光伏逆变器种类及选型指导

合集下载

太阳能发电中的逆变器选购与配置指南

太阳能发电中的逆变器选购与配置指南

太阳能发电中的逆变器选购与配置指南随着对可再生能源需求的不断增长,太阳能发电作为一种清洁、可再生的能源选择,正受到越来越多人的关注和应用。

在太阳能发电系统中,逆变器起着至关重要的作用,它能将太阳能电池板所产生的直流电转换为交流电以供家庭、工业和商业应用。

本文将介绍太阳能发电中逆变器的选购与配置指南,以帮助您更好地了解如何选择和配置适合您需求的逆变器。

1. 了解系统负载需求在选购逆变器之前,首先需要明确您的系统负载需求。

您需要考虑的因素包括:系统容量、负载类型和用电需求。

这将有助于确定逆变器的额定功率以及所需的输入电压范围。

2. 选定逆变器类型目前市场上主要有以下几种类型的太阳能逆变器:单相逆变器、三相逆变器和微逆变器。

单相逆变器适用于小型家庭应用,具有较低的功率输出。

三相逆变器适用于商业和工业应用,具有较高的功率输出。

微逆变器可适用于分布式发电系统,每个太阳能板都配备一个微逆变器。

3. 考虑逆变器的转换效率逆变器的转换效率是衡量其性能的重要指标之一。

逆变器的转换效率越高,它所能转换的太阳能电能就越多,从而提高整个太阳能发电系统的效率。

因此,在选购逆变器时,应考虑选择高转换效率的产品。

4. 了解逆变器的保护功能逆变器应具备一系列的保护功能,以确保太阳能发电系统的安全运行。

这些保护功能包括:过压保护、电流保护、过载保护、短路保护和温度保护等。

选购逆变器时,应关注其所具备的保护功能并确保满足您的需求。

5. 考虑逆变器的通信功能逆变器的通信功能是现代太阳能发电系统中越来越重要的特性之一。

通过通信功能,用户可以实时监控系统的性能和运行状况。

一些逆变器还具备远程监控和故障诊断功能,能够提供更便捷的维护和管理。

因此,在选购逆变器时,您可以考虑是否需要具备通信功能。

6. 根据预算选择逆变器太阳能逆变器的价格与其品牌、转换效率和功能等因素相关。

在选购逆变器时,您需要根据自己的预算来选择适合的产品。

然而,为了确保系统的长期性能和可靠性,建议不要仅仅以价格来决定选购逆变器的品质。

光伏逆变器的选购技巧

光伏逆变器的选购技巧

光伏逆变器的选购技巧
光伏逆变器是光伏发电系统中的核心设备,能够将光伏电池板发
出的直流电转换为可用的交流电。

为了让您能够更好地理解光伏逆变
器的选购技巧,本文将从几个方面来进行阐述。

第一步:确定光伏逆变器的类型
光伏逆变器的类型有许多不同的种类,包括单相逆变器、三相逆
变器、智能逆变器等等。

每一种类型的逆变器都有其特定的功能和适
用范围,因此需要根据自己的需求来进行选择。

如果是家庭用户,则
建议选择单相逆变器,如果是工业用户,则建议选择三相逆变器。

第二步:选择合适的功率
功率是衡量光伏逆变器重要参数之一,选择合适的功率能够避免
因功率不足导致系统损耗和效率低下。

一般来说,选择光伏逆变器的
功率应该根据光伏电池板的输出功率和运行环境来确定。

第三步:了解逆变器的转换效率
逆变器的转换效率直接影响到光伏发电系统的发电量,因此选购
时应该重点关注逆变器的转换效率。

逆变器的转换效率越高,光伏发
电系统的发电量也就越高,因此建议选择转换效率较高的光伏逆变器。

第四步:注意逆变器的质量和耐久性
逆变器是光伏发电系统的核心设备,选择质量和耐久性好的逆变
器能够避免频繁更换和维修的问题。

建议选择具有较长保修期的品牌
逆变器,同时注意逆变器的防护性能和抗压能力,以确保在恶劣的环
境下也能够正常工作。

综上所述,选购光伏逆变器时需从类型、功率、转换效率、质量
和耐久性等方面进行考虑。

希望本文能够对您有所帮助,让您更好地
了解光伏逆变器选购技巧。

光伏逆变器的选择和配备

光伏逆变器的选择和配备

光伏逆变器的选择和配备光伏逆变器是太阳能光伏发电系统中必不可少的关键设备。

它负责将太阳能电池板转换的直流电能转化为交流电能,以供家庭或工业用电。

正确选择和配备逆变器对于光伏发电系统的性能和效率至关重要。

在本文中,我们将探讨光伏逆变器的选择因素以及合适的配备方法。

1. 功率需求光伏逆变器的功率需求是选择的首要因素之一。

根据光伏发电系统的容量和使用需求,逆变器的功率应能够满足太阳能电池板的最大输出功率。

同时,还需考虑系统的动态负载和峰值功率需求。

在选择逆变器时,可根据实际情况咨询专业人士或厂家,以确保逆变器具备足够的功率。

2. 效率和转换损失逆变器的电能转换效率是选择过程中需要考虑的关键指标之一。

较高的转换效率意味着逆变器在将直流电转换为交流电时的能量损失较小。

逆变器的效率通常由厂家提供,选择效率较高的逆变器将有助于提高光伏发电系统的整体效能,并降低长期运行成本。

3. 逆变器类型在选择光伏逆变器时,有两种主要类型可供选择:串联逆变器和并联逆变器。

串联逆变器常用于单个光伏电池板或小容量系统,而并联逆变器则适用于多个光伏电池板并联组成的系统。

根据光伏系统的规模和特定需求,选择适当的逆变器类型非常重要,以确保系统的最佳性能和安全运行。

4. 可靠性和维护光伏逆变器的可靠性是一个关键的选择因素。

逆变器通常被安装在户外环境,长期受到阳光、风雨和温度波动的影响。

因此,选择具有良好防护和优异抗环境性能的逆变器非常重要。

此外,逆变器的维护和维修也应考虑在内。

选择具有可靠售后服务和容易维护的逆变器品牌和型号将有助于减少潜在故障和降低维修成本。

5. 通信功能和智能化现代光伏逆变器通常配备有通信功能,可以通过互联网实现远程监控和控制。

这种功能可以帮助用户及时了解系统的工作状态、电能产量和故障信息,并远程调整逆变器的参数和工作模式。

选择一个具有丰富通信功能和智能化特性的逆变器有助于提高系统的管理和维护效率。

总结选择适当的光伏逆变器对于光伏发电系统的性能和效率至关重要。

光伏逆变器种类及选型指导

光伏逆变器种类及选型指导

光伏逆变器专用于太阳能光伏发电领域的逆变器,是光伏系统中不可缺少的核心部件,其最大的作用在于将太阳能电池产生的直流电通过电力电子变换技术转换为能够直接并入电网、负载的交流能量。

并网逆变器作为光伏电池与电网的接口装置,将光伏电池的电能转换成交流电能并传输到电网上,在光伏并网发电系统中起着至关重要的作用,为了实现最佳方式的太阳能转换,这势必要求逆变器多样化,这是由于建筑的多样性导致太阳能电池板安装的多样性,同时为了使太阳能的转换效率最高同时又兼顾建筑的外形美观的缘故。

目前通用的太阳能逆变方式为:集中逆变器、组串逆变器,多组串逆变器和组件逆变(微型逆变器)。

集中逆变器集中逆变器设备功率在50KW到630KW之间,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。

体积较大,室内立式安装。

一般用与大型光伏发电站(>10kW)的系统中,大量并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,让它非常接近于正弦波电流。

其最大特点是系统的功率高,成本低。

但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。

同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。

最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。

组串逆变器组串逆变器已成为目前国际市场上最流行的逆变器。

其是基于模块化概念基础上的,每个光伏组串(1kW-5kW)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网。

很多大型光伏电厂都使用的是组串逆变器。

其优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳点与逆变器不匹配的情况,从而增加了发电量。

光伏逆变器分类及主要技术指标

光伏逆变器分类及主要技术指标

光伏逆变器分类及主要技术指标 光伏逆变器分类 光伏逆变器一般有电站型光伏逆变器、组串型光伏逆变器及微型逆变器。

电站型光伏逆变器,功率范围从30KW-1000KW,甚至更大。

主要应用于大型商业屋顶、工业厂房和大型地面光伏电站。

电站型光伏逆变器以三相桥式电路拓扑为主,同时包括无变压器和有变压器两类。

组串型光伏逆变器,功率范围1KW-30KW,主要应用于住宅型屋顶和一些小型商业屋顶。

组串型光伏逆变器单相产品以升压电路和单相无变压器拓扑结构为主,三相产品以升压电路加三相三电平无变压器拓扑结构为主。

微型逆变器的功率在200W-500W,主要应用在幕墙、窗台、小型屋顶上面。

微型逆变器可搭配单一组件结构,单独追踪每个组件最大输出功率,达到效能优化。

除此之外,也可以改善遮蔽问题,提高太阳能光电系统效率和可靠性。

光伏逆变器主要的技术指标 光伏逆变器的转换效率要求高,转换效率的高低将直接影响到太阳能发电系统在寿命周期内发电量的多少。

根据不同型号,国际一流品牌产品的转换效率最高可达98%以上。

大功率的光伏逆变器能够达到98.7%的转换效率,最大功率跟踪器(MPPT)效率可达到99.9%。

光伏逆变器的使用寿命长,可靠性高。

光伏发电系统设计使用寿命一般为20年左右,所以要求光伏逆变器的设计寿命需要达到较高水平。

同时光伏逆变器如果发生故障将会导致光伏发电系统停机,带来经济损失,因此高可靠性是光伏逆变器的重要技术指标。

光伏逆变器的直流电压工作范围要宽,且符合电网并网要求。

实际应用中将多块太阳能电池组件串联,得到一个较高的直流电压,在进行多组并联后输入到光伏逆变器。

不同功率、不同电压的组件、不同的串并联方案组合,要求光伏逆变器能够适应的直流电压输入不同。

所以光伏逆变器的直流工作电压要宽,以适应客户不同的需求。

同时输出的电流不能对电网造成冲击,符合电网并网要求。

光伏并网逆变器选型指南

光伏并网逆变器选型指南
1.逆变部分采用开关速度快、功耗小的智能IGBT(IPM)作为功率器件。逆变变压器又是采用高效完全隔离型的,所以逆变器具有了输出波形失真小;动态特性好;逆变效率高的特性。
2.控制部分是采用高速度的微处理器为核心的控制部件,所以具有了输出过载,输出高、低电压保护动作快,抗干扰能力强,稳压精度高等特性。
E:附加功能,人性化设计
人性化界面设计
数据显示多样化
方便的窗口排列设置
避免重复运行的设计
多种时间日期显示
F:不断创新,力求完美(无线监控介绍)
系统描述:
设备只需插入一张SIM卡,就可通过GSM网络以短消息或数传(Data)的形式完成远程的双向数据传输。而远程终端可以是PC机,移动手机或其他移动设备。
4.1.1LED指示灯说明
LED 灯
含义
并网
并网工作(并网发电,灯亮)
离网
停止并网(离网,灯亮)
4.1.2按键说明
1)监控系统单元共设有五个按键,功能名称按顺序分别为:返回键(ESC)、上翻键( ),下翻键( ) 、确认键(read)、复位键(Reset)。
2)液晶显示菜单中的一级菜单包括:系统设置、实时时钟、实时监控、故障记录。
1、1MW以上光伏发电的系统:建议选择多台GSG250KC的电源进行并联运行;
2、500KW至1MW的系统:建议选择多台GSG100KC的电源进行并联运行;
3、200KW至500KW的光伏发电系统:建议选择多台GSG50KC的并联运行;
4、200KW以下的光伏发电系统:建议采用多台GSG20KC或GSG50KC的电源进行并联运行。
具体功能
A:实时数据显示与处理
采用召唤应答式规约,在线实现数据实时显示。
对于实时数据处理后,可以参照对比专家系统意见,提供最佳电源使用优化方案。

光伏逆变器选型与布置

光伏逆变器选型与布置

光伏逆变器选型与布置光伏逆变器是将太阳能电池板所产生的直流电转换为交流电的关键设备。

在光伏发电系统中,逆变器的选型和布置是非常重要的,它直接影响到光伏系统的性能和效果。

本文将针对光伏逆变器选型与布置的相关问题进行探讨,希望能够为读者提供一些有用的指导和建议。

首先,对于光伏逆变器的选型,我们需要考虑以下几个方面:1. 功率要求:光伏逆变器的功率要与太阳能电池板的输出功率相匹配。

因此,我们需要了解太阳能电池板的额定功率,并根据其输出功率选择逆变器的容量。

一般而言,光伏逆变器的额定功率应略大于太阳能电池板的总输出功率,以确保系统的正常运行。

2. 逆变器类型:光伏逆变器分为单相逆变器和三相逆变器两种类型。

单相逆变器适用于小功率的家庭光伏发电系统,而三相逆变器适用于大功率的商业或工业光伏发电系统。

根据实际需求选择适当的逆变器类型可以提高系统的效能和可靠性。

3. 输出电压和频率:光伏逆变器的输出电压和频率应该适应当地的电网要求。

不同国家和地区的电网使用的电压和频率可能有所不同,因此,在选型时需要确保逆变器的输出电压和频率与当地电网匹配。

4. 效率和可靠性:在选型过程中,我们还需要考虑逆变器的效率和可靠性。

高效的逆变器可以将更多的太阳能电能转换为电网可用的交流电能,从而提高光伏发电系统的效率。

同时,可靠性也是一项重要考虑因素,可靠的逆变器可以确保系统的稳定运行。

除了逆变器的选型外,逆变器的布置也是影响光伏发电系统性能的重要因素。

以下是一些建议:1. 安装位置选择:光伏逆变器应该安装在通风良好、阴凉的地方,以确保其散热效果。

同时,还要避免暴露在阳光直射的地方,以防止过热。

逆变器的安装位置也应该尽量避免尘土、湿气等对其产生不利影响的环境。

2. 连接线路布置:逆变器和太阳能电池板之间的电缆连接线路应选用合适的规格和材质,以减少能量损耗。

此外,线路的长度和布置方式也需要合理设计,避免过长的线路和弯曲的布置方式对系统产生影响。

光伏系统逆变器选择

光伏系统逆变器选择

光伏系统逆变器选择摘要:随着光伏发电成为我国新能源发展的重点项目,光伏逆变器的研究已成为当今热门的研究领域。

本文介绍了光伏逆变器的的构成、功能和分类以及集中式逆变器、组串式逆变器的特点,确定组串式逆变器更加适合应用于民用建筑光伏发电系统的应用领域。

关键词:光伏发电;光伏逆变器;集中式;组串式随着绿色建筑设计标准的贯彻,应用光伏发电作为可再生能源的项目越来越多。

不少设计人员对相关设备的选型及应用尚不太了解,而相关的图集对设计的指导还不够详尽、准确。

本文介绍光伏系统中逆变器的选择与应用。

1.逆变器的构成和功能逆变器的功率转换部分是使用功率晶体管切换直流电并重新排序产生交流电。

控制装置部分即控制功率转换部分的电子电路构成;保护装置也由电子电路构成,并在内部发生故障时作为安全装置动作。

逆变器具有以下功能。

(1)在负载和日照强度较大的情况下,逆变器均能高效运行。

(2)日照强度、负载变化、环境温度对于光伏组件的输出功率具有很大的影响。

因此,无论输出电压、输出电流的变化如何,逆变器始终保持最大功率及跟踪功能,通过自身调节实现系统的高效运行。

(3)逆变器的输出为正弦波电流,光伏发电系统回馈给电网的电能,必须满足电网规定的性能指标,如逆变器必须尽量减少高次谐波、输出电流不能含有直流分量,保证电网可靠性。

(4)为了使电压维持在规定范围内,自动进行电压调节。

2.逆变器的类型选择目前,市面上常见的逆变器种类包括集中式逆变器、组串式逆变器以及微型逆变器,其中微型逆变器由于其经济性和应用场景的限制,一般很少采用。

集中式逆变器一般输出功率为500~630kW,拓扑结构采用DC-AC一级变换,防护等级一般为IP65,体积较大,采用室内立式安装。

集中式逆变器主要优点是单位功率的成本相对较低,逆变器数量少,便于集中管理。

主要缺点是其直流部分系统较复杂,而直流设备造价相对较高,监控及管理不便,且故障率高;最大功率点跟踪(Maximum Power Point Tracking,MPPT)电压范围窄,一般为450~820V,组件配置不灵活,启动电压较高,导致发电时间较短;发热较大,需要强制风冷,自身耗电较大;MPPT数量少,整体发电效率相对低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光伏逆变器种类及选型指导光伏逆变器专用于太阳能光伏发电领域的逆变器,是光伏系统中不可缺少的核心部件,其最大的作用在于将太阳能电池产生的直流电通过电力电子变换技术转换为能够直接并入电网、负载的交流能量。

并网逆变器作为光伏电池与电网的接口装置,将光伏电池的电能转换成交流电能并传输到电网上,在光伏并网发电系统中起着至关重要的作用,为了实现最佳方式的太阳能转换,这势必要求逆变器多样化,这是由于建筑的多样性导致太阳能电池板安装的多样性,同时为了使太阳能的转换效率最高同时又兼顾建筑的外形美观的缘故。

目前通用的太阳能逆变方式为:集中逆变器、组串逆变器,多组串逆变器和组件逆变(微型逆变器)。

集中逆变器集中逆变器设备功率在50KW到630KW之间,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。

体积较大,室内立式安装。

一般用与大型光伏发电站(>10kW)的系统中,大量并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,让它非常接近于正弦波电流。

其最大特点是系统的功率高,成本低。

但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。

同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。

最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。

组串逆变器组串逆变器已成为目前国际市场上最流行的逆变器。

其是基于模块化概念基础上的,每个光伏组串(1kW-5kW)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网。

很多大型光伏电厂都使用的是组串逆变器。

其优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳点与逆变器不匹配的情况,从而增加了发电量。

技术上的优势不仅降低了系统成本,也增加了系统的可靠性。

同时,在组串间引入“主-从”的概念,使得在系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。

多组串逆变多组串逆变是取了集中逆变和组串逆变的优点,避免了其缺点,可应用于几千瓦的光伏发电站。

其功率一般小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。

体积较小,可室外臂挂式安装。

在多组串逆变器中,包含了不同的单独的功率峰值跟踪和直流到直流的转换器,这些直流通过一个普通的直流到交流的逆变器转换成交流电,并网到电网上。

光伏组串的不同额定值(如:不同的额定功率、每组串不同的组件数、组件的不同的生产厂家等等)、不同的尺寸或不同技术的光伏组件、不同方向的组串(如:东、南和西)、不同的倾角或遮影,都可以被连在一个共同的逆变器上,同时每一组串都工作在它们各自的最大功率峰值上。

同时,直流电缆的长度减少、将组串间的遮影影响和由于组串间的差异而引起的损失减到最小。

组件逆变器(微型逆变器)在传统的PV系统中,每一路组串型逆变器的直流输入端,会由10块左右光伏电池板串联接入。

当10块串联的电池板中,若有一块不能良好工作,则这一串都会受到影响。

若逆变器多路输入使用同一个MPPT,那么各路输入也都会受到影响,大幅降低发电效率。

在实际应用中,云彩,树木,烟囱,动物,灰尘,冰雪等各种遮挡因素都会引起上述因素,情况非常普遍。

而在微型逆变器的PV系统中,每一块电池板分别接入一台微型逆变器,当电池板中有一块不能良好工作,则只有这一块都会受到影响。

其他光伏板都将在最佳工作状态运行,使得系统总体效率更高,发电量更大。

在实际应用中,若组串型逆变器出现故障,则会引起几千瓦的电池板不能发挥作用,而微型逆变器故障造成的影响相当之小。

微型逆变器是将每个光伏组件与一个逆变器相连,同时每个组件有一个单独的最大功率峰值跟踪,这样组件与逆变器的配合更好。

通常用于50W到400W的光伏发电站,总效率低于组串逆变器。

这是因为是在交流处并联,这就增加了交流侧的连线的复杂性,维护困难。

另一需要解决的问题是怎样能更有效的与电网并网,最直接简单的方法是直接通过普通的交流电插座进行并网,这样可减少成本和设备的安装,但往往各地的电网的安全标准可能不允许这样做,电力公司也极有可能反对发电装置直接和普通家庭用户的普通插座相连。

另一与安全有关的因素是是否需要使用隔离变压器(高频或低频),或者允许使用无变压器式的逆变器。

这一逆变器在玻璃幕太阳能并网逆变器光伏并网逆变器墙中使用最为广泛。

日前,国家能源正式出台了《分布式光伏发电项目管理暂行办法》,与此早之前国家能源局面就召集了能源局相关各司及江、浙、沪发改委和能源局领导均有出席的高规格座谈会,并在随后的意见稿中明确提出了“将在2014年新建总量达12GW的光伏发电项目,其中8GW属于分布式,4GW为地面电站。

这无疑都反映了政府主管部门力推分布式光伏发电,以压制地面电站的无序扩张的决心。

然后这种产业形态的实质性转变,反应到光伏逆变器领域,则是产品与市场的双重角力。

“虽然大型逆变器在成本上有一定的优势,但随着分布式光伏政策及细则的不断出台,传统大型逆变器的体积大、不便搬运、直流电缆多、需加入汇流箱和直流配电柜,虽然逆变器本身效率很高,相对整个电站效率偏低等缺点将暴露地更加明显”。

赵磊对记者说:从技术角度,对于相同容量的光伏电站,采用大型逆变器时MPPT较少,MPPT集中监测,精确度较低;若采用组串式逆变器时,针对不同的安装方式或每一串电池板都有一个MPPT精确监测,组串间影响小,整体发电效率高;从商务角度:就以前的市场来看,因为采用金太阳一次性补贴的商务运作方式,所以很多人在设计电站的时候只是考虑一次性的投资成本,所以选用大型逆变器,因为仅仅从逆变器本身是最便宜的。

组串式逆变器的单瓦价格高于大型逆变器,因此业主往往会考虑使用大型逆变器;但是随着技术成熟和市场变化,目前随着新的补贴政策(度电补贴按照0.42元每千瓦时)的推出,综合考虑组串型机型的价格有相当的优势,因此组串式逆变器与大型逆变器的市场格局正悄然发生着变化,随着分布式电站的逐步兴起,以组串型逆变器为主,微型逆变器为辅(在屋顶局部阴影附近或者局部电池板角度不一致选用)结合,将是未来分布式从整体电站考虑的最佳选择了。

那么我们面对一个500kWp的屋顶光伏电站应该如何进行逆变器的选型?特对这三种逆变器的优缺点进行比较如下:集中式方案优缺点集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。

应用集中式逆变器的光伏电站系统主要器件对比:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。

集中式逆变器优点:(1)逆变器数量少,便于管理;(2)逆变器元器件数量少,可靠性高;(3)谐波含量少,直流分量少电能质量高;(4)逆变器集成度高,功率密度大,成本低;(5)逆变器各种保护功能齐全,电站安全性高;(6)有功率因素调节功能和低电压穿越功能,电网调节性好集中式逆变器缺点:1、安全问题。

集中式方案中采用直流汇流箱,由于内置直流支路熔丝,存在融不断起火的风险,因为只要有光照太阳能板就会处于工作状态。

对于分布式屋顶厂房来说,带来严重的安全隐患。

不仅电站本身经济收益受影响,更关键会影响到厂房的其他设备。

给业主带来非常大的损失。

2、不规则屋顶,采用单个500KW逆变器无法充分利用屋顶面积。

逆变器经常处于过载或轻载或者超配、欠配的情况。

3、多个朝向的屋顶,电池板有部分阴影遮挡导致组串的不一致性,单路MPPT导致发电量相对较低;同时,各路组串的失配损失也将导致发电量的损失。

4、逆变器需要专业工程师维护,单个逆变器故障对发电量影响较大,对维护人员的安全也带来巨大挑战,同时,备件种类较多,故障定位及修复3天以上,严重影响客户发电收益。

直流汇流箱故障率高,无法监控到每路组串,增加故障定位时间,由于熔丝挥发,故障率、维护成本高,需要定期更换维护;线路复杂,现场加工的接头多,故障率高;部份项目运行1~2年后,有效发电率低于90%;5、集中式方案需要逆变器房和相应土建工程,同时需配套相应的风机,风道,烟感,温感等设备,而如果在传统的厂房屋顶安装光伏电站,其配电室不一定能够安置下体积庞大的500KWp集中式逆变器。

同时不但增加了施工复杂度,还加大了初始投资和运维成本。

6、集中式逆变器需强制风冷,机房消耗电力大,平均至少300W以上,需要定期扫灰,风扇维护和防尘网更换。

7、集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。

在阴雨天,雾气多的部区,发电时间短。

8、集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。

组串式逆变器组串式逆变器适用于中小型屋顶光伏发电系统,小型地面电站。

应用组串式逆变器的光伏电站系统包括组件,直流电缆,逆变器,交流配电,电网。

组串式逆变器优点:1、组串式逆变器组网结构简单,可分散室外就近安装,根据屋顶容量选择合适的逆变器灵活组合,充分利用屋顶面积,增加投资收益。

2、设备种类简单,节省投资。

直流汇流箱、直流配电柜、隔离变压器、机房和相关土建工程可全部省去,同时降低现场施工组织难度、缩短工期。

综合计算,组串式逆变器系统土建工作量仅为集中式逆变器系统的1/4;从安全可靠性而言,避免了传统集中式方案直流侧着火无法扑灭的风险。

3、组件不一致性对发电量影响较小,逆变器自用电少,组串式自耗电功率为20W,仅为集中式的1.3%,根据实际项目的测试,组串式方案系统效率约比集中式方案至少高5%左右。

4、每台逆变器具备3路独立MPPT,对每一路单独跟踪,单路故障影响小,精细化管理每路电池板输出,全系统发电量高。

当出现部分遮挡、部分污损(如鸟粪)、部分故障时,除了受影响部分的发电量有影响以外,其余部分依然可以保证最大功率输出。

5、组串式逆变器无需专业工程师维护,设备模块化,现场安装调试简单,20分钟可完成一台逆变器的更换,无需专业人员值守,实现“傻瓜式”维护;单台逆变器故障对发电量影响较低,系统可靠性和年可用率较高,逆变器年故障率小于0.5%。

6、每台逆变器可实现6路组串智能监测,减少故障定位时间80%,独立侦测每一路输入的电压和电流,可实时采样组串电流、电压,及时发现线路故障、组件故障、遮挡等问题。

通过组串横向比较、气象条件比较、历史数据比较等,提高检测准确性。

相关文档
最新文档