液体燃料的燃烧特点、过程和组织

合集下载

燃烧学 6液体燃料的燃烧

燃烧学 6液体燃料的燃烧

6液体燃料的燃烧6.1液体燃料的燃烧原理✧液体燃料的燃烧方式:主要为扩散燃烧✧液体燃料的燃烧过程:先蒸发气化为油蒸汽,进而进行均相燃烧。

(1、雾化2、蒸发3、掺混4、燃烧)✧液体燃料燃烧特点:1、扩散燃烧2、非均相燃烧✧液体燃料与气体燃料的不同点:液体燃料在与空气混合之前存在着蒸发气化过程✧液体燃料在在着火燃烧前发生蒸发与气化的特点,可将其燃烧分为,液面燃烧、灯芯燃烧、蒸发燃烧、雾化燃烧。

✧燃油雾化燃烧:油的雾化油滴的蒸发油滴的燃烧过程✧雾化燃烧:用雾化器将燃油分裂成许多微小而分散的油滴,以增加燃油单位质量的表面积,使其能和周围空间的氧化剂更好地进行混合,在空间达到迅速和完全的燃烧。

✧雾化的方法可分为机械式雾化和介质式雾化。

✧液体燃料雾化的目的(为什么用雾化、为什么说雾化过程是液体燃料燃烧的关键):(P185)✧雾化性能及质量的评定主要指标:(P185)✧雾化过程的几个阶段:(P185)✧雾化角等概念(P186-P191好好看看)✧常用雾化方式及装置:①机械雾化、介质雾化、混合式雾化、组合式雾化。

②✧配风器的作用(任务):P195✧配风原理及配风器应该满足的要求:P196-P197✧合理的稳焰技术:P203✧对于重油燃料,燃烧器应?P204✧加强液体燃料的燃烧方法:P201(1)加强雾化,减小油滴直径,选用合适的雾化器;(2)增加空气与油滴的相对速度。

相对速度越大,越有利于燃料和空气之间的扩散、混合,加强燃烧;(3)及时、适量供风及时供风,避免高温、缺氧造成燃料热分解;适量供风,提高燃烧效率。

(4)供风原则少量一次风送入火焰根部,在着火前与燃料混合,防止油在高温下热分解;保证后期混合,提高风速,使射流衰减变慢;在着火区制造适当的回流区,保证着火;燃烧中保证油雾与空气强烈混合,气流雾化角与油雾扩散角相适应。

第四章液体燃料的燃烧理论

第四章液体燃料的燃烧理论
连续方程: 连续方程: 4πr02 ρ 0 v 0 = 4πr 2 ρv = G 动量方程: 动量方程: 扩散方程 能量方程
2.基本方程及求解
p = const
2
G —总蒸发速率
(液滴与环境无相对速度) 液滴与环境无相对速度)
df i d df i 2 4πr ρv − (4πr Di ρ )=0 dr dr dr
水蒸气蒸发的质量流正好等于总质量流, 水蒸气蒸发的质量流正好等于总质量流,即Stefan流。 流
22
2.碳在纯氧中的燃烧 .
C + O2 → CO 2
12
碳表面
32
44
f O2 + f CO2 = 1
( ∂f O2 ∂y )0 = −( ∂f CO2 ∂y )0
23
2.碳在纯氧中的燃烧 .
氧扩散流
(1)液滴与环境无相对速度,只有Stefan流引起 的球对称一维流动; (2)忽略热辐射和热解离(例:CH4→C+2H2); (3)过程是准定常的,即不考虑液面的内移效应; (4)火焰面为一几何面,火焰面上 f f = f ox = 0 。
28
2.基本方程及求解
基本方程(球坐标下) (1)基本方程
2
—单位质量液体的蒸发热 单位质量液体的蒸发热, q e = L + C l (T0 − Tl ) 单位质量液体的蒸发热
df i 2 − 4πr0 Di 0 ρ 0 ( ) 0 + 4πr0 f i 0 ρ 0 v0 = f il (4πr02 ρ 0 v0 ) dr
气体扩散流 Stefan流 流 携带的该组分 液体蒸发引起的 液滴消耗量
bD = bT = b
bT ≡ C P (T − T∞ ) qe 2

第七讲 液体燃烧

第七讲 液体燃烧

第一节 液体燃料的雾化
§7-1 液体燃料的雾化
• 燃烧方法:
蒸发燃烧:汽油 接近均相燃烧(单相扩散燃烧) 雾化燃烧:柴油,重油 非均相燃烧(多相扩散燃烧)
• 液体燃料雾化燃烧经历雾化、蒸发、混合、 着火和燃烧几个阶段。
§Hale Waihona Puke -1 液体燃料的雾化• 雾化目的:增大液滴的比表面积,加快蒸发 速率。 • 燃烧速率取决于蒸发速率蒸发表面积减 小滴径雾化 • 本节主要包括以下内容: • 一、雾化方法 • 二、雾化机理 • 三、雾化质量指标
(3)、油的物理性质
• 影响雾化质量的油的物理性质主要是粘度和 表面张力。粘度影响最大。 • 提高温度,可以降低粘度和表面张力(降低 不大),使雾化质量提高。 • 对离心式机械喷嘴:雾化初始段黏度影响起 决定作用;雾化中期,表面张力起主要作用; 雾化后期,黏度和表面张力同时起作用。
(4)、雾化介质的物理性质
(1)、喷咀结构
• 结构参数、型式及加工质量对雾化质量影响 很大。如对离心式机械喷咀,油离开喷嘴时 切向速度和径向速度的比值大小对雾化质量 有决定性的影响。切向速度增大,喷雾锥角 增大,射程缩短,卷吸的空气量大,雾化颗 粒细度较小。
(2)、喷油压降
• 提高喷嘴前后压差,可以提高喷油速度,增 大喷油量。对离心机械喷咀,油压越高,雾 化越细。油压增加,喷雾锥角增大,但油压 也不能过高,否则喷雾锥角反而略有下降。 • 使用低压雾化剂时时,油压不宜太高,否则 油流会穿过雾化剂,得不到良好的雾化。高 压雾化剂时,油压不宜太低,否则会封嘴。
(3)影响油粒平均直径的影响因素
• 包括:喷嘴结构参数、油的性质参数和工况参数P141。
• 油的性质参数:油温的影响,T提高可以显著降低油的 粘度,表面张力也有所减少,可以改善雾化质量; • 雾化剂压力和流量的影响:提高雾化剂压力,雾化剂喷 出速度将提高,相对速度对雾化直径影响很到,相对速 度越大,雾化直径越小。 • 油压的影响:油压决定油的流程速度。使用低压雾化剂 时时,油压不宜太高,否则油流会穿过雾化剂,得不到 良好的雾化。高压雾化剂时,油压不宜太低,否则会封 嘴。对于采用机械式雾化,油压越大,雾化后颗粒的平 均直径越小。

长征火箭燃料总结

长征火箭燃料总结

长征火箭燃料总结2021年,长征火箭成为了中国航天事业的亮丽名片,多次成功发射任务,树立了中国在航天领域的声望。

作为长征系列火箭的核心,燃料在其发射过程中起到了至关重要的作用。

本文将对长征火箭所使用的燃料进行总结,并探讨其未来发展趋势。

第一节:液体燃料长征火箭采用了多种液体燃料来推动其发射过程。

其中,液氧-液氢燃料是最主要的组合,也是一种环保清洁的燃料。

液氧-液氢燃料的特点在于其高燃烧效率和低污染排放。

这种燃料在长征火箭的首、二级火箭发动机中广泛应用,其能够提供较高的推力,并且在燃烧时释放的唯一产物是水蒸气,对环境几乎没有任何污染。

此外,长征火箭还采用了液氧-煤油燃料和液氧-液甲烷燃料的组合。

这两种燃料在某些特定任务中具有独特的优势。

液氧-煤油燃料在推力和稳定性上表现出色,常用于长征火箭的助推器;而液氧-液甲烷燃料则因为其在低温环境下依然能够液化,适用于一些需要长时间储存的任务。

第二节:固体燃料除了液体燃料,长征火箭还使用了固体燃料。

固体燃料在发射过程中具有简单可靠、推力大等特点,因此常用于助推器和发射车的初级阶段。

长征火箭的助推器采用的是液氧-固体燃料组合,该组合能够提供强大的垂直起飞能力,并能够满足飞行过程中的动力需求。

然而,固体燃料也存在一些问题。

首先,固体燃料无法停止燃烧,一旦点燃就难以控制;其次,固体燃料燃烧温度高,对火箭外壳和发动机构件有一定的损坏风险。

因此,在今后的长征火箭发展中,对固体燃料的改进和优化是十分重要的。

第三节:未来发展趋势随着中国航天事业的迅猛发展,长征火箭在未来有望继续创造更多的辉煌。

在燃料方面,以下几个方向是值得关注和研究的:1. 回收利用:长征火箭的液体燃料在燃烧后,会产生大量的水蒸气。

未来可以探索将这些水蒸气回收利用,例如用于植被灌溉、制氧等方面,以进一步提高火箭的环保性。

2. 高效燃料:当前,长征火箭的燃料已经具备了很高的燃烧效率,但仍有改进的空间。

在未来的研发中,对燃料性能进行优化,提高燃料的能量密度和推进力,将是一个重要方向。

10-液体燃料的蒸发与燃烧

10-液体燃料的蒸发与燃烧

组分守恒和能量守恒方程具有相同的输运方程和相同的边界条件
在r R处 : d s g Dg m , s (即T Ts , w f w f , s ) dr s , g 式中Ts , w f , s 未知, 需要加以补充 在r 处, 0 即 : T T ; w f w f ,
用能量输运律表 示的质量蒸发率
液体组分守恒方程:
dw f s w f ,s m s g Dg m dr
总流量 对流项 扩散项
s, g
意义:在分界面的液体侧传输到油滴表面的质量传输等 于气相对流项(斯蒂芬流)和Fick扩散质量之和
s (w f ,s m

液体油雾火焰的结构 单滴油珠蒸发模型 油珠蒸发 d2定律及油珠寿命 特性参数取值 对流条件下的油珠蒸发 蒸发模型向单个燃烧油滴模型的扩展 油雾燃烧(油滴的相互作用)
第一节 液体油雾的结构
典型的液体喷雾火焰,燃料为庚烷
第二节 单个油珠蒸发模型
两相燃烧 两相扩散燃烧 油雾锥是由许多尺寸不同的单 滴油珠组成。因而单滴油珠在高温 环境的蒸发与燃烧规律是进一步研 究油雾燃烧的基础
随着雷诺数的增大(油滴和气体间的相对速度增 大),Nu增加,h增大,ms也随之增大
第三节 蒸发模型向单个燃烧油滴模型的扩展
对孤立的蒸发油滴,守恒方程可以以下面的形式表示 L(η)=0
其中η可以为质量分数变量,也可以是显焓变量。由于 方程中源项为零,故η为守恒标量,对化学反应情况, ηs可以适当组合成一个守恒标量,则 L(β)=0
s , 需要知道 s ,即需要知道 Ts 或w f , s 为了估算 m 定义 B 交换数 (传热传质驱动 ) - s 由于 0 B - s s 故 m

工程燃烧学

工程燃烧学

二、介质雾化喷嘴(气动式雾化喷嘴)
蒸汽作为介质,可以在雾化同时降低油的粘度,进入喷 嘴的燃油粘度较高时,仍能保证雾化质量,
空气作为介质时,空气压力低,雾化质量较差。
低压喷嘴(3x103~1x104Pa) 高压喷嘴(1x105Pa以上)
1. 低压空气雾化喷嘴
采用鼓风机供给的空气作为雾化介质,喷嘴前风压 低,一般为(5.0~10.0) ×103Pa,高的可达12.0×103Pa。
以平均直径表示雾化细度,工程上两种表示方法:
(1)中间直径法(d50或dMMD) 液雾中大于或小于这一直径的两部分液滴的总质量相等。
(2)索太尔平均直径法(dSMD) 假设油滴群中每个油滴直径相等时,按照所测得的所有油
滴的总体积V与总表面积S计算出的油滴直径,故又称体面积
平均直径。
d SMD
Nidi3 Nidi2
(2)雾化方法
机械式雾化 燃油在高压下通过雾化片的特殊机械结构将燃油雾化,
通过喷油嘴喷出。直流式、离心式和转杯式。 介质式雾化
靠附加的雾化介质(蒸气或压缩空气)的能量来雾化。 根据其压力的不同,分为高压雾化、中压雾化和低压雾化。 组合雾化
两种雾化方式有机结合起来。
6.2.2 雾化性能及评定指标
(1)雾化过程
雾化过程:
燃油从喷嘴喷出时形成液 流,由于初始湍流状态和 空气对油流的作用,使油 流表面发生波动,在外力 作用下,油流开始变为薄 膜并被碎裂成细油滴。
已分裂出的油滴在气体介质中还 会继续再分裂。油滴在飞行过程 中,受外力(油压形成的推进力、 空气阻力和重力)和内力(内摩 擦力和表面张力)作用,只要外 力大于内力,油滴便会产生分裂。 直到最后内力和外力达到平衡, 油粒不再破碎。

长征火箭燃料总结

长征火箭燃料总结

长征火箭燃料总结简介长征系列火箭是中国自主研发的运载火箭系列,广泛应用于卫星发射、空间实验和载人航天等领域。

火箭的性能和可靠性在很大程度上取决于燃料的选择和使用。

本文将对长征火箭主要使用的燃料进行总结,分析其特性和优缺点。

一、液体燃料液体燃料是长征火箭主要使用的燃料之一,液体燃料可以通过喷射和喷淋等方式进行供给,具有高比冲、可调性和可控性的特点。

以下是长征火箭主要使用的液体燃料:1.1 液氧(LOX)液氧是长征火箭常用的氧化剂,其低温液态状态下密度大、体积小。

液氧具有高化学活性和高氧化性,可以与多种燃料剂发生反应,产生高温高压的燃烧气体,提供强大的推力。

液氧燃烧后会产生大量的氧化产物,需要合理处理。

1.2 煤油(RP-1)煤油是长征火箭常用的燃料之一,其燃烧特性稳定,具有较高的燃烧热值和比冲。

煤油在室温下为液态,易于储存和供给。

然而,煤油会产生大量的污染物,对环境有较大影响,需要进行合理的废气处理。

二、固体燃料固体燃料是长征火箭的另一种常用燃料,具有稳定性好、储存方便等特点,适合于多级分离的空间发射任务。

以下是长征火箭主要使用的固体燃料:2.1 固体氧化剂(AP)固体氧化剂主要指过氧化铵(Ammonium Perchlorate,简称AP),它是固体火箭发动机中最常用的氧化剂。

AP具有高氧化性和燃烧性,可以与多种有机燃料反应,产生大量的气体,提供推力。

AP的燃烧产物主要为氯化铵和各种气体,对环境影响较小。

2.2 活性炭活性炭是长征火箭固体燃料中的一种重要组成部分,主要作为燃料的结构材料。

活性炭具有高比表面积和吸附性能,可以提高燃料的燃烧效率。

同时,活性炭在燃烧后也会产生大量的气体,提供额外的推力。

三、混合燃料混合燃料是将液体燃料和固体燃料结合起来使用的一种燃料形式,可以发挥液体燃料和固体燃料的优点。

以下是长征火箭主要使用的混合燃料:3.1 N2O4/UDMHN2O4/UDMH是长征火箭常用的混合燃料,它由四氧化二氮(N2O4)和联氨(UDMH)按一定比例混合而成。

液体燃料雾化与燃烧概述

液体燃料雾化与燃烧概述
液体燃料雾化与燃烧理论
液体燃料的燃烧特点概述
一、液体燃料的燃烧过程
燃油槽车 / 油管工厂油罐过滤油泵烧嘴炉膛或燃烧室 ————— 供油系统 ———————— —燃烧装置——
燃油的燃烧过程:沸点低于燃点、受热后先蒸发、汽化、然后燃烧 油的雾化油滴蒸发、高温热解与裂解与空气混合着火燃烧 油的蒸发:提供反应需要的可燃物质 油的燃烧:提供油蒸发所需要的热量 蒸发与混合的速度——燃烧速度 当燃油、空气等条件一定时,控制油的燃烧过程主要控制雾化和混合 过程。
油滴的平均直径小、分布好、有利于蒸发、也有利于形成良好的浓度 场
思考1:
液体燃料的雾化燃烧的具体过程?
液体燃料的物理与化学变化过程
液体燃料喷射
液体燃料破碎
连续大体积液体
火焰
液体燃料蒸发 液滴
气态燃料化学反应
燃油液滴燃烧过程
气体团
思考2:
液体燃料燃烧的主要影响因素?
液态燃油的雾化 液态燃油的蒸发 气态燃油与氧化剂的混合 燃烧过程的化学反应动力学
油机、燃气轮机等) 。 重油和渣油是石油炼制过程中的 残余物,粘度大、杂质多,常温
为固态,先预热,雾化难,
油雾边缘易混合中心难混合通过喷 嘴使油雾化,油的颗粒不均匀, 从几 到500 。大颗粒容易产 生大的烟粒与焦粒。油颗粒燃烬时
间与颗粒直径平方成正比。
雾化装置复杂,用于工业窑炉和锅炉等固定式燃烧设备
讨论点4:关于液雾燃烧模型建立的推演建立过程及当 前存在的不足分析与改进思路。
6. 关于作业与课题讨论内容的思考
算例练习:
表面波失稳案例测试:1)理论解析解的特征分析;2)数 值解对解析解的近似求解;
基于CFD的液雾燃烧算例计算测试与讨论。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 3 12
6 5
5
7
1.油滴 2.油蒸汽区 3.燃烧区 4.外部 5.油蒸汽浓度 6.氧气浓度 7.温度 6
限制油滴燃烧的主要因素是与空气的混合速 度,即取决于空气向油滴表面扩散所需的 时间,属扩散燃烧。
物理化学过程:雾化→三传→受热蒸发→着火→燃尽
7
6.2 油的雾化
雾化效果影响了油燃烧的快慢及燃烧质量, 因此油的雾化是其燃烧过程中一个重要因 素。
1、雾化评价指标 2、雾化器
8
6.2.1 雾化评价指标
① 雾化粒度:表示油滴颗粒大小的指标
( <100m )表示油滴颗粒大小的指标,有平均直径,最 大直径,中值直径等,常用平均直径法(又包含算术平 均法,表面积平均法,体积平均法,质量平均法径等)
索太尔平均直径(S.M.D)
nid i3 nid i2
20
6.2.2 雾化器
• 常用的油雾化喷嘴可以简单分为两类:
– 机械式雾化器(离心式,旋杯式等) – 介质式雾化器(以蒸汽或空气作介质)
① 机械式雾化器
依靠油泵的压力将液体燃料的压力 提高,使以较高的压力喷进燃烧室
21
②介质式雾化器
介质压力越高,破碎的液滴也越细,但消耗的能 量也越多。如用蒸汽做雾化介质,则还可以在雾 化同时降低油的粘度,故进入喷嘴的燃油粘度越 高时仍能保证雾化质量,采用空气作介质时,空 气压力低,雾化质量较差。
工程破碎过程常使用Rosin-Rammler分布
积分分布 F d e
dp d
n
p
微分分布
f dp
n1
nd e p
dp d
n
dn
12
6.2.1 雾化评价指标 ② 雾化油滴均匀性
0.4
微分 分布
f dp
n1
nd e p
dp d
n
dn
函数
n=4
0.3
n=3
n=2
0.2
f(d ) p
积分分 粒度均匀性指标
qr……m3 (m2 s)
15
雾化评价指标
① 雾化粒度 ② 雾化油滴均匀性 ③ 雾化角: ④ 流量密度:
16
雾化原理
• 油射流或薄膜由于射流紊流、周围气体的气动力 作用、液体中可能夹杂气体、喷枪的振动及喷嘴 表面不光滑等因素,不可避免地要经受扰动。扰 动使薄膜或射流产生变形,特别是在气动压力和 表面张力作用下,使得表面变形不断加剧,以致 于射流或薄膜产生分裂,形成液滴或不稳定的液 带,液带随之也破裂成液滴。若作用在液滴上的 作用力相当大,足以克服表面张力时,较大的液 滴就会破裂成较小的液滴,这种现象称为“二次 雾化”。
• 雾化:
燃料→细滴→油雾炬,雾滴↓,表面积↑
有利于油滴的气化过程,同时也有利 于与空气的混合,保证燃烧质量。
4
• 蒸发:油滴受热后表面开始蒸发→油蒸汽 • 扩散混合:燃油蒸汽与周围空气互相扩散
与混合
• 燃烧:油蒸汽与空气混合物达到着火温度后,
开始燃烧 。
在燃烧过程中,油滴内部继续受热蒸发→扩散混 合→新油气空气混合物取代已散逸燃烧产物→继 续燃烧→油滴燃尽
③ 雾化角:
• 出口雾化角:在喷嘴出口处,做 雾化锥边界切线,夹角为出口雾化 角。
• 条件雾化角:离开喷嘴一定距离x 处,做垂直于油雾化锥中心线的垂 线,与雾化锥边界相交于两点,两 点与喷嘴中心相连得两线,夹角为。
α0
αx
14
1、雾化评价指标
④ 流量密度:单位时间内, 流过垂直于油雾方向的单位面 积上的燃油体积。
17
雾化原理
• 射流雾化:射流的紊流作用在射流表面的气动力 起主要作用,形成短波扰动,引起部分流体不断 从射流表面剥离而形成细小的液滴。随着射流速 度增加,会在波长较短的扰动波作用下产生射流 破碎,比低速射流破碎得更快,形成的液滴更细, 且液滴从射流表面分离的时间比低速射流时整个 流束破碎的时间短得多,几乎是在射流喷出后就 立即开始雾化,并在整个射流长度上连续进行。
0.1
布函数
F d e
dp d
n
p
Rd 100exp(dd)n%
0.0
0
2
4
6
8 10 12 14 16 18 20
d p
Rd:液滴群中,颗粒直径大于d的质量分数
n:均匀系数,一般数值2~4。 愈大,均匀性好
d
:特征尺度(定义为
Rd
1 e
36.7%
时油滴直径)
13
6.2.1 雾化评价指标
p
0 .1 5
0 .6
0 .1 0
0 .4
0 .0 5
0 .2
0 .0 0
0 .0
0
2
4
6
8
10
0
2
4
6
8
10
d p
d p
11
• 累积分布又分为筛上分布和筛下分布
筛上分布
dm p ax
Rdp
dp
f dpddp
筛下分布
dp
Ddp dm p ifndpddp
R(dp)+D(dp)=1
(体面积平均直径)
9
粒度分布的表达形式
– 表格形式(离散) – 直方图(离散) – 函数形式(连续)
10
• 微分型(频率分布) • 积分型(累积分布)
f
dp
d Fdp d dp
Fdp0 dp fdpddp
f ( d) p
F ( d) p
0 .2 5
1 .0
R (d )
p
D (d )
0 .2 0
0 .8
19
控制雾化的准则数——韦伯数Weber number W v2l
• 其中ρ为流体密度,v为特征流速, l为特征长度, σ为流体的表面张力系数。
• 韦伯数代表惯性力和表面张力效应之比,韦伯数 愈小代表表面张力愈重要,譬如毛细管现象、肥 皂泡、表面张力波等小尺度的问题。一般而言, 大尺度的问题,韦伯数远大于1.0,表面张力的作 用便可以忽略。
液体燃料的燃烧特 点、过程和组织
1
6.1 油燃烧特点 6.2 油的雾化 6.3 油滴燃烧过程 6.4 油雾炬燃烧 6.5 油燃烧的组织及调风器
2
6.1 油燃烧特点
雾化
燃烧
油燃烧是一个复杂的物理化学过程,由 于油沸点低于其燃点,因此油滴总是先蒸 发成气体,并以气态的方式进行燃烧。
3
包含:雾化、受热蒸发、扩散混合、着火燃烧
18
雾化原理
• 液膜雾化:离心喷嘴喷出空心锥形液膜具有向外 扩张的惯性,而表面张力克服不了此惯性,于是 液膜继续向外扩张,液膜越来越薄,同时,表面 张力形成的表面位能也越来越高,使液膜越不稳 定。结果表明,液膜破裂成液丝或液带,并在表 面张力作用下继续分裂成液滴;流速较大时,除 了表面张力、惯性力及粘性力起作用外,由于相 对于周围气体的运动速度加大,气动力对液膜的 作用也加大,致使液膜扭曲和起伏形成波纹,再 被甩成细丝,继而形成小滴;流速很大时,液体 离开喷口便立即被雾化。
相关文档
最新文档