨论:】(学生讨论结果预测如下) (1)113(1)1144f a =-=-= 1213824(2)(1)(1)(1)(1))94936f a a f =--=⋅-=⋅==12312155(3)(1)(1)(1)(2)(1)163168f a a a f =---=⋅-=⋅=由此猜想,2()2(1)n f n n +=+学生讨论:1)哥德巴赫猜想:任何大于2的偶数可以表示为两个素数的之和。

2)三根针上有若干个金属片的问题。

四、巩固练习: 1、已知111()1()23f n n N n+=+++⋅⋅⋅+∈,经计算:35(2),(4)2,(8),22f f f =>>(16)3,f >7(32)2f >,推测当2n ≥时,有__________________________.2、已知:2223sin 30sin 90sin 1502++=,2223sin 5sin 65sin 1252++=。

观察上述两等式的规律,请你写出一般性的命题,并证明之。

3、观察(1)tan10tan 20tan 20tan 60tan 60tan101++=(2)tan5tan10tan10tan 75tan 75tan51++=。

由以上两式成立,推广到一般结论,写出你的推论。

注:归纳推理的几个特点:1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.归纳是立足于观察、经验、实验和对有限资料分析的基础上.提出带有规律性的结论. 五、教学小结:1.归纳推理是由部分到整体,从特殊到一般的推理。

通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。

2.归纳推理的一般步骤:1)通过观察个别情况发现某些相同的性质。

2)从已知的相同性质中推出一个明确表述的一般命题(猜想)。

课题:类比推理 ●教学目标:(一)知识与能力:通过对已学知识的回顾,认识类比推理这一种合情推理的基本方法,并把它用于对问 题的发现中去。

(二)过程与方法:类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质,类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。

(三)情感态度与价值观:1.正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析问题、发现事物之间的质的联系的良好个性品质,善于发现问题,探求新知识。

2.认识数学在日常生产生活中的重要作用,培养学生学数学,用数学,完善数学的正确数学意识。

●教学重点:了解合情推理的含义,能利用类比进行简单的推理。

●教学难点:用类比进行推理,做出猜想。

●教具准备:与教材内容相关的资料。

●课时安排:1课时 ●教学过程: 一.问题情境从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子. 他的思路是这样的:茅草是齿形的;茅草能割破手.我需要一种能割断木头的工具;它也可以是齿形的. 这个推理过程是归纳推理吗? 二.数学活动我们再看几个类似的推理实例。

例1、试根据等式的性质猜想不等式的性质。

等式的性质: 猜想不等式的性质: (1) a=b ⇒a+c=b+c;(1) a >b ⇒a+c >b+c; (2) a=b ⇒ ac=bc;(2) a >b ⇒ ac >bc;(3) a=b ⇒a 2=b 2;等等。

(3) a >b ⇒a 2>b 2;等等。

问:这样猜想出的结论是否一定正确?例2、试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定长的点的集合. 球的定义:到一个定点的距离等于定长的点的集合.圆 球 弦←→截面圆 直径←→大圆 周长←→表面积 面积←→体积☆上述两个例子均是这种由两个(两类)对象之间在某些方面的相似或相同,推演出他们在其他方面也相似或相同;或其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理. 类比推理的一般步骤:⑴找出两类对象之间可以确切表述的相似特征;⑵ 用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想; ⑶ 检验猜想。

即例 3.在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高.P 为三角形内任一点,P 到相应三边的距离分别为p a ,p b ,p c ,我们可以得到结论:试通过类比,写出在空间中的类似结论. 1=++cc b b a a h p h p h p巩固提高1.(2001年上海)已知两个圆①x2+y2=1:与②x2+(y-3)2=1,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍然为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为------------------------------------------------------------------------------------------------------------------------------------------------2.类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.直角三角形3个面两两垂直的四面体∠C=90°3个边的长度a,b,c2条直角边a,b和1条斜边c∠PDF=∠PDE=∠EDF=90°4个面的面积S1,S2,S3和S3个“直角面” S1,S2,S3和1个“斜面” S么这个数列叫做等和数列,这个常数叫做该数列的公和。

已知数列{}an是等和数列,且a12=,公和为5,那么a18的值为______________,这个数列的前n项和Sn 的计算公式为________________1.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。

类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。

2.类比推理的一般步骤:①找出两类事物之间的相似性或者一致性。

②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)不等式证明一(比较法)比较法是证明不等式的一种最重要最基本的方法。

比较法分为:作差法和作商法一、作差法:若a,b∈R,则: a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b它的三个步骤:作差——变形——判断符号(与零的大小)——结论.作差法是当要证的不等式两边为代数和形式时,通过作差把定量比较左右的大小转化为定性判定左—右的符号,从而降低了问题的难度。

作差是化归,变形是手段,变形的过程是因式分解(和差化积)或配方,把差式变形为若干因子的乘积或若干个完全平方的和,进而判定其符号,得出结论.例1、求证:x2 + 3 > 3x证:∵(x2 + 3) - 3x = 043)23(3)23()23(32222>+-=+-+-xxx,∴x2 + 3 > 3x例2:已知a, b, m 都是正数,并且a < b ,求证:bam b m a >++证:)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ,∵a,b,m 都是正数,并且a<b , ∴b + m > 0 , b - a > 0∴0)()(>+-m b b a b m 即:bam b m a >++变式:若a > b ,结果会怎样?若没有“a < b ”这个条件,应如何判断? 例3:已知a, b 都是正数,并且a ≠ b ,求证:a 5 + b 5 > a 2b 3 + a 3b 2 证:(a 5 + b 5 ) -(a 2b 3 + a 3b 2) = ( a 5- a 3b 2) + (b 5- a 2b 3 )= a 3 (a 2- b 2 ) - b 3 (a 2- b 2) = (a 2- b 2 ) (a 3- b 3)= (a + b)(a - b)2(a 2 + ab + b 2) ∵a, b 都是正数,∴a + b, a 2 + ab + b 2 > 0,又∵a ≠ b ,∴(a - b)2> 0 ∴(a + b)(a - b)2(a 2 + ab + b 2) > 0,即:a 5 + b 5 > a 2b 3 + a 3b 2例4:甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半时间以速度n 行走;有一半路程乙以速度m 行走,另一半路程以速度n 行走,如果m ≠ n ,问:甲乙谁先到达指定地点? 解:设从出发地到指定地点的路程为S ,甲乙两人走完全程所需时间分别是t 1, t 2, 则:21122,22t n S m S S n tm t =+=+可得:mnn m S t n m S t 2)(,221+=+= ∴)(2)()(2])(4[2)(22221n m mn n m S mn n m n m mn S mn n m S n m S t t +--=++-=+-+=- ∵S, m, n 都是正数,且m ≠ n ,∴t 1- t 2 < 0 即:t 1 < t 2从而:甲先到到达指定地点。

相关文档
最新文档