永磁直驱式风力发电机的工作原理
直驱式永磁同步风力发电机概述

直驱式永磁同步风力发电机概述永磁同步发电机是一种以永磁体进行励磁的同步电机,应用于风力发电系统,称为永磁同步风力发电机。
永磁同步风力发电机一般不用齿轮箱,而将风力机主轴与低速多极同步发电机直接连接,为“直驱式”,所以称为直驱式永磁同步风力发电机,以下本章除特指外均简称为永磁同步发电机。
一、永磁同步发电机的特点1.与传统电励磁同步发电机比较同步发电机是一种应用广泛的交流电机,其显著特点是转子转速n与定子电流频率f之间具有固定不变的关系,即n=n0=60f/p,其中n为同步转速,p为极对数。
现代社会中使用的交流电能几乎全部由同步发电机产生。
永磁同步发电机是一种结构特殊的同步发电机,它与传统的电励磁同步发电机的主要区别在于:其主磁场由永磁体产生,而不是由励磁绕组产生。
与普通同步发电机相比,永磁同步发电机具有以下特点:(1)省去了励磁绕组、磁极铁芯和电刷-集电环结构,结构简单紧凑,可靠性高,免维护。
(2)不需要励磁电源,没有励磁绕组损耗,效率高。
(3)采用稀土永磁材料励磁,气隙磁密较高,功率密度高,体积小,质量轻。
(4)直轴电枢反应电抗小,因而固有电压调整率比电励磁同步发电机小。
(5)永磁磁场难以调节,因此永磁同步发电机制成后难以通过调节励磁的方法调节输出电压和无功功率(普通同步发电机可以通过调节励磁电流方便地调节输出电压和无功功率)。
(6)永磁同步发电机通常采用钕铁硼或铁氧体永磁,永磁体的温度系数较高,输出电压随环境温度的变化而变化,导致输出电压偏离额定电压,且难以调节。
(7)永磁体存在退磁的可能。
目前,永磁同步发电机的应用领域非常广泛,如航空航天用主发电机、大型火电站用副励磁机、风力发电、余热发电、移动式电源、备用电源、车用发电机等都广泛使用各种类型的永磁同步发电机,永磁同步发电机在很多应用场合有逐步代替电励磁同步发电机的趋势。
2.与非直驱式双馈风力发电机比较虽然双馈风力发电机是目前应用最广泛的机型,但随着风力发电机组单机容量的增大,双馈型风力发电系统中齿轮箱的高速传动部件故障问题日益突出,于是不用齿轮箱而将风力机主轴与低速多极同步发电机直接连接的直驱式布局应运而生。
永磁同步风力发电系统的组成、工作原理及控制机理

永磁同步风⼒发电系统的组成、⼯作原理及控制机理永磁同步风⼒发电系统的系统基本组成、⼯作原理、控制模式论述1.系统的基本组成:直驱式同步风⼒发电系统主要采⽤如下结构组成:风⼒机(这⾥概括为:叶⽚、轮毂、导航罩)、变桨机构、机舱、塔筒、偏航机构、永磁同步发电机、风速仪、风向标、变流器、风机总控系统等组成。
其中全功率变流器⼜可分为发电机侧整流器、直流环节和电⽹侧逆变器。
就空间位置⽽⾔,变流器和风机总控系统⼀般放在塔筒底部,其余主要部件均位于塔顶。
2.⼯作原理:系统中能量传递和转换路径为:风⼒机把捕获的流动空⽓的动能转换为机械能,直驱系统中的永磁同步发电机把风⼒机传递的机械能转换为频率和电压随风速变化⽽变化的不控电能,变流器把不控的电能转换为频率和电压与电⽹同步的可控电能并馈⼊电⽹,从⽽最终实现直驱系统的发电并⽹控制。
3.控制模式:风⼒发电机组的控制系统是综合性控制系统。
它不仅要监视电⽹、风况和机组运⾏参数,对机组运⾏进⾏控制。
⽽且还要根据风速与风向的变化,对机组进⾏优化控制,以提⾼机组的运⾏效率和发电量。
风⼒发电控制系统的基本⽬标分为三个层次:分别为保证风⼒发电机组安全可靠运⾏,获取最⼤能量,提供良好的电⼒质量。
控制系统主要包括各种传感器、变距系统、运⾏主控制器、功率输出单元、⽆功补偿单元、并⽹控制单元、安全保护单元、通讯接⼝电路、监控单元。
具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、⾃动最⼤功率点跟踪控制、功率因数控制、偏航控制、⾃动解缆、并⽹和解列控制、停机制动控制、安全保护系统、就地监控、远程监控。
⼀、系统运⾏时控制:1、偏航系统控制:偏航系统的控制包括三个⽅⾯:⾃动对风、⾃动解缆和风轮保护。
1)⾃动对风正常运⾏时偏航控制系统⾃动对风,即当机舱偏离风向⼀定⾓度时,控制系统发出向左或向右调向的指令,机舱开始对风,当达到允许的误差范围内时,⾃动对风停⽌。
2)⾃动解缆当机舱向同⼀⽅向累计偏转2~3圈后,若此时风速⼩于风电机组启动风速且⽆功率输出,则停机,控制系统使机舱反⽅向旋转2~3圈解绕;若此时机组有功率输出,则暂不⾃动解绕;若机舱继续向同⼀⽅向偏转累计达3圈时,则控制停机,解绕;若因故障⾃动解绕未成功,在扭缆达4圈时,扭缆机械开关将动作,此时报告扭缆故障,⾃动停机,等待⼈⼯解缆操作。
MW级直驱永磁同步风力发电机设计

未来,需要进一步开展直驱永磁同步风力发电机的优化设计和应用研究。例如, 通过提高发电机的额定功率和降低制造成本,可以进一步提高其经济性;还需 要加强该技术在不同环境和气候条件下的适应性和稳定性研究,为直驱永磁同 步风力发电机的广泛应用提供更加坚实的基础。
谢谢观看
展望未来,风力发电技术将在全球范围内得到更广泛的应用和发展。随着技术 的不断进步和市场需求的变化,MW级直驱永磁同步风力发电机的研究也将不断 深入。未来的研究将更多地如何提高发电机的效率和可靠性,降低制造成本和 维护成本,
以及如何更好地与电网进行连接和控制等方面的问题。随着数字化和智能化技 术的发展,将这些技术应用于风力发电机设计中也将成为未来的一个研究方向。
2、结构简单:该技术不需要增速齿轮箱,减少了机械损耗和故障率。
3、维护方便:由于结构简单,直驱永磁同步风力发电机的维护工作量较小, 降低了维护成本。
4、适应性强:该技术适用于不同规模的风电场,能够满足不同需求。
三、直驱永磁同步风力发电机的 应用场景
1、大型风电场:直驱永磁同步风力发电机适用于大型风电场,能够满足大规 模电力输出的需求。
MW级直驱永磁同步风力发电机设计
01 一、确定主题
目录
02 二、编写大纲
03 三、详细设计
04 四、结果分析05 五来自总结与展望06 参考内容
一、确定主题
随着环保意识的不断提高和可再生能源的广泛应用,风力发电技术得到了持续 发展。其中,MW级直驱永磁同步风力发电机由于其高效、可靠、维护成本低等 特点,成为了风力发电领域的研究热点。本次演示将详细介绍MW级直驱永磁同 步风力发电机的设计过
2、效率评估:通过对比不同设计方案和不同制造工艺下的发电机效率,选择 最优方案和工艺。
双馈、直驱、半驱风力发电机工作原理

双馈、直驱、半驱风力发电机工作原理双馈、直驱和半驱风力发电机是目前常见的几种风力发电机构。
它们分别采用不同的工作原理来转换风能为电能,并在风力发电行业中得到广泛应用。
我们来了解一下双馈风力发电机的工作原理。
双馈风力发电机是一种采用异步发电机的结构,其转子由两部分组成:一个是固定子,另一个是转子。
风力通过叶片传递给转子,转子通过传动系统将机械能转化为电能。
在双馈风力发电机中,转子的定子通过拖动转子的磁场,使得风力发电机可以实现变频调速。
双馈风力发电机具有转矩平稳、响应速度快的优点,可以适应不同风速下的工作状态。
接下来,我们介绍一下直驱风力发电机的工作原理。
直驱风力发电机是一种采用永磁同步发电机的结构,其转子由永磁体构成。
风力通过叶片传递给转子,转子通过直接驱动发电机产生电能。
直驱风力发电机不需要传动系统,减少了能量转换的损失,提高了发电效率。
直驱风力发电机具有结构简单、体积小、维护成本低等优点,逐渐成为风力发电领域的主流技术。
我们来了解一下半驱动风力发电机的工作原理。
半驱动风力发电机是双馈风力发电机和直驱风力发电机的结合体,它采用了双馈发电机的转子结构和直驱发电机的永磁体。
风力通过叶片传递给转子,转子通过传动系统将机械能转化为电能。
半驱动风力发电机兼具双馈风力发电机和直驱风力发电机的优点,具有较高的发电效率和稳定性。
双馈、直驱和半驱风力发电机是目前常见的几种风力发电机构。
它们分别采用不同的工作原理来转换风能为电能,并在风力发电行业中发挥重要作用。
双馈风力发电机通过变频调速实现转矩平稳,响应速度快;直驱风力发电机通过永磁同步发电机实现高效发电;半驱动风力发电机兼具双馈和直驱的优点,具有较高的发电效率和稳定性。
随着风力发电技术的不断发展,这些风力发电机构将进一步完善和提升,为可持续能源的开发和利用做出更大贡献。
永磁直驱风力发电机组并网发电原理

永磁直驱风力发电机组并网发电原理
永磁直驱风力发电机组并网发电是一种新型的发电技术,它利用风力将机组的转矩转化为电能,并将该电能输出到电网中。
永磁直驱风力发电机组是一种特殊的发电机组,它采用永磁材料制造的发电机,可以将风力转换为电能,而无需使用变速箱和传动轴。
永磁直驱风力发电机组可以输出一定的功率,其输出电能可以用于发电。
并网发电是指将发电机组输出的电能输入到电网中,实现了发电和用电之间的互联互通。
发电机组可以将连续的电能输出到电网中,供用户使用,从而实现发电。
永磁直驱风力发电机组并网发电的优点是结构简单,可靠性高,运行维护成本低,可以有效地利用风能,实现节能环保,并可以获得较大的发电量,可以节约大量的能源费用,给社会带来更多的经济效益。
永磁直驱风力发电机组并网发电不仅可以节省能源,而且可以缓解电网负荷,提高电网的可靠性和安全性,进一步推动可再生能源的发展。
总之,永磁直驱风力发电机组并网发电是一项重要的发电技术,它具有结构简单、可靠性高、运行维护成本低等优点,
可以节省能源,缓解电网负荷,提高电网可靠性和安全性,进一步推动可再生能源的发展,给社会带来更多的经济效益。
直驱式永磁同步风力发电机组建模及其控制策略

直驱式永磁同步风力发电机组建模及其控制策略一、本文概述随着全球能源需求的持续增长和环境保护的日益紧迫,风力发电作为一种清洁、可再生的能源形式,正受到越来越多的关注。
直驱式永磁同步风力发电机(Direct-Drive Permanent Magnet Synchronous Wind Turbine Generator, DDPMSG)作为一种新型风力发电技术,以其高效率、高可靠性以及低维护成本等优点,逐渐成为风力发电领域的研究热点。
本文旨在对直驱式永磁同步风力发电机组的建模及其控制策略进行深入研究。
文章将介绍直驱式永磁同步风力发电机的基本结构和工作原理,为后续建模和控制策略的研究奠定基础。
接着,文章将详细阐述直驱式永磁同步风力发电机组的数学建模过程,包括机械部分、电气部分以及控制系统的数学模型,为后续控制策略的设计提供理论支持。
在控制策略方面,本文将重点研究直驱式永磁同步风力发电机组的最大功率点跟踪(Maximum Power Point Tracking, MPPT)控制和电网接入控制。
最大功率点跟踪控制旨在通过调整发电机组的运行参数,使风力发电机组在不同风速下都能保持最佳运行状态,从而最大化风能利用率。
电网接入控制则关注于如何确保发电机组在并网和孤岛运行模式下的稳定运行,以及如何在电网故障时实现安全可靠的解列。
本文还将探讨直驱式永磁同步风力发电机组的控制策略优化问题,以提高发电机组的运行效率和稳定性。
通过对控制策略进行优化设计,可以进一步减少风力发电机组的能量损失,提高风电场的整体经济效益。
本文将对直驱式永磁同步风力发电机组的建模及其控制策略进行总结,并展望未来的研究方向和应用前景。
通过本文的研究,可以为直驱式永磁同步风力发电机组的实际应用提供理论指导和技术支持,推动风力发电技术的持续发展和优化。
二、直驱式永磁同步风力发电机组的基本原理直驱式永磁同步风力发电机组(Direct-Drive Permanent Magnet Synchronous Wind Turbine Generator,简称DD-PMSG)是一种将风能直接转换为电能的装置,其基本原理基于风力驱动、机械传动、电磁感应和电力电子控制等多个方面。
直驱永磁风力发电系统概述_1352537_张昌鸣

直驱永磁风力发电系统概述摘要:在直驱永磁发电系统中,风速影响输出电压的幅值和频率,不能直接并网。
本文概述了一种控制方法,通过对逆变器的控制实现输出电压对电网电压的跟踪,达到并网要求;基于最大风能追踪控制原理,通过对变频器的调节控制改变风机转速,实现风力机最佳效率运行。
本文也简单讨论了风能的应用范围、经济性及未来发展前景。
关键词:风力发电;直驱永磁发电机;最大风能捕获;风能的应用和发展0引言可再生能源的开发和利用从七十年代开始进入飞速发展时期。
一是上世纪七十年代的石油危机后,经济和能源压力迫使人们寻找关于能源的新的解决途径,二是近十几年来基于化石燃料的传统能源体系引发的环境问题愈发严重,寻找新能源不仅关乎经济和能源需求,更关系着未来人类社会的前进方向。
如煤炭、石油、天然气等传统能源之所以能较早被作为能源广泛使用,一方面是储量相对丰富,更重要的原因是能源使用过程中输出稳定可靠,且较容易由一种能量形式(如热)转化成另一种能量形式(如电)而进行广泛传输。
而如今的新能源面临的最大问题就是能量的转化难、不可控、不稳定,因此新能源利用的关键之一就是采用更加精准的控制手段,提升能量利用效率。
本文试以较为常见的风能发电为例,简单阐述新能源应用中控制系统的作用。
1风力发电机控制系统目前存在的风力发电机组有恒速恒频和变速恒频两种类型。
恒速恒频风力发电机组无法有效地利用不同风速时的风能,而变速恒频风力发电机组可以在很大的风速范围内工作,更有效地利用风能,其中应用比较广泛的技术之一是直驱永磁风力发电系统。
根据最大风能追踪控制原理,当风力机浆叶不变时,对于一个特定的风速v,风力机只有运行在一个特定的转速ωm 下才会有最高的风能转换效率,要想追踪最大限度地获得风能,就必须在风速变化时及时调节风轮机的转速n(在直驱永磁风力发电系统中,即为发电机的转速),这就是变速恒频发电技术的主要思想。
通过变速恒频发电技术,理论上可以使风力发电机组在输出功率低于额定功率之前,输出最佳功率,效率最高。
直驱式风力发电机原理及发电机组概述

直驱式风力发电机原理及发电机组概述二极三相交流发电机转速约每分钟3000转,四极三相交流发电机转速约每分钟1500转,而风力机转速较低,小型风力机转速约每分钟最多几百转,大中型风力机转速约每分钟几十转甚至十几转,必须通过齿轮箱增速才能带动发电机以额定转速旋转。
下图是一台采用齿轮箱增速的水平轴风力发电机组的结构示意图。
使用齿轮箱会降低风力机效率,齿轮箱是易损件,特别大功率高速齿轮箱磨损厉害、在风力机塔顶环境下维护保养都较困难。
不用齿轮箱用风力机浆叶直接带动发电机旋转发电是可行的,这必须采用专用的低转速发电机,称之为直驱式风力发电机。
近些年直驱式风力发电机已从小型风力发电机向大型风力发电机应用发展,国内具有自主知识产权的2MW永磁直驱风力发电机已研制成功,据报道目前国外最大的风力发电机组已达7MW,是直驱式发电机组。
低转速发电机都是多极结构,水轮发电机就是低速多极发电机,风力机用的直驱式发电机也有类似原理构造,一种多极内转子结构,只是要求在结构上更轻巧一些。
近些年高磁能永磁体技术发展很快,特别是稀土永磁材料钕铁硼在直驱式发电机中得到广泛应用。
采用永磁体技术的直驱式发电机结构简单、效率高。
永磁直驱式发电机在结构上主要有轴向与盘式结构两种,轴向结构又分为内转子、外转子等;盘式结构又分为中间转子、中间定子、多盘式等;还有开始流行的双凸极发电机与开关磁阻发电机。
下图是一个内转子直驱式风力发电机组的结构示意图。
其定子与普通三相交流发电机类似,转子由多个永久磁铁构成。
外转子永磁直驱式风力发电机的发电绕组在内定子上,绕组与普通三相交流发电机类似;转子在定子外侧,由多个永久磁铁与外磁軛构成,外转子与风轮轮毂安装成一体,一同旋转。
本栏有对外转子直驱式风力发电机的专门介绍,下图是一个外转子直驱式风力发电机组的结构示意图。
盘式永磁直驱式风力发电机的定子与转子都呈平面圆盘结构,定子与转子轴向排列,有中间转子、中间定子、多盘式等结构,本栏有对中间转子与中间定子直驱式风力发电机的专门介绍,下图是一个中间定子直驱盘式风力发电机组的结构示意图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你好,你的这个问题问的比较广。
我大概给你阐述下,对于现在国内国外大型水平轴风力发电机组,有双
馈机和永磁直驱发电机。
永磁直驱发电机顾名思义是在传动链中不含有增速齿轮箱。
总所周知,一般发电机要并网必须满足相位、幅频、周期同步。
而我国电网频率为50hz这就表示发电机要发出50hz的交流电。
学过电机的都知道。
转速、磁极对数、与频率是有关系的n=60f/p。
所以当极对数恒定时,发电机的转速是一定的。
所以一般双馈风机的发电机额定转速为1800r/min。
而叶轮转速一般在十几转每分。
这就需要在叶轮与发电机之间加入增速箱。
而永磁直驱发电机是增加磁极对数从而使得电机的额定转速下降,这样就不需要增速齿轮箱,故名直驱。
而齿轮箱是风力发电机组最容易出故障的部件。
所以,永磁直驱的可靠性要高于双馈。
对于永磁直驱发电机的磁极部分是用钕铁硼的永磁磁极,原料为稀土。
风轮吸收风能转化为机械能通过主轴传递给发电机发电,发出的电通过全功率变流器之后过升压变压器上网。
不知道有木有解释清楚。
还有什么不清楚可以继续追问,知无不言。
风力发电机也在逐步的永磁化。
采用永磁风力发电机,不仅可以提高发电机的效率,而且能在增大电机容量的同时,减少体积,并且因为发电机采用了永磁结构,省去了电刷和集电环等易耗机械部件,提高了系统的可靠性,这也是风电发电机的发展趋势之一。
风力机的直驱化也是当前的一个热点趋势。
目前大多风电系统发电机与风轮
并不是直接相连,而是通过变速齿轮相连,这种机械装置不仅降低了系统的效率,增加了系统的成本,而且容易出现故障,是风力发电急需解决的瓶颈问题。
直驱式风力发电机可以直接与风轮相连,增加了系统的稳定性,同时增大了电机的体积和设计制造以及控制的难度。
直驱型风力发电系统是采用风轮直接驱动多极低速永磁同步发电机发电,通过功率变换电路将电能转换后并入电网,相对于双馈型发电系统,直驱式发电机采用较多的极对数,使得在转速较低时,发电机定子电压输出频率仍然比较高,完全可以在电机的额定等级下工作,并且其定子输出电压通过变流器后再和电网相接,定子频率变化并不会影响电网频率。
在直驱风力发电系统中风机与发电机直接耦合,省去了传统风力发电系统中的国内难以自主生产且故障率较高的齿轮箱这一部件,减少了发电机的维护工作,并且降低了噪音。
另外其不需要电励磁装置,具有重量轻、效率高、可靠性好的优点。
直驱永磁发电机与双馈异步发电机技术相比,由于不需要转子励磁,没有增速
齿轮箱,效率要比双馈发电机高出20%以上,年发电量要比同容量的双馈机型高;增
速齿轮箱故障较高,维护保养成本高,直驱永磁发电机不需要齿轮箱,易于维修保养;直驱永磁发电机采用全功率的交-直-交变频技术,与电网隔离,具有低电压穿越能力,对电网友好;
直驱永磁发电机的缺点是稀土永磁材料成本高,导致整机成本相对较高,永磁
材料在高温、震动和过电流情况下,有可能永久退磁,致使发电机整体报废,这是直驱永磁发电机的重大缺陷。