平安城市人脸识别系统解决方案

合集下载

人脸识别应用解决方案

人脸识别应用解决方案
2.提高业务办理效率,优化用户体验。
3.符合国家法律法规,确保数据安全与隐私保护。
4.实现对人脸识别技术的合理应用,提升企业竞争力。
三、方案内容
1.技术选型
(1)采用深度学习算法,实现高精度的人脸识别。
(2)选用具有良好抗干扰能力的人脸识别技术,确保在各种环境下都能稳定运行。
(3)采用活体检测技术,有效防止恶意攻击和欺诈行为。
3.系统集成:将人脸识别技术与其他业务系统进行集成,实现数据共享。
4.培训与支持:为管理人员和用户提供培训,确保系统顺利运行。
5.持续优化:根据市场反馈和技术发展,不断优化升级系统。
五、风险管理
1.数据安全:采取加密存储和传输,防范数据泄露风险。
2.技术更新:关注技术发展动态,及时更新人脸识别算法。
3.业务流程
(1)用户注册:用户在前端设备上完成人脸图像采集,并将信息传输至后端服务器。
(2)人脸识别:用户在需要验证的场景下,通过前端设备进行人脸识别。
(3)数据比对:后端服务器将采集到的人脸图像与数据库中的人脸图像进行比对。
(4)结果反馈:根据比对结果,实现业务应用,如门禁、支付、身份验证等。
(5)安全审计:对系统操作进行审计,确保合法合规使用人脸识别技术。
第2篇
人脸识别应用解决方案
一、引言
随着信息化时代的到来,人工智能技术已成为推动社会进步的重要力量。人脸识别技术,作为生物识别领域的核心技术之一,以其独特的便捷性和准确性,被广泛应用于安全防范、身份认证等多个领域。本方案旨在提供一套详尽的人脸识别应用解决方案,确保技术的合理应用与合规性,同时提升用户体验和系统效能。
4.合规性保障
(1)遵守国家法律法规,确保人脸识别应用不侵犯用户隐私。

人脸识别系统方案

人脸识别系统方案

人脸识别解决方案浙江大华技术股份有限公司解决方案部大华人脸识别解决方案目录1 人脸识别技术 (3)2 人脸识别解决方案 (4)3 第二章. 方案概述 (5)3.1 项目概况 (5)—1人脸识别技术随着平安城市基础建设的不断完善和加强前端摄像机采集到的数据呈现一种爆炸式的增长。

对于公安行业来说数据总量不断充实的情况下如何从非结构化数据中挖掘结构化信息是平安城市建设的二期目标。

另一方面公安行业对车辆的结构化信息采集已逐渐趋于成熟化、普遍化但对人员信息采集和认证技术一直使用传统技侦方式。

人脸识别技术在以上情况下解决视频录像、图片等非结构化信息到人员照片、身份信息等结构化的转变。

人脸识别技术相对于其他生物识别技术如指纹、指静脉、虹膜等同属于四大生物识别技术具有生物特征唯一性、可测量性、可识别性、终身不变性等特点。

但相较其他识别技术具有本质的区别1.非强制性用户不需要专门配合人脸采集设备几乎可以在无意识的状态下就可获取人脸图像这样的取样方式没有“强制性”2. 非接触性用户不需要和设备直接接触就能获取人脸图像3. 并发性在实际应用场景下可以进行多个人脸的分拣、判断及识别人脸识别技术流程主要包括四个组成部分分别为人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及人脸特征数据匹配与识别。

人脸图像采集及检测基于人的脸部特征对输入的人脸图像或视频流,首先判断是否存在人脸如果存在人脸则进一步的给出每个脸的位置、大小和各个面部器官的位置信息。

人脸图像预处理对于人脸的图像预处理是基于人脸采集及检测结果通过人脸智能算法对选择出来的人脸图片进行优化和择优选择挑选当前环境下最优人脸并最终服务于特征提取的过程。

其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。

人脸图像特征提取人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。

人脸特征提取的方法归纳起来分为两大类一种是基于知识的表征方法另外一种是基于代数特征或统计学习的表征方法。

人脸识别 解决方案

人脸识别 解决方案

人脸识别解决方案
《人脸识别技术的解决方案》
人脸识别技术作为一种智能识别技术,在近年来得到了广泛的应用。

它能够通过摄像头或者摄像机捕捉到的人脸图像,进行人脸检测、人脸识别、人脸验证等一系列操作。

在生活中,人脸识别技术已经被广泛应用于安防监控、金融领域、社交媒体等方面。

但是,人脸识别技术的应用也面临着一些挑战和问题。

其中包括人脸识别的准确性、速度、隐私保护等方面的问题。

为了解决这些问题,人们提出了许多解决方案。

首先,在技术方面,人们不断提高人脸识别技术的准确性和速度。

目前,人脸识别技术已经能够实现对低质量图像和视频的准确识别,而且在识别速度上也得到了显著的提升。

其次,在数据管理方面,人们提出了一系列的隐私保护措施。

例如,采用加密技术对人脸信息进行处理,以保护用户的隐私信息。

此外,还可以采用更加安全可靠的数据存储和传输方式,确保人脸信息不被泄露。

再次,人们还推动立法和政策的制定,加强人脸识别技术的监管。

通过制定相关法律法规,规范人脸识别技术的应用,保护用户的合法权益,防止人脸识别技术被滥用。

总而言之,通过不断完善人脸识别技术本身、加强数据管理、
制定相关法律法规等多方面的努力,可以有效解决人脸识别技术应用过程中所面临的问题,进一步推动人脸识别技术的发展和应用。

人脸识别系统

人脸识别系统

人脸识别解决方案浙江大华技术股份有限公司解决方案部大华人脸识别解决方案目录—1人脸识别技术随着平安城市基础建设地不断完善和加强前端摄像机采集到地数据呈现一种爆炸式地增长.对于公安行业来说数据总量不断充实地情况下如何从非结构化数据中挖掘结构化信息是平安城市建设地二期目标.另一方面公安行业对车辆地结构化信息采集已逐渐趋于成熟化、普遍化但对人员信息采集和认证技术一直使用传统技侦方式.人脸识别技术在以上情况下解决视频录像、图片等非结构化信息到人员照片、身份信息等结构化地转变.人脸识别技术相对于其他生物识别技术如指纹、指静脉、虹膜等同属于四大生物识别技术具有生物特征唯一性、可测量性、可识别性、终身不变性等特点.但相较其他识别技术具有本质地区别.非强制性用户不需要专门配合人脸采集设备几乎可以在无意识地状态下就可获取人脸图像这样地取样方式没有“强制性”. 非接触性用户不需要和设备直接接触就能获取人脸图像. 并发性在实际应用场景下可以进行多个人脸地分拣、判断及识别人脸识别技术流程主要包括四个组成部分分别为人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及人脸特征数据匹配与识别.人脸图像采集及检测基于人地脸部特征对输入地人脸图像或视频流,首先判断是否存在人脸如果存在人脸则进一步地给出每个脸地位置、大小和各个面部器官地位置信息.人脸图像预处理对于人脸地图像预处理是基于人脸采集及检测结果通过人脸智能算法对选择出来地人脸图片进行优化和择优选择挑选当前环境下最优人脸并最终服务于特征提取地过程.其预处理过程主要包括人脸图像地光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等.人脸图像特征提取人脸识别系统可使用地特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等.人脸特征提取地方法归纳起来分为两大类一种是基于知识地表征方法另外一种是基于代数特征或统计学习地表征方法.基于知识地表征方法主要是根据人脸器官地形状描述以及他们之间地距离特性来获得有助于人脸分类地特征数据其特征分量通常包括特征点间地欧氏距离、曲率和角度等.人脸由眼睛、鼻子、嘴、下巴等局部构成对这些局部和它们之间结构关系地几何描述可作为识别人脸地重要特征这些特征被称为几何特征.基于知识地人脸表征主要包括基于几何特征地方法和模板匹配法.1.1人脸识别解决方案人脸特征比对识别通过采集到地人脸图片形成人脸特征数据与后端人脸库中地人脸特征数据模板进行搜索匹配通过设定一个阙值相似度超过这一阈值则把匹配得到地结果输出.这一过程又分为两类一类是确认是一对一进行图像比较地过程另一类是辨认是一对多进行图像匹配对比地过程.2方案概述2.1项目概况随着经济地发展城镇建设速度加快以及互联网地突飞猛进导致城市中人口密集流动人口增加引发了城市建设中地交通、社会治安、重点区域防范、网络犯罪日益突出等城市管理问题今后现代化城市地建设、网络信息必然将安全作为重中之重与城市地经济建设处于同等重要地地位.近年来社会犯罪率呈逐年升高地趋势特别是网络犯罪更加地严重网络逃犯频频发生罪犯地犯罪手法也更加隐蔽和先进给广大公安人员侦破案件增加了难度.同时恶性事件时有发生使人们对公共生活场所地安全感普遍降低.同时公安人员在对通缉犯进行人工排查时如大海捞针成功率极低效果也不明显.主要有如下实际问题首先由于罪犯群体不断扩大要在数以百万计地人员照片库中找出犯罪嫌疑人不仅费时费力还有可能造成遗漏等情况破案地效率大打折扣其次目前公安机关侦察案件大多数仍然依靠事后追查和通缉对已经发生地案件造成地损失很难有效弥补最后如果在案发地同时即能防患于未然就能第一时间将损失控制在最小范围内.2.2需求分析采用高效使用地人脸监控和比对系统第一可帮助公安侦查人员快速识别辨别特定人员真实身份把过去难以想象地千万级地海量照片库比对需求变成现实从而有效地为公安视频侦查、治安管理、刑侦立案等工作提供实战上地有效帮助和解决方法.第二可帮助公安侦查人员办案时候追查和通缉真正从打变为防能够极大地减少警力资源浪费和事故发生概率.目前人脸抓拍比对系统主要应用在以下几个方面公安治安人员黑名单比对实时报警针对一些人员密集区域如车站、地铁站、机场、社区等地关键出入口、通道等卡口位置布置人员卡口后端对重点关注人员、打防控人员进行黑名单布控通过实时视频流比对布控黑名单现人脸比对识别.不明身份人员身份确认治安人员在日常巡逻、人员身份验证过程中避免肢体接触和冲突使用前端摄像机或手机进行抓拍后端通过数据库进行人员信息比对分析达到人员身份确认地应用.治安或刑侦人员对流动性人口中地无合法有效身份证件、无固定住所、无正当职业或合法经济来源地人员进行非接触性身份确认.重要点位重点人员身份排查针对一些重要管控地区域如大型保障活动政府、公安出入口等布置前端摄像机对现场进行人脸抓拍每日安排公安人员人工进行重点人员筛选排查.2.3建设目标本章文字内容可以根据项目具体情况修改2.3.1重点人员布控重点人员包括高危人员、特殊人员等.高危人员包括有全国在逃人员、全国违法犯罪人员特殊人员包括水客、涉恐涉案人员、涉毒人员、重大犯罪前科人员、肇事肇祸精神病人.本方案可通过手动或自动批量导入手段将高危人员信息导入至人脸注册库中通过摄像机实时视频检测和照片信息检索与人脸注册库内高危人脸进行实时比对识别在出现高危人员时通过平台告警方式通知公安.公安重点人员根据地区和目地不同划分不同类型包括惯偷惯犯、涉恐、涉案、涉毒、水客等人员.本方案可通过手动或自动批量导入手段将重点人员信息导入至人脸注册库中通过在超市、大楼、火车站、港口等出入口摄像机实时视频检测和照片信息检索与人脸注册库内高危人脸进行实时比对识别在出现高危人员时通过平台告警方式通知公安.2.3.2高危人员布控特殊人员包括有水客、涉恐人员、涉毒人员、有重大犯罪前科人员、肇事肇祸精神病人、重点上访人员等.人脸识别系统将利用实时视频和身份证信息相结合地手段对出入境人士进行审查识别.高危人员包括全国在逃人员、全国违法犯罪人员、重大犯罪前科人员、肇事肇祸精神病人等.人脸识别系统将利用实时视频和身份证信息等手段可在火车站、汽车站、港口口岸出入口建设人脸卡口对出入境人士进行审查识别.2.3.3敏感人群布控敏感人群包括来自特殊地区、特殊身份、特殊职业等人员如来自新疆地区人群、个别少数民族人群、长期无工作人群、非法上访人群等.通过在出入境、关键人脸采集卡口对这些人群进行身份信息和人脸信息采集通过人脸识别系统对敏感人群地身份信息、行为轨迹、出没时间等进行管控从而做到敏感人群防控地目地.2.3.4身份信息检索在日常巡逻、火车站身份证检查、其他民事应用中可通过单兵、手机、相机对驾驶员进行脸部拍照通过上传照片至后端进行人脸识别确认人员身份信息.这种方式适用于未携带身份证、驾驶证地驾驶人员身份快速确认.2.3.5身份信息查重对全国人口基本信息资源库中人员身份证进行检索比对排查一人多证地问题.建设内容*根据具体情况编写3总体设计大华人脸识别系统采用具有完全自主知识产权地人脸检测算法、人脸跟踪算法、人脸抓拍算法、人脸质量评分算法及人脸识别算法、并结合配套地前端摄像机机设备和后端智能分析服务器实现了实时人脸抓拍建模、实时黑名单比对报警、事后静态人脸图片检索等功能.本方案针对人脸注册库人脸抓拍库小于万、黑名单库小于万地系统.前端可采用普通高清摄像机也可以采用专用地人脸抓拍相机.通过人脸检测服务器对实时视频中出现地人脸进行抓拍.人脸识别服务器可对抓拍地照片进行数据库比对.根据人流量和抓拍照片数量在针对多路前端相机环境时可部署人脸识别服务器并上传照片.在方案中采集图片和结构化特征数据保存在人脸识别服务器中.若存在大容量地采集图片和结构化特征数据保存要求时间长可扩容存储设备保证存储容量.3.1逻辑架构系统业务逻辑包含三块内容3.1.1人脸采集系统人脸采集系统包括专业人脸抓拍机和普通高清网络摄像机人脸检测服务器是将前端采集到地视频图片等非结构化数据进行分析处理定位检测获取人脸图片并结合人员身份信息采集系统获取人员身份信息进行关联管理.3.1.2人脸比对系统人脸比对系统是对人脸采集系统传输地数据进行智能分析处理进行人脸图片建模、通过人脸眼睛、鼻子、嘴、下巴等局部构成对这些局部和它们之间结构关系地几何描述进行人脸特征数据提取入库并根据平台业务需求进行实时比对识别和事后人脸检索应用.3.1.3人脸库人脸库包括人脸抓拍库、人脸注册库、黑名单库其中抓拍库包括场景图片场景下抠取地人脸小图、人脸特征数据是人脸采集系统采集地人脸图片存储库用于人脸比对系统进行人脸图片比对检索注册库包括标准人脸图片、人员身份信息、人脸特征数据是系统设定前公安批量导入地重点人员库用于人脸比对系统进行人脸图片比对检索黑名单库是注册库中将部分重点人员进行布控组成用于实时比对人脸采集系统传输地人脸图片.3.1.4业务应用通过平台进行实时布控、查询检索、配置管理等功能应用.3.1.5整体逻辑架构如下图3.2人脸三大业务库系统数据库应包含三种业务库人脸抓拍库、人脸注册库和黑名单库.人脸抓拍库包含抓拍现场图片、人脸小图和结构化地人脸特征数据、抓拍地点、抓拍时间等信息此类库地主要业务应用场景是图片检索比对查询目标人员地人像出没地点、时间等信息人脸注册库主要是导入一些大规模地人像图片、结构化地人脸特征数据和身份信息如一个地级市当地地社保人像信息库等导入后主要地应用场景是图片检索比对和身份信息查询确定人员身份黑名单库包含高危人员、特殊人员地人脸图片、结构化地人脸特征数据和人员身份信息主要地应用场景是在各个人脸卡口进行实时人流地人脸比对预警.一般来说人脸抓拍库和人脸注册库做为静态库适用于事后查询检索目标、黑名单库作为动态库用于实时比对报警.一个或多个黑名单也可以进行勾选布控形成具有针对性地人脸布控库与前端实时视频进行人脸比对报警.其中抓拍库因人流量和随着时间将越来越大需根据项目情况合算存储设备大小.黑名单库数据由公安或专业人员导入存储大小一般有微调但是不会有数量级上地变化.3.3系统拓扑系统由前端摄像机、人脸检测服务器、人脸识别服务器、存储设备、人脸数据库、人脸识别系统平台六类设备3.3.1前端摄像机前端摄像机包括普通高清网络摄像机和专业人脸抓拍机.普通高清网络摄像机主要实现图像采集、编码等功能.专业人脸抓拍机不仅实现普通高清网络摄像机地所有功能其内置大华自主研发地智能分析算法还能实现对视频中人脸进行自动捕获、跟踪、抓拍等功能.同时专业人脸抓拍机拥有人脸区域自动曝光优化、人脸小图优化处理等功能更适合于人脸卡口场景下获取最优人脸图片人脸检测服务器人脸检测服务器搭配普通高清网络摄像机对传输地实时视频流进行人脸检测、定位、跟踪、人脸图片选优将人脸图片进行抠取传输到识别服务器进行存储和人脸建模、比对人脸识别服务器利用大华自主研发地人脸识别算法对人脸检测服务器传输地人脸小图进行建模和结构化获取人脸特征数据后为人脸实时比对识别、人脸后检索等功能提供算法支持3.3.2人脸数据库服务器和人脸图片存储人脸数据库专门用于存储人脸系统地人脸数据要包括抓拍库人脸特征向量、注册库人脸小图、注册库人脸特征向量、黑名单人脸小图、黑名单人脸特征向量另外抓拍库图片人脸小图和抓拍大图存储在人脸识别服务器中当识别服务器存储容量不足时可外扩设备进行存储.人脸视频存储前端摄像机对实时视频地存储可存储在平台下挂载地或专业监控行业存储设备中也可以通过网络硬盘录像机做视频存储.3.3.3管理平台人脸识别系统平台主要实现人脸系统相关地设备管理、识别场景规则设置、报警联动等配置和管理并结合客户端实现对图像地预览检索、各种报警信息地查看等操作.高清高清视频专网高清人脸抓拍相机人脸抓拍相机人脸抓拍相机高清高清球高清球高清球人脸抓拍相机人脸检测服务器人脸检测服务器人脸识别服务器平台人脸数据库服务器平台客户端人脸图片存储实时视频存储平台数据库人脸抓拍相机人脸抓拍相机人脸抓人脸抓拍相机高清高清高清高清球高清高清球高清球高清球人脸检测服务器人脸检测服务器人脸识别服务器…人脸抓拍相机人脸抓拍相机人脸抓人脸抓拍相机人脸抓拍相机人脸抓拍相机人脸抓拍相机人脸抓拍相机3.3.4联网设计人脸识别系统部署在视频专网下前端摄像机直连人脸抓拍服务器或人脸识别服务器识别服务器对接基础平台.在公安视频专网中部署人脸识别系统对出入口、重点道路等位置安装前端摄像机并通过人脸识别系统平台进行统一管理.同时数据通过网闸共享到公安专网下公安能够对重大嫌疑目标进行事后目标检索目标轨迹跟踪并根据目标出没时间和地点安排警力部署.3.3.5人脸识别流程系统数据流包含人脸实时比对和人脸历史查询.其中实时比对发生在事前或事中当系统发现有布控人员出现时执勤人员可以迅速作出反应历史查询则是针对事后重点人员排查可通过可疑人员图片查询系统记录地人员信息.实时视频人脸比对普通高清网络摄像机通过人脸检测服务器或专业人脸抓拍相机分析视频中地人脸提取人脸图片转发给人脸识别服务器人脸识别服务器通过智能算法从抓拍地人脸中提取特征数据与黑名单库中地人脸特征数据库进行遍历检索最后由平台展现人脸比对结果.图片检索人脸比对通过平台客户端提交需检索地人脸图片人脸识别服务器提取人脸图片特征数据与人脸抓拍库或人脸注册库中地人脸特征数据进行遍历比对现比对结果.3.3.6性能指标要求性能指标主要包括人脸抓拍率、建模成功率和识别成功率.人脸抓拍率:在符合施工规范人脸距离相机中心左右偏离±°上下偏离±°平面偏离±°以内、光线较好地场景人脸光照亮度下正常人脸地抓拍率可达以上.识别成功率人脸比对性能与黑名单注册图像质量和黑名单数据库大小密切相关一般情况下识别成功率可达以上.系统可根据实际需要设置不同地人脸相识度阀值来调节识别率.另外人脸比对性能和黑名单注册图像质量、数据库大小、环境、光线等因素影响很大具体比对性能视实际场景及实际注册图像质量而定.3.3.6.1单台人脸检测服务器性能支持路地视频接入检测分辨率下检测所需最小人脸像素大小*同时可以对画面中最多个地人脸进行检测抓拍检测准确率.3.3.6.2单台识别服务器性能人脸特征向量大小在左右人脸识别像素大小支持×实时识别支持地黑名单库可以支持路以上人脸识别前端相机人脸抓拍注册库检索性能最大可支持库人脸检索.4前端设计4.1前端系统组成人脸识别前端主要分为两类普通高清后端需要配合人脸检测服务器进行人脸检测再接入人脸识别服务器人脸抓拍可以直接接入人脸识别服务器4.2布点设计4.2.1通常人员抓拍相机对于安装地场景有比较高地要求人脸大小像素以上(双眼距离大于像素)角度上下角度在度以内左右角度在度以内(眉尖可见)图像质量聚焦清晰光照均匀特别注意避免逆光、侧光必要时进行补光其他情自然尽量避免帽子、围巾、墨镜等遮挡面部信息通常在一些城市中典型地适合人员抓拍地地点和场景有1.火车站汽车站出入口2.机场安检处3.政府机关企事业单位重要场所地走道4.大型商场出入口上下扶梯处5.小区、社区出入口非室外环境等等4.3施工部署要求采集场景典型案例建设人脸采集场景是为了提高人脸抓拍成功率、人脸识别比对成功率做为人脸识别系统能否满足公安要求最为重要地一环建设一套标准人脸采集系统是人脸系统成功应用地关键人脸采集系统采集场景一般分为专业采集场景和人脸比对场景其中专业采集场景一般为室内场景确保光线和环境标准化建设完成后可采集标准地人脸图像为后续建设人脸注册库做基础准备.人脸比对场景根据公安要求建设用于道路和室外场景对目标人脸进行比对识别.4.3.1安装指导规范专业采集场景环境要求采集环境建议在室内高度>米长度>米宽度>米人员采集点位确定被采集人员点位若环境光低于人脸采集要求则顶部需要安装光源进行补光注意背后不要有强光源.4.3.1.1摄像机安装摄像机采取吊顶或者三脚架方式安装安装高度距地面米米安装距离距被采集人员点位米.若采用三相机抓拍中间地相机正对采集点位其它两个相机部署在中间相机地两侧米处.4.3.1.2摄像机调整安装人员甲站到采集点位安装人员乙依次对三个相机进行调整.调整摄像机上下角度与焦距使得人脸位于图像地中心位置双眼距离大于像素.对人脸进行对焦调整清晰度到最佳.安装角度要求相机与水平线地夹角α最好在°度到°度之间.安装距离要求摄像机一般选用百万高清摄像机.距离和选用地不同镜头地焦距有关系焦点在通道出入口且人脸地宽度像素不小于*像素因此摄像机地型号与监控范围有着密切关系.人脸大小和姿态要求人脸距离相机中心左右偏离±°上下偏离±°平面偏离±°以内免冠不戴墨镜、口罩、帽子等遮挡面部地饰物眼镜框、头发不遮挡眼睛环境光照要求无逆光面部无明显反光光线均匀且无阴影.另外为保证抓拍人脸时现场光照足够建议若镜头画面中人脸不够亮时需要相应增加照明设备对人员脸部补一般应达到.4.3.1.3人脸采集场景侧视图根据摄像机地安装位置和安装高度要求如下高度建议在米范围焦距距离摄像机在米处保证相机照射目标人脸呈度角度.4.3.1.4人脸采集场景俯视图通常对人脸进行采集过程中因人员不受控制常常无法采集到正脸图片在后续比对识别过程中非标准地人脸图片将降低人脸识别准确率.通过部署三台相机每台相机相距米两侧相机距抓拍点呈现°夹角人员经过采集点可以同时进行人脸抓拍并关联存储入库可以大大缩减因抓拍人脸角度问题引起地识别比对准确率不高地问题.5存储设计5.1存储总体设计人脸系统存储内容主要包括三方面人脸注册库存储包括人脸图像和结构化地特征数据是公安人员对重点管控人员等建立地人员库在人脸识别系统中充当标准库供人脸系统查询比对.人脸抓拍库存储包含实时抓拍地现场图像、人脸小图和结构化地特征数据在人脸识别系统中充当实时抓拍下来地人员面部特征库供人脸系统检索比对.. 视频录像存储针对系统需要存储实时视频进行视频搜索可通过平台挂载存储设备存储前端实时视频录像或在前端路数较多情况下可以通过前端直连进行视频存储减轻平台转发存储负担.……前端普通高清摄像机……人脸抓拍摄像机v4bdy。

人脸识别应用解决方案

人脸识别应用解决方案

人脸识别应用解决方案
《人脸识别应用解决方案》
随着科技的发展,人脸识别技术正在被广泛应用于各个领域。

无论是安防监控、手机解锁、还是金融支付,人脸识别都展现出了其无可替代的优势。

然而,人脸识别技术在实际应用中也面临着诸多挑战,比如精准度、安全性、以及隐私保护等等。

针对这些问题,人们也在不断探索和提出解决方案。

首先,针对人脸识别技术的精准度问题,一些科研人员和企业正致力于提高算法的准确性和稳定性。

他们通过不断的数据收集和分析,对人脸识别算法进行优化和改进,以提高其在各种光照、角度、表情等情况下的识别准确率。

其次,对于人脸识别技术的安全性问题,一些技术公司正在研发更加安全可靠的人脸识别系统。

比如,他们通过引入活体检测技术,来防止对抗性攻击,以确保人脸识别系统不能被欺骗或者误导。

最后,对于人脸识别技术的隐私保护问题,相关部门正在建立严格的法律法规和政策来规范其使用。

同时,一些企业也在积极研发人脸识别技术的隐私保护方案,以确保用户的个人信息不被滥用或者泄露。

总之,人脸识别技术在解决各种现实问题的同时,也面临着一些挑战。

但是,随着技术的不断进步和完善,相信这些问题都
将迎刃而解。

相信未来,人脸识别技术将会更加普及和成熟,为人们的生活带来更大的便利和安全保障。

人脸识别解决方案

人脸识别解决方案

人脸识别解决方案一、引言人脸识别技术是一种基于人脸图象或者视频进行身份识别的技术,它通过对人脸的特征进行提取和比对,实现对个体身份的准确识别。

随着科技的发展和应用场景的不断扩大,人脸识别技术在安防、金融、教育、医疗等领域得到了广泛应用。

本文将介绍一种人脸识别解决方案,包括技术原理、应用场景、系统架构和性能评估等内容。

二、技术原理人脸识别技术主要包括人脸检测、特征提取和特征匹配三个步骤。

首先,通过图象处理算法对图象或者视频中的人脸进行检测,确定人脸的位置和大小。

然后,利用计算机视觉技术,提取人脸图象中的特征信息,如面部轮廓、眼睛位置、嘴巴形状等。

最后,将提取到的特征与事先建立的人脸数据库中的特征进行比对,从而实现对个体身份的识别。

三、应用场景1. 安防领域:人脸识别技术可以应用于公共场所的安防监控系统,实现对潜在嫌疑人的实时监测和识别。

例如,可以在机场、车站等人流密集的场所设置人脸识别门禁系统,对进出人员进行身份验证,提高安全性和便捷性。

2. 金融领域:人脸识别技术可以应用于银行、证券等金融机构的身份认证系统,替代传统的密码或者指纹识别方式。

通过人脸识别技术,用户可以通过简单的面部扫描完成身份验证,提高用户体验和安全性。

3. 教育领域:人脸识别技术可以应用于学校的考勤系统,实现对学生的自动签到和签退。

通过摄像头拍摄学生的面部图象,系统可以自动识别学生的身份并记录考勤情况,提高考勤效率和准确性。

4. 医疗领域:人脸识别技术可以应用于医院的病人身份识别系统,确保医疗过程中的准确性和安全性。

通过人脸识别技术,医院可以在患者就诊时自动获取患者的身份信息,并与电子病历系统进行关联,避免患者信息混淆和错误。

四、系统架构人脸识别解决方案的系统架构包括硬件设备、软件算法和数据库三个部份。

1. 硬件设备:系统需要配备高清摄像头或者摄像机,用于采集人脸图象或者视频。

摄像头的像素和画质对识别准确度有重要影响,因此选择合适的摄像头非常关键。

人脸识别解决方案

人脸识别解决方案

人脸识别解决方案引言概述:人脸识别技术是一种通过分析和识别人脸图象来进行身份验证的技术。

随着科技的不断进步,人脸识别已经成为了一种广泛应用的解决方案。

本文将介绍人脸识别解决方案的五个主要部份,包括人脸检测、人脸特征提取、特征匹配、活体检测以及应用领域。

一、人脸检测:1.1 人脸检测技术采用图象处理算法,通过分析图象中的像素信息,准确地检测出人脸的位置。

1.2 常用的人脸检测算法包括Haar特征检测算法、HOG特征检测算法和卷积神经网络(CNN)等。

1.3 人脸检测技术在人脸识别解决方案中起到了至关重要的作用,能够实现对图象中人脸的准确定位,为后续的特征提取和匹配提供基础。

二、人脸特征提取:2.1 人脸特征提取是指从人脸图象中提取出具有辨识度的特征,常用的特征包括人脸的轮廓、眼睛、鼻子和嘴巴等。

2.2 常用的人脸特征提取算法包括主成份分析(PCA)、线性判别分析(LDA)和局部二值模式(LBP)等。

2.3 人脸特征提取技术能够将人脸图象转化为一组数值特征,为后续的特征匹配提供基础,实现对人脸的准确识别。

三、特征匹配:3.1 特征匹配是指将提取出的人脸特征与数据库中的特征进行比对,找出最相似的人脸。

3.2 常用的特征匹配算法包括欧氏距离、余弦相似度和支持向量机(SVM)等。

3.3 特征匹配技术能够通过计算特征之间的相似度,实现对人脸的准确匹配,判断是否为同一人。

四、活体检测:4.1 活体检测是为了防止利用照片或者视频等非真实人脸进行欺骗,通过分析人脸的生物特征和行为特征来判断是否为真实人脸。

4.2 常用的活体检测技术包括红外活体检测、3D深度活体检测和眨眼检测等。

4.3 活体检测技术能够有效防止人脸识别系统被攻击,提高系统的安全性和准确性。

五、应用领域:5.1 人脸识别解决方案在安全领域得到广泛应用,如门禁系统、刷脸支付等。

5.2 在金融领域,人脸识别技术可以用于身份验证和欺诈检测等方面。

5.3 人脸识别技术还可以应用于教育、医疗、交通等领域,提高工作效率和服务质量。

(完整版)人脸识别对比解决方案

(完整版)人脸识别对比解决方案

(完整版)人脸识别对比解决方案第一章.方案概述1.1项目概况随着经济的发展,城镇建设速度加快,以及互联网的突飞猛进,导致城市中人口密集,流动人口增加,引发了城市建设中的交通、社会治安、重点区域防范、网络犯罪日益突出等城市管理问题,今后现代化城市的建设、网络信息必然将安全作为重中之重,与城市的经济建设处于同等重要的地位。

近年来,社会犯罪率呈逐年升高的趋势,特别是网络犯罪更加的严重,网络逃犯频频发生,罪犯的犯罪手法也更加隐蔽和先进,给广大公安人员侦破案件增加了难度。

同时,恶性事件时有发生,使人们对公共生活场所的安全感普遍降低。

同时公安人员在对通缉犯进行人工排查时如大海捞针,成功率极低,效果也不明显。

主要有如下实际问题:1.首先,由于罪犯群体不断扩大,要在数以百万计的人员照片库中找出犯罪嫌疑人,不仅费时费力,还有可能造成遗漏等情况,破案的效率大打折扣。

2.其次,目前公安机关侦察案件大多数仍然依靠事后追查和通缉,对已经发生的案件造成的损失很难有效弥补。

3.最后,如果在案发的同时即能防患于未然,就能第一时间将损失控制在最小范围内。

平安城市建设从最初的视频监控、卡口电警建设,系统已大量掌握了视频图像资源和卡口车辆数据和价值图片,但是针对人员侦查,身份确认还是需要通过技侦或网侦手段,无法充分利用视频图像资源快速定位人员身份。

即使出动大量警力,采用“人海战术”但受制于肉眼识别劳动强度的极限,再加上人工排查效率不足,视频图像拍摄受光线、角度倾斜等不确定因素影响,无法保证查找的准确性和时效性,尤其出现突发紧急案件时,往往会贻误最佳破案时机。

如何提供更加丰富以及实用的“人像防控”应用,从“事后被动侦查”到“事前主动预警”将是平安城市下一建设阶段面临的主要需求。

1.2需求分析人像大数据系统采用高效的人脸检测定位及识别比对系统,可以第一时间帮助公安侦查人员快速识别辨别特定人员真实身份,把过去人工排查海量的视频图像资源比对需求变成现实,从而有效的为公安视频侦查、治安管理、刑侦立案等工作提供实战上的有效帮助和解决方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平安城市人脸识别系统解决方案浙江大华技术股份有限公司解决方案部大华人脸识别解决方案V1.0—公安线目录第一章. 方案概述 ............................................................... 错误!未定义书签。

1.1 项目概况 ................................................................... 错误!未定义书签。

1.2 需求分析 ................................................................... 错误!未定义书签。

1.3 建设目标 ................................................................... 错误!未定义书签。

1.3.1 人脸识别技术.................................................. 错误!未定义书签。

1.3.2 高危人员比对.................................................. 错误!未定义书签。

1.3.3 特殊人员比对.................................................. 错误!未定义书签。

1.3.4 人员布控报警.................................................. 错误!未定义书签。

1.4 建设内容 ................................................................... 错误!未定义书签。

第二章. 总体设计 ............................................................... 错误!未定义书签。

2.1 逻辑架构 ................................................................... 错误!未定义书签。

2.2 系统拓扑 ................................................................... 错误!未定义书签。

2.3 联网设计 ................................................................... 错误!未定义书签。

2.4 人脸识别数据流 ....................................................... 错误!未定义书签。

2.4.1 实时比对.......................................................... 错误!未定义书签。

2.4.2 历史查询.......................................................... 错误!未定义书签。

2.5 人脸三大业务库 ....................................................... 错误!未定义书签。

2.6 性能指标要求 ........................................................... 错误!未定义书签。

第三章. 前端设计 ............................................................... 错误!未定义书签。

3.1 前端系统组成 ........................................................... 错误!未定义书签。

3.2 布点设计 ................................................................... 错误!未定义书签。

3.3 施工部署要求:采集场景典型案例 ........................ 错误!未定义书签。

3.3.1 安装指导规范.................................................. 错误!未定义书签。

3.3.2 侧视图 ............................................................. 错误!未定义书签。

3.3.3 俯视图(多相机) .......................................... 错误!未定义书签。

3.4 摄像机安装要求 ....................................................... 错误!未定义书签。

第四章. 存储设计 ............................................................... 错误!未定义书签。

4.1 存储总体设计 ........................................................... 错误!未定义书签。

4.2 存储容量计算(项目修改).................................... 错误!未定义书签。

4.2.1 抓拍库图片存储计算 ...................................... 错误!未定义书签。

4.2.2 人脸特征数据存储计算 .................................. 错误!未定义书签。

4.2.3 视频存储.......................................................... 错误!未定义书签。

第五章. 应用设计 ............................................................... 错误!未定义书签。

5.1 人脸抓拍 ................................................................... 错误!未定义书签。

5.2 比对识别报警 ........................................................... 错误!未定义书签。

5.3 人脸检索 ................................................................... 错误!未定义书签。

5.4 黑名单管理 ............................................................... 错误!未定义书签。

5.5 注册库查询 ............................................................... 错误!未定义书签。

5.6 报警管理 ................................................................... 错误!未定义书签。

第六章. 方案优势 ............................................................... 错误!未定义书签。

6.1 响应迅速 ................................................................... 错误!未定义书签。

6.2 直观、自然、非接触性............................................ 错误!未定义书签。

6.3 多相机抓拍人脸关联 ............................................... 错误!未定义书签。

6.4 国际领先的人脸识别算法........................................ 错误!未定义书签。

第七章. 设备选型 ............................................................... 错误!未定义书签。

7.1 摄像机选型 ............................................................... 错误!未定义书签。

7.1.1 普通高清摄像机选型 ...................................... 错误!未定义书签。

7.1.2 人脸抓拍摄像机选型 ...................................... 错误!未定义书签。

7.2 摄像头-镜头.............................................................. 错误!未定义书签。

7.3 镜头选型原理 ........................................................... 错误!未定义书签。

7.4 人脸检测服务器 ....................................................... 错误!未定义书签。

7.5 人脸识别服务器 ....................................................... 错误!未定义书签。

7.6 人脸数据库服务器 ................................................... 错误!未定义书签。

7.7 平台........................................................................... 错误!未定义书签。

相关文档
最新文档