2019年河北省保定市南市区中考数学一模试卷(含解析)

合集下载

河北省保定市2019-2020学年中考一诊数学试题含解析

河北省保定市2019-2020学年中考一诊数学试题含解析

河北省保定市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若M(2,2)和N(b,﹣1﹣n2)是反比例函数y=kx的图象上的两个点,则一次函数y=kx+b的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限2.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°3.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°4.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为()A.30°B.35°C.40°D.50°5.将不等式组2(23)3532x xx x-≤-⎧⎨+⎩>的解集在数轴上表示,下列表示中正确的是( )A.B.C.D.6.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再A.4 B.6 C.8 D.107.济南市某天的气温:-5~8℃,则当天最高与最低的温差为()A.13 B.3 C.-13 D.-38.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×1079.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-10.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°11.一元二次方程mx2+mx﹣12=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.212.二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简11x-÷211x-=_____.14.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.15.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同,已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为:______.16.如图,在△ABC中,AB=3+3,∠B=45°,∠C=105°,点D、E、F分别在AC、BC、AB上,且四边形ADEF为菱形,若点P是AE上一个动点,则PF+PB的最小值为_____.17.如图,▱ABCD中,对角线AC,BD相交于点O,且AC⊥BD,请你添加一个适当的条件________,使ABCD成为正方形.18.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=1.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.20.(6分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活多少?21.(6分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?22.(8分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.23.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB =2m ,它的影子BC =1.6m ,木竿PQ 落在地面上的影子PM =1.8m ,落在墙上的影子MN =1.1m ,求木竿PQ 的长度.24.(10分)如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值. 25.(108﹣4cos45°+(12)﹣1+|﹣2|.AB=DC .(1)求证:四边形BFCE 是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE 是菱形.27.(12分)已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=mx图象的两个交点.求一次函数和反比例函数的解析式;求△AOB 的面积;观察图象,直接写出不等式kx+b ﹣mx>0的解集.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】把(2,2)代入k y x =得k=4,把(b ,﹣1﹣n 2)代入ky x=得,k=b (﹣1﹣n 2),即 241b n=--根据k 、b 的值确定一次函数y=kx+b 的图象经过的象限. 【详解】解:把(2,2)代入k y x=,把(b ,﹣1﹣n 2)代入ky x=得: k=b (﹣1﹣n 2),即241b n =--,∵k=4>0,241b n =--<0,∴一次函数y=kx+b 的图象经过第一、三、四象限, 故选C . 【点睛】本题考查了反比例函数图象的性质以及一次函数经过的象限,根据反比例函数的性质得出k ,b 的符号是解题关键. 2.D 【解析】 试题分析:如图,连接OC , ∵AO ∥DC ,∴∠ODC=∠AOD=70°, ∵OD=OC ,∴∠ODC=∠OCD=70°, ∴∠COD=40°, ∴∠AOC=110°, ∴∠B=∠AOC=55°.故选D .考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质 3.B 【解析】试题分析:如图,翻折△ACD ,点A 落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.4.A【解析】【分析】根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【详解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故选A.【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键5.B【解析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解:不等式可化为:11xx≤⎧⎨>-⎩,即11x-<≤.∴在数轴上可表示为.故选B.“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.C【解析】根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,△CEF的面积=12 CF•CE.【详解】解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,因为BC∥DE,所以BF:DE=AB:AD,所以BF=2,CF=BC-BF=4,所以△CEF的面积=12CF•CE=8;故选:C.点睛:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点.7.A【解析】由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.8.D【解析】试题解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数9.B【解析】【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:12000120001001.2x x=+故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.【解析】分析:依据AB ∥EF ,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°. 详解:∵AB ∥EF , ∴∠BDE=∠E=45°, 又∵∠A=30°, ∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°, 故选C .点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等. 11.C 【解析】 【分析】由方程有两个相等的实数根,得到根的判别式等于0,求出m 的值,经检验即可得到满足题意m 的值. 【详解】∵一元二次方程mx 1+mx ﹣12=0有两个相等实数根, ∴△=m 1﹣4m×(﹣12)=m 1+1m =0, 解得:m =0或m =﹣1, 经检验m =0不合题意, 则m =﹣1. 故选C . 【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根. 12.D 【解析】①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2, 所以﹣2ba=﹣1,可得b=2a , 当x=﹣3时,y <0, 即9a ﹣3b+c <0, 9a ﹣6a+c <0,∵a<0,∴4a+c<0,所以①选项结论正确;②∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm<a﹣b,m(am+b)+b<a,所以此选项结论不正确;③ax2+(b﹣1)x+c=0,△=(b﹣1)2﹣4ac,∵a<0,c>0,∴ac<0,∴﹣4ac>0,∵(b﹣1)2≥0,∴△>0,∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;④由图象得:当x>﹣1时,y随x的增大而减小,∵当k为常数时,0≤k2≤k2+1,∴当x=k2的值大于x=k2+1的函数值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此选项结论不正确;所以正确结论的个数是1个,故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x+1【解析】分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.详解:解:原式=11x-÷1(1)(1)x x+-=11x-•(x+1)(x﹣1)=x+1,故答案为x+1.点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.14.2 3【解析】【分析】根据概率的概念直接求得. 【详解】解:4÷6=2 3 .故答案为:2 3 .【点睛】本题用到的知识点为:概率=所求情况数与总情况数之比.15.13518020 x x=+【解析】【分析】设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程.【详解】∵甲平均每分钟打x个字,∴乙平均每分钟打(x+20)个字,根据题意得:13518020x x=+,故答案为13518020x x=+.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.16【解析】【分析】如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四边形ADEF是菱形,推出F,D关于直线AE对称,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是线段BD的长.【详解】如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四边形ADEF是菱形,∴F,D关于直线AE对称,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是线段BD的长,∵∠CAB=180°-105°-45°=30°,设AF=EF=AD=x,则DH=EG=12x,3,∵∠EGB=45°,EG⊥BG,∴EG=BG=12x,∴3123,∴x=2,∴DH=1,BH=3,∴221310,∴PF+PB10,10.【点睛】本题考查轴对称-最短问题,菱形的性质等知识,解题的关键是学会用转化的思想思考问题,学会利用轴对称解决最短问题.17.∠BAD=90°(不唯一)【解析】【分析】根据正方形的判定定理添加条件即可.【详解】解:∵平行四边形ABCD的对角线AC与BD相交于点O,且AC⊥BD,∴四边形ABCD是菱形,当∠BAD=90°时,四边形ABCD为正方形.故答案为:∠BAD=90°.【点睛】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.18.100(1+x)2=121【解析】【分析】根据题意给出的等量关系即可求出答案.【详解】由题意可知:100(1+x)2=121故答案为:100(1+x)2=121【点睛】本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2).【解析】【分析】(1)连接OC、BC,根据题意可得OC2+PC2=OP2,即可证得OC⊥PC,由此可得出结论.(2)先根据题意证明出△PBC∽△PCA,再根据相似三角形的性质得出边的比值,由此可得出结论.【详解】(1)如图,连接OC、BC∵⊙O的半径为3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切线.(2)∵AB 是直径 ∴∠ACB=90° ∴∠ACO+∠OCB=90° ∵OC ⊥PC∴∠BCP+∠OCB=90° ∴∠BCP=∠ACO ∵OA=OC ∴∠A=∠ACO ∴∠A=∠BCP在△PBC 和△PCA 中: ∠BCP=∠A ,∠P=∠P ∴△PBC ∽△PCA , ∴∴tan ∠CAB=【点睛】本题考查了切线与相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定与相似三角形的判定与性质.20.(1)50(2)36%(3)160 【解析】 【分析】(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数. 【详解】(1)该校对50名学生进行了抽样调查.()2本次调查中,最喜欢篮球活动的有18人,18100%36%50⨯=, ∴最喜欢篮球活动的人数占被调查人数的36%. (3)()130%26%24%20%-++=,20020%1000÷=人,8100%100016050⨯⨯=人.答:估计全校学生中最喜欢跳绳活动的人数约为160人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.21.(1)60;(2)s=10t-6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B步行到景点C的速度是2米/分钟.【解析】【分析】(1)观察图像得出路程和时间,即可解决问题.(2)利用待定系数法求一次函数解析式即可;(3)分两种情况讨论即可;(4)设乙从B步行到C的速度是x米/分钟,根据当甲到达景点C时,乙与景点C的路程为360米,所用的时间为(90-60)分钟,列方程求解即可.【详解】(1)甲的速度为540090=60米/分钟.(2)当20≤t ≤1时,设s=mt+n,由题意得:200 303000 m nm n+=⎧⎨+=⎩,解得:3006000mn=⎧⎨=-⎩,所以s=10t-6000;(3)①当20≤t ≤1时,60t=10t-6000,解得:t=25,25-20=5;②当1≤t ≤60时,60t=100,解得:t=50,50-20=1.综上所述:乙出发5分钟和1分钟时与甲在途中相遇.(4)设乙从B步行到C的速度是x米/分钟,由题意得:5400-100-(90-60)x=360解得:x=2.答:乙从景点B步行到景点C的速度是2米/分钟.【点睛】本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型.22.(1),;(2)点的坐标为;(3)点的坐标为和【解析】【分析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.【详解】解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去),(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.23.木竿PQ的长度为3.35米.【解析】【分析】过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.试题解析:【详解】解:过N点作ND⊥PQ于D,则四边形DPMN 为矩形,∴DN =PM =1.8m ,DP =MN =1.1m ,∴AB QDBC DN=, ∴QD =AB DNBC⋅=2.25,∴PQ =QD +DP = 2.25+1.1=3.35(m ). 答:木竿PQ 的长度为3.35米. 【点睛】本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.24.(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5). ②线段QD 长度的最大值为94. 【解析】 【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0),∴2a 1b12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=, ∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭.∵a 10<=-,-3302<<- ∴线段QD 长度的最大值为94. 25.4 【解析】 分析:代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可. 详解:原式=4224+=. 点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:1pp a a-=(0a p ≠,为正整数)”是正确解答本题的关键.26.(1)证明见试题解析;(2)1. 【解析】 【详解】试题分析:(1)由AE=DF ,∠A=∠D ,AB=DC ,易证得△AEC ≌△DFB ,即可得BF=EC ,∠ACE=∠DBF ,且EC ∥BF ,即可判定四边形BFCE 是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.试题解析:(1)∵AB=DC,∴AC=DB,在△AEC和△DFB中{AC DB A D AE DF=∠=∠=,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,∴当BE=1时,四边形BFCE是菱形,故答案为1.【考点】平行四边形的判定;菱形的判定.27.(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.【解析】试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;(3)由图可得,不等式的解集为:x<﹣4或0<x<1.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.。

河北省保定市2019-2020学年中考数学模拟试题(1)含解析

河北省保定市2019-2020学年中考数学模拟试题(1)含解析

河北省保定市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,平行四边形ABCD 中,E ,F 分别为AD ,BC 边上的一点,增加下列条件,不一定能得出BE ∥DF 的是( )A .AE =CFB .BE =DFC .∠EBF =∠FDED .∠BED =∠BFD2.如图,PA 、PB 是O e 的切线,点D 在»AB 上运动,且不与A ,B 重合,AC 是O e 直径.62P ∠=︒,当//BD AC 时,C ∠的度数是( )A .30°B .31︒C .32︒D .33︒3.如图,△ABC 为直角三角形,∠C=90°,BC=2cm ,∠A=30°,四边形DEFG 为矩形,DE=23cm , EF=6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合.Rt △ABC 以每秒1cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止.设Rt △ABC 与矩形DEFG 的重叠部分的面积为ycm 2,运动时间xs .能反映ycm 2与xs 之间函数关系的大致图象是( )A .B .C .D .4.下列运算错误的是( )A .(m 2)3=m 6B .a 10÷a 9=a C .x 3•x 5=x 8 D .a 4+a 3=a 7 5.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A .米B .米C .米D .米6.如图,在底边BC 为23,腰AB 为2的等腰三角形ABC 中,DE 垂直平分AB 于点D ,交BC 于点E ,则△ACE 的周长为( )A .2+3B .2+23C .4D .337.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .极差C .中位数D .平均数8.图为一根圆柱形的空心钢管,它的主视图是( )A .B .C .D .9.不解方程,判别方程2x 2﹣32x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根10.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是( )A .3.4×10-9mB .0.34×10-9mC .3.4×10-10mD .3.4×10-11m11.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =-B .11x =,23x = C .11x =-,23x = D .13x =-,21x =12.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A .3cmB .6 cmC .2.5cmD .5 cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60o ,则该直尺的宽度为____________cm .14.请写出一个比2大且比4小的无理数:________.15.如图,直线y=3x ,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2;再过点A 2作x 轴的垂线交直线于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,…,按照此做法进行下去,点A 8的坐标为__________.16.81的算术平方根是_______.17.如图,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为4时,阴影部分的面积为_____.18.对于函数n m y x x =+,我们定义11n m y nx mx --'=+(m 、n 为常数).例如42y x x =+,则342y x x '=+.已知:()322113y x m x m x =+-+.若方程0y '=有两个相等实数根,则m 的值为__________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)对于平面直角坐标系xOy 中的任意两点M ()11 ,x y ,N ()22,x y ,给出如下定义:点M 与点N 的“折线距离”为:(),d M N =12x x -+12y y -.例如:若点M(-1,1),点N(2,-2),则点M 与点N 的“折线距离”为:()(),1212336d M N =--+--=+=.根据以上定义,解决下列问题:已知点P(3,-2). ①若点A(-2,-1),则d(P ,A)= ;②若点B(b ,2),且d(P ,B)=5,则b= ;③已知点C (m,n )是直线y x =-上的一个动点,且d(P ,C)<3,求m 的取值范围.⊙F 的半径为1,圆心F 的坐标为(0,t),若⊙F 上存在点E ,使d(E ,O)=2,直接写出t 的取值范围.20.(6分)阅读下面材料,并解答问题.材料:将分式42231x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为﹣x 2+1,可设﹣x 4﹣x 2+3=(﹣x 2+1)(x 2+a )+b 则﹣x 4﹣x 2+3=(﹣x 2+1)(x 2+a )+b=﹣x 4﹣ax 2+x 2+a+b=﹣x 4﹣(a ﹣1)x 2+(a+b )∵对应任意x ,上述等式均成立,∴113a a b -=⎧⎨+=⎩,∴a=2,b=1 ∴42231x x x --+-+=222(1)(2)11x x x -+++-+=222(1)(2)1x x x -++-++211x -+=x 2+2+211x -+这样,分式42231x x x --+-+被拆分成了一个整式x 2+2与一个分式211x -+的和. 解答:将分式422681x x x --+-+ 拆分成一个整式与一个分式(分子为整数)的和的形式.试说明422681x x x --+-+的最小值为1.21.(6分)如图,在五边形ABCDE 中,∠BCD=∠EDC=90°,BC=ED ,AC=AD .求证:△ABC ≌△AED ;当∠B=140°时,求∠BAE 的度数.22.(8分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.23.(8分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.24.(10分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若tan∠BAD=23,且OC=4,求BD的长.25.(10分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,AB ,水面最深下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽16cm地方的高度为4cm,求这个圆形截面的半径.26.(12分)“垃圾不落地,城市更美丽”.某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,统计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下来不辜负不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生“是否随手丢垃圾”情况的众数是;(3)若该校七年级共有1500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?27.(12分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。

河北省保定市2019-2020学年中考数学一月模拟试卷含解析

河北省保定市2019-2020学年中考数学一月模拟试卷含解析

河北省保定市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是()A.圆锥B.圆柱C.球D.正方体2.下列多边形中,内角和是一个三角形内角和的4倍的是()A.四边形B.五边形C.六边形D.八边形3.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.4.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.5.如图图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是()A15B.15C17D.177.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.58.计算-5x2-3x2的结果是( )A.2x2B.3x2C.-8x2D.8x29.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF 等于()A.12.5°B.15°C.20°D.22.5°10.某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高A.—7℃B.7℃C.—1℃D.1℃11.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为()A.B.C.D.12.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.12B.2 C.5D.25二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系xOy中,点P到x轴的距离为1,到y轴的距离为2.写出一个..符合条件的点P的坐标________________.14.如图,□ABCD中,E是BA的中点,连接DE,将△DAE沿DE折叠,使点A落在□ABCD内部的点F处.若∠CBF=25°,则∠FDA的度数为_________.15.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,则可列方程为__________.16.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F 处,连接CF,则CF的长度为_____17.观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_____(用含n的代数式表示)18.计算(5ab3)2的结果等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:(12)﹣2﹣327+(﹣2)0+|2﹣8|20.(6分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.21.(6分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB 交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.22.(8分)计算:(π﹣1)0+|﹣1|24÷6+(﹣1)﹣1.23.(8分)清朝数学家梅文鼎的《方程论》中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?24.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C 重合),AE、BD交于点F.(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.25.(10分)计算:2sin30°﹣(π﹣2)0+|3﹣1|+(12)﹣126.(12分)某种商品每天的销售利润y元,销售单价x元,间满足函数关系式:y x bx c=-++,其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?27.(12分)在某小学“演讲大赛”选拔赛初赛中,甲、乙、丙三位评委对小选手的综合表现,分别给出“待定”(用字母W表示)或“通过”(用字母P表示)的结论.(1)请用树状图表示出三位评委给小选手琪琪的所有可能的结论;(2)对于小选手琪琪,只有甲、乙两位评委给出相同结论的概率是多少?(3)比赛规定,三位评委中至少有两位给出“通过”的结论,则小选手可入围进入复赛,问琪琪进入复赛的概率是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;C. 球的主视图只能是圆,故符合题意;D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,故选C.【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键. 2.C【解析】【分析】利用多边形的内角和公式列方程求解即可【详解】设这个多边形的边数为n.由题意得:(n﹣2)×180°=4×180°.解得:n=1.答:这个多边形的边数为1.故选C.【点睛】本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.3.B【解析】【分析】根据俯视图是从上往下看的图形解答即可.【详解】从上往下看到的图形是:.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线. 4.B【分析】根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.【详解】解:主视图,如图所示:.故选B.【点睛】本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.5.B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故A不正确;B、既是轴对称图形,又是中心对称图形,故B正确;C、是轴对称图形,不是中心对称图形,故C不正确;D、既不是轴对称图形,也不是中心对称图形,故D不正确.故选B.【点睛】本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.6.A【解析】试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC ﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ABHD为矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故选A.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.7.D【解析】【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【详解】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;故选:D.【点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.8.C【解析】【分析】利用合并同类项法则直接合并得出即可.【详解】解:222538.x x x --=-故选C.【点睛】此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键.9.B【解析】【详解】解:连接OB ,∵四边形ABCO 是平行四边形,∴OC=AB ,又OA=OB=OC ,∴OA=OB=AB ,∴△AOB 为等边三角形,∵OF ⊥OC ,OC ∥AB ,∴OF ⊥AB ,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=12∠BOF=15° 故选:B10.B【解析】【分析】求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可.【详解】3-(-4)=3+4=7℃.故选B .11.B【解析】【分析】匀速直线运动的路程s 与运动时间t 成正比,s-t 图象是一条倾斜的直线解答.【详解】∵甲、乙两人分别以4m/s 和5m/s 的速度,∴两人的相对速度为1m/s ,设乙的奔跑时间为t (s ),所需时间为20s ,两人距离20s×1m/s=20m , 故选B .【点睛】此题考查函数图象问题,关键是根据匀速直线运动的路程s 与运动时间t 成正比解答.12.A【解析】分析:连接AC ,根据勾股定理求出AC 、BC 、AB 的长,根据勾股定理的逆定理得到△ABC 是直角三角形,根据正切的定义计算即可.详解:连接AC ,由网格特点和勾股定理可知, 2,22,10AB BC ==AC 2+AB 2=10,BC 2=10,∴AC 2+AB 2=BC 2,∴△ABC 是直角三角形,∴tan ∠ABC=21222AC AB ==. 点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.()()()()21212121----,,,,,,,(写出一个即可) 【解析】【分析】根据点到x 轴的距离即点的纵坐标的绝对值,点到y 轴的距离即点的横坐标的绝对值,进行求解即可.【详解】设P (x ,y ),根据题意,得|x|=2,|y|=1,即x=±2,y=±1,则点P的坐标有(2,1),(2,-1),(-2,1),(2,-1),故答案为:(2,1),(2,-1),(-2,1),(2,-1)(写出一个即可).【点睛】本题考查了点的坐标和点到坐标轴的距离之间的关系.熟知点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值是解题的关键.14.50°【解析】【分析】延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明△BCG≌△DAE,从而∠7=∠6=25°,进而可求∠FDA得度数.【详解】延长BF交CD于G由折叠知,BE=CF, ∠1=∠2, ∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案为50°.【点睛】本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明△BCG ≌△DAE 是解答本题的关键.15.8374x x -=+【解析】【分析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决【详解】解:由题意可设有x 人,列出方程:8374x x +﹣=,故答案为8374x x +﹣=.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.16.185 【解析】【分析】分析题意,如图所示,连接BF,由翻折变换可知,BF ⊥AE,BE=EF,由点E 是BC 的中点可知BE=3,根据勾股定理即可求得AE ;根据三角形的面积公式1122AB BE AE BH ⨯⨯=⨯⨯可求得BH,进而可得到BF 的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt △BFC 中,利用勾股定理求出CF 的长度即可 【详解】如图,连接BF.∵△AEF 是由△ABE 沿AE 折叠得到的,∴BF ⊥AE,BE=EF.∵BC=6,点E 为BC 的中点,∴BE=EC=EF=3根据勾股定理有AE2=AB2+BE2代入数据求得AE=5根据三角形的面积公式1122AB BE AE BH ⨯⨯=⨯⨯得BH=12 5即可得BF=24 5由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC2-BF2=CF2代入数据求得CF=18 5故答案为18 5【点睛】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质17.3n+1【解析】【分析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律.【详解】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+1.【点睛】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型.18.25a2b1.【解析】【分析】代数式内每项因式均平方即可.【详解】解:原式=25a2b1.【点睛】本题考查了代数式的乘方.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.【解析】【分析】直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、二次根式以及立方根的运算法则分别化简得出答案.【详解】解:原式=4﹣﹣2=.【点睛】本题考查实数的运算,难点也在于对原式中零指数幂、负指数幂、绝对值、二次根式以及立方根的运算化简,关键要掌握这些知识点.20.见解析【解析】【分析】根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点睛】本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.21.(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;【解析】【分析】(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;(2)先由菱形的性质得出AE=BE=DE ,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD 是矩形.【详解】解:()1证明:∵四边形ABCD 是平行四边形,∴4C ∠=∠,AD CB =,AB CD =.∵点E 、F 分别是AB 、CD 的中点, ∴12AE AB =,12CF CD =. ∴AE CF =.在AED V 和CBF V 中,AD CB DAE C AE CF =⎧⎪∠=∠⎨⎪=⎩,∴()ADE CBF SAS ≅V V. ()2解:当四边形BEDF 是菱形时,四边形AGBD 是矩形.证明:∵四边形ABCD 是平行四边形,∴//AD BC .∵//AG BD ,∴四边形AGBD 是平行四边形.∵四边形BEDF 是菱形,∴DE BE =.∵AE BE =,∴AE BE DE ==.∴12∠=∠,34∠=∠.∵1234180∠+∠+∠+∠=o ,∴2223180∠+∠=o .∴2390∠+∠=o .即90ADB ∠=o .∴四边形AGBD 是矩形.【点睛】本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS ,SAS ,AAS ,ASA .22.2【解析】【分析】先根据0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义化简,然后进一步计算即可.【详解】解:原式=2+2﹣+2 =2﹣2+2=2.【点睛】本题考查了0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.23.每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田13亩. 【解析】【分析】设每亩山田产粮相当于实田x 亩,每亩场地产粮相当于实田y 亩,根据山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,列二元一次方程组求解.【详解】解:设每亩山田产粮相当于实田x 亩,每亩场地产粮相当于实田y 亩. 可列方程组为36 4.753 5.5x y x y +=⎧⎨+=⎩解得0.913x y =⎧⎪⎨=⎪⎩答:每亩山田相当于实田0.9亩,每亩场地相当于实田13亩. 24.(1)证明见解析;(1)2【解析】分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD ,然后根据对顶角相等可得∠BFE=∠AFD ,等量代换即可得解;(1)根据中点定义求出BC ,利用勾股定理列式求出AB 即可.详解:(1)如图,∵AE 平分∠BAC ,∴∠1=∠1.∵BD ⊥AC ,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD .∵∠BFE=∠AFD (对顶角相等),∴∠BEF=∠BFE ;(1)∵BE=1,∴BC=4,由勾股定理得:AB=22AC BC -=2254-=2.点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键. 25.3【解析】分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案. 详解:原式=2×1233点睛:此题主要考查了实数运算,正确化简各数是解题关键.26.(1)10,1;(2)812x ≤≤.【解析】【分析】(1)将点(5,0),(8,21)代入2y x bx c =-++中,求出函数解析式,再根据二次函数的性质求出最大值即可;(2)求出对称轴为直线10x =,可知点(8,21)关于对称轴的对称点是(12,21),再根据图象判断出x 的取值范围即可.【详解】解:(1)2y x bx c =-++图象过点(5,0),(8,21), 255064821b c b c -++=⎧∴⎨-++=⎩,解得2075b c =⎧⎨=-⎩ 22075y x x ∴=-+-.222075(10)25y x x x =-+-=--+Q .22075y x x ∴=-+-的顶点坐标为(10,25).10-<Q ,∴当10x =时,y 最大=1.答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元.(2)∵函数22075y x x =-+-图象的对称轴为直线10x =,可知点(8,21)关于对称轴的对称点是(12,21),又∵函数22075y x x =-+-图象开口向下,∴当812x ≤≤时,21y ≥.答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质.27.(1)见解析;(2)14;(3)12. 【解析】【分析】(1)根据列树状图的步骤和题意分析所有等可能的出现结果,即可画出图形;(2)根据(1)求出甲、乙两位评委给出相同结论的情况数,再根据概率公式即可求出答案; (3)根据(1)即可求出琪琪进入复赛的概率.【详解】(1)画树状图如下:(2)∵共有8种等可能结果,只有甲、乙两位评委给出相同结论的有2种可能,∴只有甲、乙两位评委给出相同结论的概率P=21 84 =;(3)∵共有8种等可能结果,三位评委中至少有两位给出“通过”结论的有4种可能,∴乐乐进入复赛的概率P=41 82 =.【点睛】此题考查了列树状图,掌握列树状图的步骤,找出三位评委给出相同结论的情况数是本题的关键,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P=mn.。

2019学年河北省保定市中考一模数学试卷【含答案及解析】

2019学年河北省保定市中考一模数学试卷【含答案及解析】

AB的中
(1)如图 1,三角尺的两条直角边分别交边 AC, BC于 D, E 两点,求证:△ PDE为等腰三 角形. (2)如图 2,三角尺的两条直角边分别交射线 AC,射线 BC于 D,E 两点.( 1)中的结论 还成立吗?请说明理由.

A.32 B . 42
C
. 32 或 42
D
.以上都不对
15. 如图,点 A 的坐标为( -1 ,0)点 B(a,a),当线段 AB最短时,点 B 的坐标为


A.( 0, 0) B .( ,- ) C .( - , - ) D .( - , -

16. 如图( 1)所示, E为矩形 ABCD的边 AD上一点,动点 P, Q同时从点 B 出发,点 P沿 折线 BE-ED-DC运动到点 C时停止,点 Q沿 BC运动到点 C时停止,它们运动的速度都是 1cm/秒.设 P、Q同时出发 t 秒时,△ BPQ的面积为 ycm2.已知 y 与 t 的函数关系图象如
的值.
22. 甲、乙两城市为了解决空气质量污染问题,对城市及其周边的环境污染进行了综合治
理.在治理的过程中,环保部门每月初对两城市的空气质量进行监测,连续
10 个月的空
气污染指数如图 1 所示.其中,空气污染指数≤ 50 时,空气质量为优; 50<空气污染指数
≤100 时,空气质量为良; 100<空气污染指数≤ 150 时,空气质量为轻微污染.
. a2+a3=a5
3. 有一捆粗细均匀的电线,现要确定它的长度.从中先取出
1m长的电线,称出它的质量
为 a,再称出其余电线的总质量为 b,则这捆电线的总长度是(

A.( ab+1)m m
B .( -1 ) m

河北省保定市2019年九年级中考一模数学试卷

河北省保定市2019年九年级中考一模数学试卷

2019年10月20日xx 学校初中数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,坐标平面上二次函数21y x =+的图象经过,A B 两点,且坐标分别为()()1010A a B b ,,,,则AB 的长度为( )A .3B .5C .6D .72.在下列各图中,不添加任何辅助线,若每个图所给出的两个三角形都是相似的,则位似图形的个数是( )A .1B .2C .3D .43.已知O e 的半径OA ,若OB =,则可以得到的正确图形可能是( ) A . B .C .D .4.在如图所示的几何体的周围添加一个正方体,添加前后主视图不变化的是( )A .B .C .D .5.如图,已知ABC △内接于O e ,点P 在O e 内,点O 在PAB △内,若50C ∠=︒,则P ∠的度数可以为( )A .20°B .50°C .110°D .80°6.点6(2)A ,与点6(4)B ,均在抛物线2y ax bx c =++(0)a ≠上,则下列说法正确的是( ) A .0a > B .0a < C .60a b += D .60a b += 7.如图,任意四边形ABCD 中,E F G H ,,,分别是AB BC CD DA ,,,上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )A .当E F G H ,,,是各边中点,且AC BD =时,四边形EFGH 为菱形B .当E F G H ,,,是各边中点,且AC BD ⊥时,四边形EFGH 为矩形C .当E F G H ,,,不是各边中点时,四边形EFGH 可以为平行四边形D .当EFGH ,,,不是各边中点时,四边形EFGH 不可能为菱形8.如图,在44⨯的网格图中,A B C ,,是三个格点,其中每个小正方形的边长为1,ABC △的外心可能是( )A .M 点B .N 点C .P 点D .Q 点9.如图,在半径为6的O e 中,正方形AGDH 与正六边形ABCDEF 都内接于O e ,则图中阴影部分的面积为( )A.27- B . 54-C . D .5410.如图,P 为O e 内的一个定点,A 为O e 上的一个动点,射线AP AO ,分别与O e 交于B C ,两点.若O e 的半径长为3,OP =,则弦BC 的最大值为( )A .B .3CD .二、填空题11.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC BC ,旗杆顶端B 点与A 点有一条彩带相连.若13AB =米,则旗杆BC 的高度为 米.12.用如图的两个自由转动的转盘做“配紫色”游戏分别转动两个转盘若其中一个转出红色,另一个转出蓝色即可配出紫色,则配成紫色的概率是 .13.小帅家的新房子刚装修完,便遇到罕见的大雨,于是他向爸爸提议给窗户安上遮雨罩.如图1所示的是他了解的一款雨罩.它的侧面如图2所示,其中顶部圆弧AB的圆心O在整直边缘D上,另一条圆弧BC的圆心O.在水平边缘DC的廷长线上,其圆心角为90°,BE AD⊥于点E,则根据所标示的尺寸(单位:cm)可求出弧AB所在圆的半径AO的长度为cm.14.如图,在正方形ABCD中,E是对角线BD上一点,4=,连接CE,过点E作DE BEAF=,则正方形ABCD的边长为.⊥交AB的延长线于点F,若8EF CE15.如图①,正三角形和正方形内接于同一个圆;如图②,正方形和正五边形内接于同一个圆;如图③,正五边形和正六边形内接于同一个圆;…;则对于图①来说,BD可以看作n+边形内接于同一个圆,连接与公共顶点相是正边形的边长;若正n边形和正()1邻同侧两个不同正多边形的顶点可以看做是边形的边长.三、解答题16.如图,在一居民楼AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为38°.从距离楼底B点2米的P处经过树顶E点恰好看到塔的顶EF=米,求塔CD的高度.部C点,且仰角β为28°.已知树高8(参考数据:sin380.6︒≈,︒≈,cos380.8︒≈,cos280.9︒≈,sin280.5︒≈,tan380.8︒≈)tan280.517.某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某种苹果到了收获季节,投入市场销售时,调查市场行情,发现该苹果的销售不会亏本,且该产品的日销售量y (千克)与销售单价x (元)之间满足一次函数关系关于销售单价、日销售量、日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价-成本单价))(1)求y 关于x 的函数解析式(要写出x 的取值范围)及m 的值;(2)根据以上信息,填空:产品的成本单价是 元,当销售单价x = 元时,日销售利润w 最大,最大值是 元;(3)某农户今年共采摘苹果4800千克,该品种苹果的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批苹果?请说明理由18.课题学习:矩形折纸中的数学实践操作折纸不仅是一项有趣的活动,也是一项益智的数学活动.数学课上,老师给出这样一道题将矩形纸片ABCD 沿对角线AC 翻折,使点B 落在矩形所在平面内,'B C 和AD 相交于点E ,如图1所示.探素发现(1)在图1中,①请猜想并证明AE 和EC 的数量关系;②连接'B D ,请猜想并证明'B D 和AC 的位置关系;(2)第1小组的同学发现,图1中,将矩形ABCD 沿对角线AC 翻折所得到的图形是轴对称图形.若沿对称轴EF 再次翻折所得到的图形仍是轴对称图形,展开后如图2所示,请你直接写出该矩形纸片的长、宽之比;(3)若将图1中的矩形变为平行四边形时()AB BC ≠,如图3所示,(1)中的结论①和结论②是否仍然成立,请直接写出你的判断.拓展应用。

2019年河北省保定市中考数学一模试卷(带答案解析)(免费)

2019年河北省保定市中考数学一模试卷(带答案解析)(免费)

题将矩形纸片 ABCD 沿对角线 AC 翻折,使点 B 落在矩形所在平面内,B'C 和 AD 相交于 点 E,如图 1 所示.
探素发现
(1)在图 1 中,①请猜想并证明 AE 和 EC 的数量关系;②连接 B'D,请猜想并证明 B'D
和 AC 的位置关系; (2)第 1 小组的同学发现,图 1 中,将矩形 ABCD 沿对角线 AC 翻折所得到的图形是轴
=∠2 (1)求证:△ADP∽△BCP; (2)若 AB=8,CD=4,DP=3,求 AP 的长.
17.(7 分)(2019•保定一模)如图,在一居民楼 AB 和塔 CD 之间有一棵树 EF,从楼顶 A 处经过树顶 E 点恰好看到塔的底部 D 点,且俯角α为 38°.从距离楼底 B 点 2 米的 P 处 经过树顶 E 点恰好看到塔的顶部 C 点,且仰角β为 28°.已知树高 EF=8 米,求塔 CD 的高度. (参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9, tan28°≈0.5)

(2)如图 3,当半圆 O 与直线 CD 相切时,切点为 N,与线段 AD 的交点为 P,求劣弧
AP 的长;
(3)在旋转过程中,当半圆弧与直线 CD 只有一个交点时,设此交点与点 C 的距离为 d,
第 7页(共 47页)
请直接写出 d 的取值范围.
22.(11 分)(2019•保定一模)在△ABC 中,AB=AC=5,BC=8,点 M 是△ABC 的中线 AD 上一点,以 M 为圆心作⊙M.设半径为 r (1)如图,当点 M 与点 A 重合时,分别过点 B,C 作⊙M 的切线,切点为 E,F.求证: BE=CF; (2)如图 2,若点 M 与点 D 重合,且半圆 M 恰好落在△ABC 的内部,求 r 的取值范围; (3)当 M 为△ABC 的内心时,求 AM 的长.

河北保定2019中考一模试题-数学

(图2) 河北保定2019中考一模试题-数学数 学 试 卷注意:答题前请先填写学校、班级、姓名、考号。

本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题、 本试卷总分值为120分,考试时间为120分钟、卷Ⅰ〔选择题,共30分〕【一】选择题〔本大题共12个小题,1—6小题,每题2分;7—12小题,每题3分,共30分、在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕 1、3-的倒数是〔〕 A 、3B 、3-C 、13D 、13- 2、如图1,AB ∥CD ,01001=∠,那么A ∠的度数是〔〕 A 、0100B 、060C 、 080D 、0703、假如两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是〔〕4、2018年1月20日财政部在其官方网站公布2017年全国财政收入达103740亿元,首次突破10万亿元。

将103740用科学记数法表示为〔〕A 、6100374.1⨯B 、5100374.1⨯C 、410374.10⨯D 、61010374.0⨯5经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是〔〕 A 、平均数B 、中位数 C 、众数D 、方差6、在一个不透明的口袋中装有假设干个只有颜色不同的球,假如口袋中装有4个红球,且摸出红球的概率是31,那么口袋中球的总个数为〔〕 A 、12个B 、9个C 、7个D 、6个7、一件标价为600元的上衣,按8折销售仍可获利20元,设这件上衣的成本价为x 元,依照题意,下面所列的方程正确的选项是〔〕 A 、6000.820x ⨯-=B 、600820x ⨯-= C 、6000.820x ⨯=-D 、600820x ⨯=- 8、如图2,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°, 那么∠CAD 的度数是〔〕 A 、25° B 、60°C 、65°D 、75°(图1)9、将二次函数5422-+=x x y 化为k h x a y +-=2)(的形式,结果为〔〕A 、7)1(2-+=x y B 、7)1(22-+=x y C 、7)1(22--=x y D 、6)1(22-+=x y10、二次函数y =ax 2+bx +c 〔a ≠0〕的图象如图3,那么以下结论中正确的选项是〔〕A 、a >0B 、当x >1时,y 随x 的增大而增大C 、c <0D 、3是方程ax 2+bx +c =0的一个根11、如图4所示,P 是菱形ABCD 的对角线AC 上的一动点,过P 点作垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设2=AC ,1=BD ,x AP =,那么△AMN 的面积为y ,那么y 关于x 的函数图象的大致形状是〔〕12、按图5所示的运算程序,假设开始输入的x 的值是6,我们发明第一次得到 的结果是3,第二次得到的结果是8, ……,请你探究第2018次得到的结果 为〔〕A 、2B 、4C 、6D 、82018年保定市初中毕业生第一次模拟考试数学试卷(命题人:李秀峰审定人:徐建乐)卷II 〔非选择题,共90分〕本卷须知1、答卷II 前,将密封线左侧的项目填写清晰、2、答卷II 时,将答案用蓝色、黑色钢笔或圆珠笔直截了当写在试卷上、14、2a b +=,那么224a b b -+的值、15、如图6,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,假设点D 的坐标是〔3,4〕,那么点B 的坐标是 、16、刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对),(b a (图3)(图5)(图4)进入魔术盒时会得到一个新的实数:12-+b a 。

河北省保定市2019-2020学年中考数学一模考试卷含解析

河北省保定市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列方程中有实数解的是( ) A .x 4+16=0 B .x 2﹣x+1=0 C .+2x x =-D .22111x x x =-- 2.已知直线2y kx =-与直线32y x =+的交点在第一象限,则k 的取值范围是( ) A .3k =B .3k <-C .3k >D .33k -<<3.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .194.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A .11910813x y y x x y =⎧⎨+-+=⎩()()B .10891311y x x yx y +=+⎧⎨+=⎩C .91181013x y x y y x ()()=⎧⎨+-+=⎩D .91110813x yy x x y =⎧⎨+-+=⎩()()5.如图,A ,B ,C ,D ,E ,G ,H ,M ,N 都是方格纸中的格点(即小正方形的顶点),要使△DEF 与△ABC 相似,则点F 应是G ,H ,M ,N 四点中的( )A .H 或NB .G 或HC .M 或ND .G 或M6.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交B.相切C.相离D.不能确定7.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣2x(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=kx(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.53B.34C.43D.238.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90 B.中位数是90 C.平均数是90 D.极差是159.在同一平面直角坐标系中,函数y=x+k与kyx(k为常数,k≠0)的图象大致是()A.B.C.D.10.下列由左边到右边的变形,属于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)11.﹣6的倒数是( ) A .﹣B .C .﹣6D .612.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.函数y=2+1x 中自变量x 的取值范围是___________. 14.计算:3a r ﹣(a r ﹣2b r)=____. 15.化简()()201720182121-+的结果为_____.16.如图,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为4时,阴影部分的面积为_____.17.如果75x 3n y m+4与﹣3x 6y 2n 是同类项,那么mn 的值为_____.18.已知一组数据1,2,0,﹣1,x ,1的平均数是1,则这组数据的中位数为_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数.小马虎根据竞赛成绩,绘制了如图所示的统计图.经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.(1)指出条形统计图中存在的错误,并求出正确值;(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名? (3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛.预赛分为A 、B 、C 、D 四组进行,选手由抽签确定.张明、李刚两名同学恰好分在同一组的概率是多少? 20.(6分)如图,四边形ABCD 中,AC 平分∠DAB ,AC 2=AB•AD ,∠ADC =90°,E 为AB 的中点. (1)求证:△ADC ∽△ACB ;(2)CE 与AD 有怎样的位置关系?试说明理由; (3)若AD =4,AB =6,求ACAF的值.21.(6分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x (x≥2)个羽毛球,供社区居民免费借用.该社区附近A 、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动: A 超市:所有商品均打九折(按标价的90%)销售; B 超市:买一副羽毛球拍送2个羽毛球.设在A 超市购买羽毛球拍和羽毛球的费用为y A (元),在B 超市购买羽毛球拍和羽毛球的费用为y B (元).请解答下列问题:分别写出y A 、y B 与x 之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.22.(8分)先化简再求值:2()(2)x y y y x -++,其中2x 3y =23.(8分)如图1,四边形ABCD ,边AD 、BC 的垂直平分线相交于点O .连接OA 、OB 、OC 、OD .OE 是边CD 的中线,且∠AOB+∠COD =180°(1)如图2,当△ABO 是等边三角形时,求证:OE =12AB ;(2)如图3,当△ABO是直角三角形时,且∠AOB=90°,求证:OE=12 AB;(3)如图4,当△ABO是任意三角形时,设∠OAD=α,∠OBC=β,①试探究α、β之间存在的数量关系?②结论“OE=12AB”还成立吗?若成立,请你证明;若不成立,请说明理由.24.(10分)在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.(Ⅰ)如图①,求OD的长及ABBG的值;(Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.①在旋转过程中,当∠BAG′=90°时,求α的大小;②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).25.(10分)某商场柜台销售每台进价分别为160元、120元的A、B两种型号的电器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入—进货成本)(1)求A、B两种型号的电器的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求A种型号的电器最多能采购多少台?(3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.26.(12分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:参加比赛的学生共有____名;在扇形统计图中,m 的值为____,表示“D 等级”的扇形的圆心角为____度;组委会决定从本次比赛获得A 等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率. 27.(12分)先化简,再求值:242a a a a⎛⎫--÷ ⎪⎝⎭,其中a 满足a 2+2a ﹣1=1. 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】A 、B 是一元二次方程可以根据其判别式判断其根的情况;C 是无理方程,容易看出没有实数根;D 是分式方程,能使得分子为零,分母不为零的就是方程的根. 【详解】A.中△=02﹣4×1×16=﹣64<0,方程无实数根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;C.x=﹣1是方程的根;D.当x=1时,分母x2-1=0,无实数根.故选:C.【点睛】本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.2.C【解析】【分析】根据题意画出图形,利用数形结合,即可得出答案.【详解】根据题意,画出图形,如图:k=时,两条直线无交点;当3k>时,两条直线的交点在第一象限.当3故选:C.【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.3.A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.4.D【解析】【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选:D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.5.C【解析】【分析】根据两三角形三条边对应成比例,两三角形相似进行解答【详解】设小正方形的边长为1,则△ABC的各边分别为3、13、10,只能F是M或N时,其各边是6、13 10△ABC各边对应成比例,故选C【点睛】本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键6.A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选A.考点:直线与圆的位置关系.7.C【解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.详解:∵OB=1,AB⊥OB,点A在函数2yx=-(x<0)的图象上,∴当x=−1时,y=2,∴A(−1,2).∵此矩形向右平移3个单位长度到1111A B O C的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数kyx=(x>0)的图象上,∴k=4,∴反比例函数的解析式为4yx=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,43y=,∴P4 (3,).3故选C.点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.8.C【解析】【分析】由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=1.∴错误的是C.故选C.9.B【解析】【分析】【详解】选项A中,由一次函数y=x+k的图象知k<0,由反比例函数y=的图象知k>0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误.故选B.10.C【解析】【分析】因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【详解】解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,故选择C.【点睛】本题考查了因式分解的定义,牢记定义是解题关键.11.A【解析】解:﹣6的倒数是﹣.故选A.12.B分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答案. 详解:①∵二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,且开口向下, ∴x=1时,y=a+b+c ,即二次函数的最大值为a+b+c ,故①正确; ②当x=﹣1时,a ﹣b+c=0,故②错误;③图象与x 轴有2个交点,故b 2﹣4ac >0,故③错误; ④∵图象的对称轴为x=1,与x 轴交于点A 、点B (﹣1,0), ∴A (3,0),故当y >0时,﹣1<x <3,故④正确. 故选B .点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.x≥﹣12且x≠1 【解析】 【详解】试题解析:根据题意得:2+10{-10x x ≥≠ 解得:x≥﹣12且x≠1. 故答案为:x≥﹣12且x≠1.14.2a r +2b r【解析】 【分析】根据平面向量的加法法则计算即可. 【详解】 3a v ﹣(a v﹣2b v) =3a v ﹣a v+2b v=2a v+2b v,故答案为:2a v+2b v, 【点睛】本题考查平面向量,熟练掌握平面向量的加法法则是解题的关键.15+1【分析】利用积的乘方得到原式=[(2﹣1)(2+1)]2017•(2+1),然后利用平方差公式计算. 【详解】原式=[(2﹣1)(2+1)]2017•(2+1)=(2﹣1)2017•(2+1)=2+1. 故答案为:2+1. 【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 16.4π﹣1 【解析】分析:连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解. 详解:连接OC ∵在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是»AB 的中点,∴∠COD=45°, ∴22,∴阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积 =22451(42)43602π⨯⨯-⨯=4π-1. 故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度. 17.0 【解析】根据同类项的特点,可知3n=6,解得n=2,m+4=2n ,解得m=0,所以mn=0. 故答案为0点睛:此题主要考查了同类项,解题关键是会判断同类项,注意:同类项中含有相同的字母,相同字母的指数相同.18.2【解析】【详解】解:这组数据的平均数为2,有16(2+2+0-2+x+2)=2,可求得x=2.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,其平均数即中位数是(2+2)÷2=2.故答案是:2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)140人;(1)1 4 .【解析】【分析】(1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组;(2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;(1)根据题意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率.【详解】(1)由统计图可得:乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得,2÷5%=40,(1+2)÷12.5%=40,(7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40,故乙组得5分的人数统计有误,正确人数应为:40×17.5%﹣4=1.(2)800×(5%+12.5%)=140(人);(1)如图得:∵共有16种等可能的结果,所选两人正好分在一组的有4种情况,∴所选两人正好分在一组的概率是:41= 164.【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件.20.(1)证明见解析;(2)CE∥AD,理由见解析;(3)74.【解析】【分析】(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;(3)根据相似三角形的性质列出比例式,计算即可.【详解】解:(1)∵AC平分∠DAB,∴∠DAC=∠CAB,又∵AC2=AB•AD,∴AD:AC=AC:AB,∴△ADC∽△ACB;(2)CE∥AD,理由:∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,又∵E为AB的中点,∴∠EAC=∠ECA,∵∠DAC=∠CAE,∴∠DAC=∠ECA,∴CE∥AD;(3)∵AD=4,AB=6,CE=12AB=AE=3,∵CE∥AD,∴∠FCE=∠DAC,∠CEF=∠ADF,∴△CEF∽△ADF,∴CFAF=CEAD=34,∴ACAF=74.21.解:(1)y A=27x+270,y B=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【解析】【分析】(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.【详解】解:(1)由题意,得y A=(10×30+3×10x)×0.9=27x+270;y B=10×30+3(10x﹣20)=30x+240;(2)当y A=y B时,27x+270=30x+240,得x=10;当y A>y B时,27x+270>30x+240,得x<10;当y A<y B时,27x+270<30x+240,得x>10∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.(3)由题意知x=15,15>10,∴选择A超市,y A=27×15+270=675(元),先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【点睛】本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.22.8【解析】【分析】原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,合并得到最简结果,将x与y 的值代入计算即可求出值. 【详解】原式=22222x xy y y xy -+++=222x y +,当2x =,3y =时,原式=22(2)2(3)2238.+⨯=+⨯=【点睛】本题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式、单项式乘以多项式、去括号法则以及合并同类项法则,熟练掌握公式及法则是解本题的关键.23.(1)详见解析;(2)详见解析;(3)①α+β=90°;②成立,理由详见解析. 【解析】 【分析】(1)作OH ⊥AB 于H ,根据线段垂直平分线的性质得到OD=OA ,OB=OC ,证明△OCE ≌△OBH ,根据全等三角形的性质证明;(2)证明△OCD ≌△OBA ,得到AB=CD ,根据直角三角形的性质得到OE=12CD ,证明即可; (3)①根据等腰三角形的性质、三角形内角和定理计算;②延长OE 至F ,是EF=OE ,连接FD 、FC ,根据平行四边形的判定和性质、全等三角形的判定和性质证明. 【详解】(1)作OH ⊥AB 于H ,∵AD 、BC 的垂直平分线相交于点O , ∴OD=OA ,OB=OC , ∵△ABO 是等边三角形, ∴OD=OC ,∠AOB=60°, ∵∠AOB+∠COD =180° ∴∠COD=120°, ∵OE 是边CD 的中线, ∴OE ⊥CD , ∴∠OCE=30°,∵OA=OB ,OH ⊥AB , ∴∠BOH=30°,BH=12AB , 在△OCE 和△BOH 中,OCE BOH OEC BHO OB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OCE ≌△OBH , ∴OE=BH , ∴OE=12AB ; (2)∵∠AOB=90°,∠AOB+∠COD=180°, ∴∠COD=90°, 在△OCD 和△OBA 中,OD OA COD BOA OC OB =⎧⎪∠=∠⎨⎪=⎩, ∴△OCD ≌△OBA , ∴AB=CD ,∵∠COD=90°,OE 是边CD 的中线,∴OE=12CD , ∴OE=12AB ;(3)①∵∠OAD=α,OA=OD , ∴∠AOD=180°﹣2α, 同理,∠BOC=180°﹣2β, ∵∠AOB+∠COD=180°, ∴∠AOD+∠COB=180°, ∴180°﹣2α+180°﹣2β=180°, 整理得,α+β=90°;②延长OE 至F ,使EF=OE ,连接FD 、FC ,则四边形FDOC 是平行四边形, ∴∠OCF+∠COD=180°,FC OA =, ∴∠AOB=∠FCO , 在△FCO 和△AOB 中,FC OA FCO AOB OC OB =⎧⎪∠=∠⎨⎪=⎩, ∴△FCO ≌△AOB , ∴FO=AB , ∴OE=12FO=12AB . 【点睛】本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键. 24.(Ⅰ)12(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A 、B 、F′在一条直线上时,AF′的长2+2,此时α=315°,F′(122,122)【解析】 【分析】(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°, BG′=2AB,可知sin ∠AG′B=12AB BG =,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A 、B 、F′在一条直线上时,AF′的长最大. 【详解】 (Ⅰ)如图1中,∵A(0,1),∴OA=1,∵四边形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如图2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋转角α=30°,根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,综上所述,旋转角α=30°或150°时,∠BAG′=90°.②如图3中,连接OF,∵四边形BE′F′G′是正方形的边长为∴BF′=2,∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.25.(1)A型电器销售单价为200元,B型电器销售单价150元;(2)最多能采购37台;(3)方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.【解析】【分析】(1)设A、B两种型号电器的销售单价分别为x元、y元,根据3台A型号4台B型号的电器收入1200元,5台A型号6台B型号的电器收入1900元,列方程组求解;(2)设采购A种型号电器a台,则采购B种型号电器(50−a)台,根据金额不多余7500元,列不等式求解;(3)根据A型号的电器的进价和售价,B型号的电器的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案.【详解】解:(1)设A型电器销售单价为x元,B型电器销售单价y元,则341200 561900x yx y+=⎧⎨+=⎩,解得:200150 xy=⎧⎨=⎩,答:A型电器销售单价为200元,B型电器销售单价150元;(2)设A型电器采购a台,则160a+120(50−a)≤7500,解得:a≤752,则最多能采购37台;(3)设A型电器采购a台,依题意,得:(200−160)a+(150−120)(50−a)>1850,解得:a>35,则35<a≤752,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.26.(1)20;(2)40,1;(3)23.【解析】试题分析:(1)根据等级为A的人数除以所占的百分比求出总人数;(2)根据D级的人数求得D等级扇形圆心角的度数和m的值;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.试题解析:解:(1)根据题意得:3÷15%=20(人),故答案为20;(2)C级所占的百分比为820×100%=40%,表示“D等级”的扇形的圆心角为420×360°=1°;故答案为40、1.(3)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生=46=23.27.a2+2a,2【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后根据a2+2a−2=2,即可解答本题. 【详解】解:242a a a a ⎛⎫--÷ ⎪⎝⎭ =2242a a a a -⋅- =2(2)(2)2a a a a a +-⋅- =a (a+2) =a 2+2a , ∵a 2+2a ﹣2=2, ∴a 2+2a =2, ∴原式=2.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.。

【水印已去除】2019年河北省保定市中考数学一模试卷

2019年河北省保定市中考数学一模试卷一、选择题(本大题共10个小题:每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)如图,坐标平面上二次函数y=x2+1的图象经过A、B两点,且坐标分别为A(a,10)、B(b、10),则AB的长度为()A.3B.5C.6D.72.(2分)在下列各图中,不添加任何辅助线,若每个图所给出的两个三角形都是相似的,则位似图形的个数是()A.1B.2C.3D.43.(2分)已知⊙O的半径OA长为,若OB=,则可以得到的正确图形可能是()A.B.C.D.4.(2分)在如图所示的几何体的周围添加一个正方体,添加前后主视图不变化的是()A.B.C.D.5.(2分)如图,已知△ABC内接于⊙O,点P在⊙O内,点O在△P AB内,若∠C=50°,则∠P的度数可以为()A.20°B.50°C.110°D.80°6.(2分)点A(2,6)与点B(4,6)均在抛物线y=ax2+bx+c(a≠0)上,则下列说法正确的是()A.a>0B.a<0C.6a+b=0D.a+6b=07.(2分)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形8.(2分)如图,在4×4的网格图中,A、B、C是三个格点,其中每个小正方形的边长为1,△ABC的外心可能是()A.M点B.N点C.P点D.Q点9.(2分)如图,在半径为6的⊙O中,正方形AGDH与正六边形ABCDEF都内接于⊙O,则图中阴影部分的面积为()A.27﹣9B.54﹣18C.18D.5410.(2分)如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O 交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()A.2B.3C.D.3三、境空题(本大醒共5个小题,每小题4分,共20分,把答案写在题中横线上)11.(4分)如图,斜面AC的坡度(CD与AD的比)为1:2,AC=米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=13米,则旗杆BC的高度为米.12.(4分)用如图的两个自由转动的转盘做“配紫色”游戏分别转动两个转盘若其中一个转出红色,另一个转出蓝色即可配出紫色,则配成紫色的概率是.13.(4分)小帅家的新房子刚装修完,便遇到罕见的大雨,于是他向爸爸提议给窗户安上遮雨罩.如图1所示的是他了解的一款雨罩.它的侧面如图2所示,其中顶部圆弧AB 的圆心O在整直边缘D上,另一条圆弧BC的圆心O.在水平边缘DC的廷长线上,其圆心角为90°,BE⊥AD于点E,则根据所标示的尺寸(单位:c)可求出弧AB所在圆的半径AO的长度为cm.14.(4分)如图,在正方形ABCD中,E是对角线BD上一点,DE=4BE,连接CE,过点E作EF⊥CE交AB的延长线于点F,若AF=8,则正方形ABCD的边长为.15.(4分)如图①,正三角形和正方形内接于同一个圆;如图②,正方形和正五边形内接于同一个圆;如图③,正五边形和正六边形内接于同一个圆;…;则对于图①来说,BD 可以看作是正边形的边长;若正n边形和正(n+1)边形内接于同一个圆,连接与公共顶点相邻同侧两个不同正多边形的顶点可以看做是边形的边长.三、解答题(本大题有8个小题,共80分解答应写出文字说明、证明过程或演算步骤)16.(7分)如图,BD、AC相交于点P,连接AB、BC、CD、DA,∠1=∠2(1)求证:△ADP∽△BCP;(2)若AB=8,CD=4,DP=3,求AP的长.17.(7分)如图,在一居民楼AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为38°.从距离楼底B点2米的P处经过树顶E点恰好看到塔的顶部C点,且仰角β为28°.已知树高EF=8米,求塔CD的高度.(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)18.(9分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某种苹果到了收获季节,投入市场销售时,调查市场行情,发现该苹果的销售不会亏本,且该产品的日销售量y(千克)与销售单价x(元)之间满足一次函数关系关于销售单价、日销售量、日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(要写出x的取值范围)及m的值;(2)根据以上信息,填空:产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)某农户今年共采摘苹果4800千克,该品种苹果的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批苹果?请说明理由19.(10分)课题学习:矩形折纸中的数学实践操作折纸不仅是一项有趣的活动,也是一项益智的数学活动.数学课上,老师给出这样一道题将矩形纸片ABCD沿对角线AC翻折,使点B落在矩形所在平面内,B'C和AD相交于点E,如图1所示.探素发现(1)在图1中,①请猜想并证明AE和EC的数量关系;②连接B'D,请猜想并证明B'D 和AC的位置关系;(2)第1小组的同学发现,图1中,将矩形ABCD沿对角线AC翻折所得到的图形是轴对称图形.若沿对称轴EF再次翻折所得到的图形仍是轴对称图形,展开后如图2所示,请你直接写出该矩形纸片的长、宽之比;(3)若将图1中的矩形变为平行四边形时(AB≠BC),如图3所示,(1)中的结论①和结论②是否仍然成立,请直接写出你的判断.拓展应用(4)在图3中,若∠B=30°,AB=2,请您直接写出:当BC的长度为多少时,△AB'D 恰好为直角三角形.20.(10分)如图,在平面直角坐标系的第一象限中,有一点A(1,2),AB∥x轴且AB=6,点C在线段AB的垂直平分线上,且AC=5,将抛物线y=ax2(a>0)的对称轴右侧的图象记作G.(1)若G经过C点,求抛物线的解析式;(2)若G与△ABC有交点.①求a的取值范围;②当0<y≤8时,双曲线y=经过G上一点,求k的最大值.21.(11分)如图1,在矩形ABCD中,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD 的外部,将半圆O绕点A顺时针旋转a度(0°≤a≤180°).(1)在旋转过程中,B′C的最小值是,如图2,当半圆O的直径落在对角线AC上时,设半圆O与AB的交点为M,则AM的长为.(2)如图3,当半圆O与直线CD相切时,切点为N,与线段AD的交点为P,求劣弧AP的长;(3)在旋转过程中,当半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,请直接写出d的取值范围.22.(11分)在△ABC中,AB=AC=5,BC=8,点M是△ABC的中线AD上一点,以M 为圆心作⊙M.设半径为r(1)如图,当点M与点A重合时,分别过点B,C作⊙M的切线,切点为E,F.求证:BE=CF;(2)如图2,若点M与点D重合,且半圆M恰好落在△ABC的内部,求r的取值范围;(3)当M为△ABC的内心时,求AM的长.23.(15分)如图,直线y=﹣x+4分别交x轴、y轴于A、C两点,抛物线y=﹣x2+mx+4经过点A,且与x轴的另一个交点为点B.连接BC,过点C作CD∥x轴交抛物线于点D (1)求抛物线的函数表达式;(2)若点E是抛物线上的点,求满足∠ECD=∠BCO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线AC上,点P为第一象限内的抛物线上一点,若以点C、M、N、P为顶点的四边形是菱形,求菱形的边长.2019年河北省保定市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10个小题:每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】把y=10代入二次函数解析式求出x的值,确定出A与B的坐标,即可求出AB 的长.【解答】解:把y=10代入二次函数解析式得:x2+1=10,解得:x=3或x=﹣3,即A(3,10),B(﹣3,10),则AB的长度为6,故选:C.【点评】此题考查了二次函数图象上点的坐标特征,熟练掌握二次函数性质是解本题的关键.2.【分析】根据位似图形的定义:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.【解答】解:根据位似图形的定义可知,第1、2、4个图形是位似图形,而第3个图形对应点的连线不能交于一点,故位似图形有3个.故选:C.【点评】本题考查了位似图形的定义,解题的关键是牢记位似图形的性质:位似图形一定相似,对应点的连线交于一点,对应边互相平行.3.【分析】根据点到直线的距离和圆的半径的大小关系判断点与圆的位置关系即可.【解答】解:∵⊙O的半径OA长为,若OB=,∴OA<OB,∴点B在圆外,故选:A.【点评】本题考查了点与圆的位置关系,解题的关键是根据数据判断出点到直线的距离和圆的半径的大小关系,难度不大.4.【分析】根据从正面观察得到的图形是主视图即可解答.【解答】解:选项A的图形的主视图均为:选项B、C的图形的主视图均为:原图和选项D的图形的主视图均为:故选:D.【点评】本题考查了简单组合体的三视图的知识,从正面看所得到的图形是主视图.5.【分析】延长AP交圆O于D,连接BD,根据三角形的外角的性质得到∠APB>∠ADB >50°,于是得到结论.【解答】解:延长AP交圆O于D,连接BD,则∠ADB=∠C=50°,∴∠APB>∠ADB>50°,∵点O在△P AB内,∴∠APB<90°,∴∠P的度数可以为80°,故选:D.【点评】本题考查了三角形的外接圆与外心,三角形的外角的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.6.【分析】根据题意可以得到a、b的关系式,然后根据二次函数的性质即可判断各个选项中的结论是否成立.【解答】解:∵点A(2,6)与点B(4,6)均在抛物线y=ax2+bx+c(a≠0)上,∴,解得,6a+b=0,故选项C正确,选项D错误,由题目中的条件无法判断a的正负情况,故选项A、B错误,故选:C.【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.7.【分析】连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可.【解答】解:A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,此时E,F,G,H不是四边形ABCD各边中点,故C正确;D.如图所示,若EF=FG=GH=HE,则四边形EFGH为菱形,此时E,F,G,H不是四边形ABCD各边中点,故D错误;故选:D.【点评】本题主要考查了中点四边形的运用,解题时注意:中点四边形的形状与原四边形的对角线有关.8.【分析】由图可知,△ABC是锐角三角形,于是得到△ABC的外心只能在其内部,根据勾股定理得到BP=CP=≠P A,于是得到结论.【解答】解:由图可知,△ABC是锐角三角形,∴△ABC的外心只能在其内部,由此排除A选项和B选项,由勾股定理得,BP=CP=≠P A,∴排除C选项,故选:D.【点评】本题考查了三角形的外接圆与外心,勾股定理,熟练掌握三角形的外心的性质是解题的关键.9.【分析】设EF交AH于M、交HD于N,连接OF、OE、MN,根据题意得到△EFO是等边三角形,△HMN是等腰直角三角形,由三角函数求出△EFO的高,由三角形面积公式即可得出阴影部分的面积.【解答】解:设EF交AH于M、交HD于N,连接OF、OE、MN,如图所示:根据题意得:△EFO是等边三角形,△HMN是等腰直角三角形,∴EF=OF=6,∴△EFO的高为:OF•sin60°=6×=3,MN=2(6﹣3)=12﹣6,∴FM=(6﹣12+6)=3﹣3,∴阴影部分的面积=4S△AFM=4×(3﹣3)×3=54﹣18;故选:B.【点评】本题考查了正多边形和圆,三角形的面积,解题的关键是知道阴影部分的面积等于4个三角形的面积.10.【分析】过点O作OE⊥AB于E,由垂径定理易知E是AB中点,从而OE是△ABC中位线,即BC=20E,而OE≤OP,故BC≤2OP.【解答】解:过点O作OE⊥AB于E,如图:∵O为圆心,∴AE=BE,∴OE=BC,∵OE≤OP,∴BC≤2OP,∴当E、P重合时,即OP垂直AB时,BC取最大值,最大值为2OP=2.故选:A.【点评】本题主要考查了垂径定理的基本应用、三角形三边关系,难度适中;过圆心作弦的垂线是运用垂径定理的常用技巧和手段,要熟练掌握.三、境空题(本大醒共5个小题,每小题4分,共20分,把答案写在题中横线上)11.【分析】设CD=2x米,根据坡度的概念用x表示出AD,根据勾股定理求出x,根据勾股定理求出BD,结合图形计算即可.【解答】解:设CD=2x米,∵斜面AC的坡度为1:2,∴AD=2x,由勾股定理得,CD2+AD2=AC2,即x2+(2x)2=()2,解得,x=,则CD=,AD=5,在Rt△ABD中,BD2=AB2﹣AD2=144,解得,BD=12,则BC=12﹣2.5=9.5,故答案为:9.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度的概念是解题的关键.12.【分析】根据题意,用列表法将所有可能出现的结果,分析可能得到紫色的概率,得到结论.【解答】解:用列表法将所有可能出现的结果表示如下:上面等可能出现的12种结果中,有3种情况可以得到紫色,所以可配成紫色的概率是:,故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B 的概率.13.【分析】连接BO1,设弧AB的半径为Rcm,在直角三角形BO1E中,则O1B=Rcm,O1E =(R﹣50)cm,BE=60cm,根据勾股定理列出关于R的方程,解方程求出半径R的值即可.【解答】解:连接BO1,易知BE=60cm,AE=50cm.设弧AB的半径为Rcm,则O1B=Rcm,O1E=(R﹣50)cm.在Rt△O1BE中,由勾股定理得:O1B2=BE2+O1E2,即R2=602+(R﹣50)2,解得:R=61.故答案为:61【点评】本题主要考查了勾股定理,垂径定理,难度适中,关键是求出弧AB所在圆的半径.14.【分析】由∠EHC=∠BHF,∠CEH=∠FBH=90°可判定△ECH∽△BFH,从而得到∠ECH=∠BFH;作辅助线可证明四边形ENBM是正方形,根据正方形的性质得EM=EN,由角角边可证明△EMC≌△ENF,得CM=FN;因DE=4BE,△BEM∽△BDC,△BEN∽△BDA和线段的和差可求出正方形ABCD的边长.【解答】解:如图所示:过点E作EM⊥BC,EN⊥AB,分别交BC、AB于M、N两点,且EF与BC相交于点H.∵EF⊥CE,∠ABC=90°,∠ABC+∠HBF=180°,∴∠CEH=∠FBH=90°,又∵∠EHC=∠BHF,∴△ECH∽△BFH(AA),∴∠ECH=∠BFH,∵EM⊥BC,EN⊥AB,四边形ABCD是正方形,∴四边形ENBM是正方形,∴EM=EN,∠EMC=∠ENF=90°,在△EMC和△ENF中∴△EMC≌△ENF(AAS)∴CM=FN,∵EM∥DC,∴△BEM∽△BDC,∴.又∵DE=4BE,∴=,同理可得:,设BN=a,则AB=5a,CM=AN=NF=4a,∵AF=8,AF=AN+FN,∴8a=8解得:a=1,∴AB=5.故答案为:5.【点评】本题考查了正方形的判定与性质,两个三角形全等的判定与性质,两个似三角形的判定与性质,线段的和差等综合知识,重点是掌握两个三角形相似和全等的判定的方法,难点是作辅助线构建两个三角形全等.15.【分析】如图①,连接OA、OB、OD,先计算出∠AOD=120°,∠AOB=90°,则∠BOD=30°,然后计算可判断BD是正十二边形的边长;对于正n边形和正(n+1)边形内接于同一个圆,同样计算出∠BOD=∠AOD﹣∠AOB=,利用=n(n+1)可判断BD可以看作是正n(n+1)边形的边长.【解答】解:如图①,连接OA、OB、OD,∵正三角形ADC和正方形ABCD接于同一个⊙O,∴∠AOD==120°,∠AOB==90°,∴∠BOD=∠AOD﹣∠AOB=30°,∵=12,∴BD可以看作是正十二边形的边长;若正n边形和正(n+1)边形内接于同一个圆,同理可得∠AOD=,∠AOB=,∴∠BOD=∠AOD﹣∠AOB=﹣=,∵=n(n+1),∴BD可以看作是正n(n+1)边形的边长.故答案为十二;正n(n+1).【点评】本题考查了正多边形与圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.正多边形每一边所对的圆心角叫做正多边形的中心角.三、解答题(本大题有8个小题,共80分解答应写出文字说明、证明过程或演算步骤)16.【分析】(1)由∠1=∠2,∠DP A=∠CPB(对顶角相等),即可得证△ADP∽△BCP (2)由△ADP∽△BCP,可得=,而∠APB与∠DPC为对顶角,则可证△APB∽△DPC,从而得==,即可求AP【解答】解:(1)证明:∵∠1=∠2,∠DP A=∠CPB∴△ADP∽△BCP(2)∵△ADP∽△BCP,∴=,∵∠APB=∠DPC∴△APB∽△DPC∴==,∴AP=6【点评】此题主要考查相似三角形的判定,本题关键是要懂得找相似三角形,利用相似三角形的性质求解.17.【分析】根据题意求出∠EDF=38°,通过解直角△EFD求得FD,在Rt△PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.【解答】解:由题意知,∠EDF=α=38°,∴FD=≈=10(米).EH=8﹣2=6(米)在Rt△PEH中,∵tanβ==.∴≈0.5.∴BF=12(米)PG=BD=BF+FD=12+10=22(米).在直角△PCG中,∵tanβ=.∴CG=PG•tanβ≈22×0.5=11(米).∴CD=11+2=13(米).【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.18.【分析】(1)利用待定系数法求解可得;(2)根据“总利润=单件利润×销售量”列出函数解析式,并配方成顶点式即可得出最大值;(3)求出在(2)中情况下,即x=19时的销售量,据此求得40天的总销售量,比较即可得出答案.【解答】解:(1)设y与x的函数关系式为y=kx+b,将(10,200)、(15,150)代入,得:,解得:,∴y与x的函数关系式为y=﹣10x+300(8≤x≤30);(2)设每天销售获得的利润为w,则w=(x﹣8)y=(x﹣8)(﹣10x+300)=﹣10(x﹣19)2+1210,∵8≤x≤30,∴当x=19时,w取得最大值,最大值为1210;故答案为:8,19,1210;(3)由(2)知,当获得最大利润时,定价为19元/千克,则每天的销售量为y=﹣10×19+300=110千克,∵保质期为40天,∴总销售量为40×110=4400,又∵4400<4800,∴不能销售完这批苹果.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及找到题目蕴含的相等关系,据此列出二次函数的解析式,并熟练掌握二次函数的性质.19.【分析】(1)①想办法证明∠EAC=∠ECA即可判断AE=EC.②想办法证明∠ADB′=∠DAC即可证明.(2)①当AB:AD=1:1时,符合题意.②当AD:AB=时,也符合题意,(3)结论仍然成立,证明方法类似(1).(4)先证得四边形ACB′D是等腰梯形,分四种情形分别讨论求解即可解决问题;【解答】解:(1)如图1中,①结论:EA=EC.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACB,由翻折可知:∠ACB=∠ACE,∴∠EAC=∠ECA,∴EA=EC.②连接DB′.结论:DB′∥AC.∵EA=EC,∴∠EAC=∠ECA,∵AD=BC=CB′,∴ED=EB′,∴∠EB′D=∠EDB′,∵∠AEC=∠DEB′,∴∠EB′D=∠EAC,∴DB′∥AC.(2)如图2中,①当AB:AD=1:1时,四边形ABCD是正方形,∴∠BAC=∠CAD=∠EAB′=45°,∵AE=AE,∠B′=∠AFE=90°,∴△AEB′≌△AEF(AAS),∴AB′=AF,此时四边形AFEB′是轴对称图形,符合题意.②当AD:AB=时,也符合题意,∵此时∠DAC=30°,∴AC=2CD,∴AF=FC=CD=AB=AB′,∴此时四边形AFEB′是轴对称图形,符合题意.(3)如图3中,当四边形ABCD是平行四边形时,仍然有EA=EC,DB′∥AC.理由:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAC=∠ACB,由翻折可知:∠ACB=∠ACE,∴∠EAC=∠ECA,∴EA=EC.∵EA=EC,∴∠EAC=∠ECA,∵AD=BC=CB′,∴ED=EB′,∴∠EB′D=∠EDB′,∵∠AEC=∠DEB′,∴∠EB′D=∠EAC,∴DB′∥AC.(4)①如图3﹣1中,当∠AB′C=90°时,易证∠BAC=90°,BC==.②如图3﹣2中,当∠ADB′=90°时,易证∠ACB=90°,BC=AB•cos30°=.③如图3﹣3中,当∠DAB′=90°时,易证∠B=∠ACB=30°,BC=2•AB•cos30°=2.④如图3﹣4中,当∠DAB′=90°时,易证:∠B=∠CAB=30°,BC==,综上所述,满足条件的BC的长为或或2或【点评】本题属于四边形综合题,考查了翻折变换,矩形的性质,平行四边形的性质,直角三角形的判定和性质,勾股定理,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.20.【分析】(1)如图1中,作CH⊥AB于H.求出点C坐标即可解决问题;(2)①当抛物线经过点A时,a=2,当抛物线经过点B时,2=49a,可得a=,由此即可解决问题;②由题意当a=时,y=x2,当y=8时,8=x2,因为x>0,推出x=14,由题意当反比例函数y=经过点(14,8)时k的值最大;【解答】解:(1)如图1中,作CH⊥AB于H.∵CA=CB=5,CH⊥AB,∴AH=HB=3,在Rt△ACH中,CH==4,∴C(4,6),∵抛物线y=ax2(a>0)经过C点,∴6=16a,∴a=,∴抛物线的解析式为y=x2.(2)①∵A(1,2),B(7,2),当抛物线经过点A时,a=2,当抛物线经过点B时,2=49a,∴a=,∵若G与△ABC有交点,∴≤a≤2.②由题意当a=时,y=x2,当y=8时,8=x2,∴x>0,∴x=14,∴当反比例函数y=经过点(14,8)时k的值最大,此时k=112,∴k的最大值为112.【点评】本题考查二次函数综合题、待定系数法、勾股定理等知识,解题的关键是理解题意,学会利用特殊点解决问题,属于中考压轴题.21.【分析】(1)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC 的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;(2)连接OP、ON,过点O作OG⊥AD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在Rt△AGO中,由AO=2、AG=1可得出∠OAG=60°,进而可得出△AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长;(3)由(2)可知:△AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B′在直线CD上的图形,在Rt△AB′D中(点B′在点D左边),利用勾股定理可求出B′D的长度进而可得出CB′的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围.【解答】解:(1)∵在矩形ABCD中,AB=4,BC=3,∴AC=5,在旋转过程中,当点B′落在对角线AC上时,B′C的值最小,最小值为1;在图2中,连接B′M,则∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=5.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;故答案为:1,;(2)在图3中,连接OP、ON,过点O作OG⊥AD于点G.∵半圆与直线CD相切,∴ON⊥DN,∴四边形DGON为矩形,∴DG=ON=2,∴AG=AD﹣DG=1.在Rt△AGO中,∠AGO=90°,AO=2,AG=1,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP为等边三角形,∴劣弧AP的长==π;(3)由(2)可知:△AOP为等边三角形,∴DN=GO=OA=,∴CN=CD+DN=4+,当点B′在直线CD上时,如图4所示.在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,∴B′D==,∴CB′=4﹣,∵AB′为直径,∴∠ADB′=90°,∴当点B′在点D右边时,半圆交直线CD于点D、B′.∴当半圆弧与直线CD只有一个交点时,4﹣≤d<4或d=4+.【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(1)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出∠OAG=60°;(3)依照题意画出图形,利用数形结合求出d的取值范围.22.【分析】(1)连接AE,AF,利用“HL”证Rt△BAE≌Rt△ACF即可得;(2)作DG⊥AB,由AB=AC=5,AD是中线知AD⊥BC且AD==3,依据BD×AD=AB×DG可得DG=,从而得出答案;(3)作MH⊥AB,MP⊥AC,有MH=MP=MD,连接BM、CM,根据AB•MH+BC •MD+AC•MP=AD•BC求出圆M的半径,从而得出答案.【解答】解:(1)如图1,连接AE,AF,∵BE和CF分别是⊙O的切线,∴∠BEA=∠CF A=90°,∵AB=AC,AE=AF,∴Rt△BAE≌Rt△ACF(HL),∴BE=CF;(2)如图2,过点D作DG⊥AB于点G,∵AB=AC=5,AD是中线,∴AD⊥BC,∴AD==3,∴BD×AD=AB×DG,∴DG=,∴当0<r<时,半圆M恰好落在△ABC内部;(3)当M为△ABC的内心时,如图3,过M作MH⊥AB于H,作MP⊥AC于P,则有MH=MP=MD,连接BM、CM,∴AB•MH+BC•MD+AC•MP=AD•BC,∴r===,∴AM=AD﹣DM=.【点评】本题是圆的综合问题,解题的关键是掌握等腰三角形的判定与性质、全等三角形的判定与性质、圆的切线的判定与性质等知识点.23.【分析】(1)利用直线方程求得点A、C的坐标,根据点A、C坐标求得抛物线解析式;(2)分点E在CD上方、点E在CD下方两种情况,分别求解即可;(3)分CM为菱形的一条边、CM为菱形的对角线两种情况,分别求解即可.【解答】解:(1)y=﹣x+4,令x=0,则y=4,令y=0,则x=4,则点A、C的坐标分别为(4,0)、(0,4),将点A的坐标代入抛物线的表达式并解得:m=3,故抛物线的表达式为:y=﹣x2+3x+4…①,令y=0,则x=﹣1或4,故点B(﹣1,0);(2)①当点E在CD上方时,tan∠BCO==,则直线CE的表达式为:y=x+4…②,联立①②并解得:x=0或(舍去0),则点E(,);②当点E在CD下方时,同理可得:点E′(,);故点E的坐标为E(,)或(,);(3)①如图2,当CM为菱形的一条边时,过点P作PQ∥x轴,∵OA=OC=4,∴∠PMQ=∠CAO=45°,设点P(x,﹣x2+3x+4),则PM=PQ=x,C、M、N、P为顶点的四边形是菱形,则PM=PN,即:x=﹣x2+3x+4,解得:x=0或4﹣(舍去0),故菱形边长为x=4﹣2;②如图3,当CM为菱形的对角线时,同理可得:菱形边长为2;故:菱形边长为4﹣2或.【点评】本题考查的是二次函数综合运用,涉及到一次函数、菱形基本性质等,要注意分类求解、避免遗漏.。

2019届河北省中考数学一模试卷 含解析

2019 年河北省中考数学一模试卷一、选择题(本大题有 16 个小题,共 42 分.1~10 小题各 3 分,11~16 小题各 2 分.在每小 题给出的四个选项中,只有一项是符合题目要求的)1.(3 分)如图,在数轴上,小手遮挡住的点表示的数可能是( )A .﹣1.5B .﹣2.5C .﹣0.5D .0.5 2.(3 分)如图是一个中心对称图形,则此图形的对称中心为()A .A 点B .B 点C .C 点D .D 点3.(3 分)若 100000﹣1用科学记数法表示成 a ×10 ,则 n 的值是()A .5B .6C .﹣5D .﹣64.(3 分)如图,经过测量,C 地在 A 地北偏东 46°方向上,同时 C 地在 B 地北偏西 63° 方向上,则∠C 的度数为()A .99°B .109°C .119°D .129°5.(3 分)将 2001×1999 变形正确的是()A .2000﹣1 C .2000+2×2000+1 B .2000 +1D .2000 ﹣2×2000+16.(3 分)如图,在菱形 ABCD 中,O 、F 分别是 AC 、BC 的中点,若 OF =3,则 AD 的长 为()n 2 2 2 2A.37.(3分)计算A.1+xC.8.(3分)若2<B.6C.9D.12时,第一步变形正确的是()B.1﹣xD.<3,则a的值可以是()A.﹣7B.C.D.129.(3分)如图,在矩形ABCD中,E是AD上一点,沿CE折△叠CDE,点D 恰好落在AC的中点F处,若CD=,则△ACE的面积为()A.1B.C.2D.210.(3分)图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:(1)弧①是以O为圆心,任意长为半径所画的弧;(2)弧②是以P为圆心,任意长为半径所画的弧;(3)弧③是以A为圆心,任意长为半径所画的弧;(4)弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()22A .4B .3C .2D .111.(3 分)若 5 +5 +5 +5 +5 =25 ,则 n 的值为()A .10B .6C .5D .312.(2 分)在图上剪去一个图形,剩下的图形可以折叠成一个长方体,则剪去的这个图形 是()A .①B .②C .③D .④13.(2分)如图,甲圆柱型容器的底面积为 30cm ,高为 8cm ,乙圆柱型容器底面积为 xcm ,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度 y (cm )与 x (cm )之间的大致图象是()A .B .C .D .14.(2 分)如图,点 O 是△ABC 的内心,M 、N 是 AC 上的点,且 CM =CB ,AN =AB , 若∠B =100°,则∠MON =()5 5 5 5 5 n2 2 2A .60°B .70°C .80°D .100°15.(2 分)如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A .B .C .D .16.(2 分)一次函数 y =kx +1﹣2k (k ≠0)的图象记作 G ,一次函数 y =2x +3(﹣1<x <2)的图象记作 G ,对于这两个图象,有以下几种说法:①当 G 与 G 有公共点时,y 随 x 增大而减小;②当 G 与 G 没有公共点时,y 随 x 增大而增大;③当 k =2 时,G 与 G 平行,且平行线之间的距离为 下列选项中,描述准确的是().A .①②正确,③错误C .②③正确,①错误B .①③正确,②错误D .①②③都正确二、填空题(本大题有 3 个小题,共 12 分.17~18 小题各 3 分;19 小题有 2 个空,每空 3 分.把答案写在题中横线上)17.(3 分)的立方根是 .18.(3 分)若 a+3=2b ,则 a ﹣2ab+3a = .19.(6 分)有三个大小一样的正六边形,可按下列方式进行拼接: 方式 1:如图 1;1 12 21 2 1 1 2 1 1 2 2 3方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是.有n个长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为.三、解答题(本大题共7个小题,共66分.解答应写出文字说明、证明过程或验算步骤)20.(8分)李宁准备完成题目;解二元一次方程组,发现系数□“”印刷不清楚.(1)他把“□”猜成3,请你解二元一次方程组;(2)张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?21.(9 分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.(1)这组成绩的众数是;(2)求这组成绩的方差;(3)若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.22.(9 分)如下表所示,有A、B两组数:第1个数第2个数第3个数第4 个数 (9)数……第n个数A 组B 组﹣61﹣54﹣2710…………5825…………n﹣2n﹣5(1)A组第4个数是;(2)用含n的代数式表示B组第n个数是,并简述理由;(3)在这两组数中,是否存在同一列上的两个数相等,请说明.23.(9分)如图,在△ABC 中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.(1)求证:△ABE≌△ACD;(2)若AB=BE,求∠DAE的度数;拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.24.(10分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.(1)求y与x之间的函数关系式;(2)设种植的总成本为w元,①求w与x之间的函数关系式;②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.225.(10分)如图1,已知点A、O在直线l上,且AO=6,OD⊥l于O点,且OD=6,以OD为直径在OD的左侧作半圆E,AB⊥AC于A,且∠CAO=60°.(1)若半圆E上有一点F,则AF的最大值为;(2)向右沿直线l平移∠BAC得到∠B'A'C';①如图2,若A'C'截半圆E的的长为π,求∠A'GO的度数;②当半圆E与∠B'A'C'的边相切时,求平移距离.26.(10分)如图,在平面直角坐标系中,抛物线y=x(x﹣b)﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h有最大值或最小值,直接写出这个最大值或最小值.2019年河北省中考数学一模试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在数轴上,小手遮挡住的点表示的数可能是()A.﹣1.5B.﹣2.5C.﹣0.5D.0.5【分析】设小手盖住的点表示的数为x,则﹣1<x<0,再根据每个选项中实数的范围进行判断即可.【解答】解:设小手盖住的点表示的数为x,则﹣1<x<0,则表示的数可能是﹣0.5.故选:C.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.2.(3分)如图是一个中心对称图形,则此图形的对称中心为()A.A点B.B点C.C点D.D点【分析】直接利用中心对称图形的性质得出对称中心.【解答】解:如图是一个中心对称图形,则此图形的对称中心为:点B.故选:B.【点评】此题主要考查了中心对称图形,正确把握定义是解题关键.3.(3分)若100000﹣1用科学记数法表示成a×10n,则n的值是()A.5B.6C.﹣5D.﹣6【分析】科学记数法的表示形式为 a ×10的形式,其中 1≤|a |<10,n 为整数.确定 n的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相 同.当原数绝对值≥1 时,n 是非负数;当原数的绝对值<1 时,n 是负数.【解答】解:100000﹣ =1.0×10﹣ .即 n =﹣5.故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 a ×10 的形式,其 中 1≤|a |<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.4.(3 分)如图,经过测量,C 地在 A 地北偏东 46°方向上,同时 C 地在 B 地北偏西 63° 方向上,则∠C 的度数为()A .99°B .109°C .119°D .129°【分析】方向角是从正北或正南方向到目标方向所形成的小于 90°的角,根据平行线的 性质求得∠ACF 与∠BCF 的度数,∠ACF 与∠BCF 的和即为∠C 的度数.【解答】解:由题意作图如下∠DAC =46°,∠CBE =63°,由平行线的性质可得∠ACF =∠DAC =46°,∠BCF =∠CBE =63°,∴∠ACB =∠ACF+∠BCF =46°+63°=109°,n 1 5 n故选:B .【点评】本题考查了方位角,熟练掌握平行线的性质是解题的关键. 5.(3 分)将 2001×1999 变形正确的是()A .2000﹣1 C .2000+2×2000+1 B .2000 +1D .2000 ﹣2×2000+1【分析】原式变形后,利用平方差公式计算即可求出值.【解答】解:原式=(2000+1)×(2000﹣1)=2000﹣1,故选:A .【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.(3 分)如图,在菱形 ABCD 中,O 、F 分别是 AC 、BC 的中点,若 OF =3,则 AD 的长 为()A .3B .6C .9D .12【分析】根据三角形的中位线定理得出 AB =2OF ,进而利用菱形的性质解答即可. 【解答】解:∵O 、F 分别是 AC 、BC 的中点,∴AB =2OF =6,∵菱形 ABCD ,∴AD =AB =6,故选:B .【点评】此题考查菱形的性质,关键是根据菱形四边相等解答.7.(3 分)计算A .1+xC .时,第一步变形正确的是()B .1﹣x D .【分析】根据分式的运算法则即可求出答案. 【解答】解:原式=2 2 2 2 2 2 2==x+1,故选:D.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8.(3分)若2<<3,则a的值可以是()A.﹣7B.C.D.12【分析】根据已知条件得到4<a﹣2<9,由此求得a的取值范围,易得符合条件的选项.【解答】解:∵2<<3,∴4<a﹣2<9,∴6<a<11.又a﹣2≥0,即a≥2.∴a的取值范围是6<a<11.观察选项,只有选项C符合题意.故选:C.【点评】考查了估算无理数的大小,估算无理数大小要用逼近法.9.(3分)如图,在矩形ABCD中,E是AD上一点,沿CE折△叠CDE,点D 恰好落在AC的中点F处,若CD=,则△ACE的面积为()A.1B.【分析】由折叠的性质可得CD=CF=求EF的长,即可△求ACE的面积.【解答】解:∵点F是AC的中点,∴AF=CF=AC,∵将△CDE沿CE折叠到△CFE,∴CD=CF=,DE=EF,C.2,DE=EF,AC=2D.2,由三角形面积公式可∴AC =2,在 △R t ACD 中,AD ==3∵S△ ADC △ AEC, △CDE∴ ×AD ×CD = ×AC ×EF + ×CD ×DE ∴3× =2EF + DE∴DE =EF =1∴S△= ×2×1=故选:B .【点评】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求DE =EF =1 是本 题的关键.10.(3 分)图 1~图 4 是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:(1)弧①是以 O 为圆心,任意长为半径所画的弧;(2)弧②是以 P 为圆心,任意长为半径所画的弧;(3)弧③是以 A 为圆心,任意长为半径所画的弧;(4)弧④是以 P 为圆心,任意长为半径所画的弧;其中正确说法的个数为()A .4B .3C .2D .1【分析】根据基本作图的方法即可得到结论.【解答】解:(1)弧①是以 O 为圆心,任意长为半径所画的弧;正确; (2)弧②是以 P 为圆心,不是任意长为半径所画的弧;错误;(3)弧③是以 A 为圆心,不是任意长为半径所画的弧;错误;(4)弧④是以 P 为圆心,任意长为半径所画的弧;正确;故选:C .【点评】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.=S +S AEC11.(3 分)若 5 +5 +5 +5 +5 =25 ,则 n 的值为()A .10B .6C .5D .3【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案. 【解答】解:∵5 +5 +5 +5 +5 =25 ,∴5 ×5=,则 5 =5 ,解得:n =3.故选:D .【点评】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.12.(2 分)在图上剪去一个图形,剩下的图形可以折叠成一个长方体,则剪去的这个图形 是()A .①B .②C .③D .④【分析】根据拼成长方体的 4 种情况可判断.【解答】解:拼成长方体的 4 种情况1.“一•四•一”,中间一行 4 个作侧面,两边各 1 个分别作上下底面,•共有 6 种.2.“二•三•一”(或一•三•二)型,中间3 个作侧面,上(或下)边 2•个那行,相连的 长方形作底面,不相连的再下折作另一个侧面,共 3 种.3.“二•二•二”型,成阶梯状.4.“三•三”型,两行只能有 1 个长方形相连.因此剪去①,剩下的图形可以折叠成一个长方体.故选:A .【点评】本题考查的是长方体的表面展开图,根据长方体的表面展开图的常见形式即可 判断13.(2分)如图,甲圆柱型容器的底面积为 30cm ,高为 8cm ,乙圆柱型容器底面积为 xcm,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则5 5 5 5 5 n 5 5 5 5 5 n 56 2n 2 22乙容器水面高度y(cm)与x(cm)之间的大致图象是()A.B.C.D.【分析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.【解答】解:由题意可得,y==,当x=40时,y=6,故选:C.【点评】本题考查函数图象、反比例函数的性质,解答本题的关键是明确题意,利用数形结合的思想解答.14.(2分)如图,点O是△ABC的内心,M、N 是AC上的点,且CM=CB,AN=AB,若∠B=100°,则∠MON=()A.60°B.70°C.80°D.100°【分析】连接OB,OC.首先证明OB=OB=OM,想办法求出∠MBN即可解决问题.【解答】解:连接OB,OC.∵CB=CM,∠OCB=∠OCM,CO=CO,∴△OCB≌△OCM(SAS),∴OB=OM,同法可知OB=ON,∵∠ABC=100°,∴∠A+∠ACB=80°,∵CB=CM,AN=AN,∴∠CMB=∠CBM,∠ANB=∠ABN,∴∠CMB+∠ANB=(360°﹣80°)=140°,∴∠MBN=40°,∵OM=OB=ON,∴∠OBN=∠ONB,∠OBM=∠OMB,∴∠MON=∠ONB+∠OBN+∠OBM+∠OMB=80°,故选:C.【点评】本题考查三角形的内心,等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.(2 分)如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A.B.C.D.【分析】根据勾股定理求出四边形 ABCD 的四条边之比,根据相似多边形的性质判断即 可.【解答】解:作 AE ⊥BC 于 E ,则四边形 AECD 为矩形,∴EC =AD =1,AE =CD =3,∴BE =4,由勾股定理得,AB ==5,∴四边形 ABCD 的四条边之比为 1:3:5:5,D 选项中,四条边之比为 1:3:5:5,且对应角相等,故选:D .【点评】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是 解题的关键.16.(2 分)一次函数 y =kx +1﹣2k (k ≠0)的图象记作 G ,一次函数 y =2x +3(﹣1<x <2)的图象记作 G ,对于这两个图象,有以下几种说法:①当 G 与 G 有公共点时,y 随 x 增大而减小;②当 G 与 G 没有公共点时,y 随 x 增大而增大;③当 k =2 时,G 与 G 平行,且平行线之间的距离为 下列选项中,描述准确的是().A .①②正确,③错误C .②③正确,①错误B .①③正确,②错误D .①②③都正确【分析】画图,找出 G 的临界点,以及 G 的临界直线,分析出 G过定点,根据 k 的正 负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【解答】解:1 12 21 2 1 1 2 1 1 2 2 1 1一次函数 y =2x +3(﹣1<x <2)的函数值随 x 的增大而增大,如图所示,N (﹣1,2), Q (2,7)为 G 的两个临界点,易知一次函数 y =kx +1﹣2k (k ≠0)的图象过定点 M (2,1),直线 MN 与直线 MQ 为 G 与 G 有公共点的两条临界直线,从而当 G 与 G 有公共点时,y 随 x 增大而减小;故①正确;当 G 与 G 没有公共点时,分三种情况:一是直线 MN ,但此时 k =0,不符合要求;二是直线 MQ ,但此时 k 不存在,与一次函数定义不符,故 MQ 不符合题意;三是当 k >0 时,此时 y 随 x 增大而增大,符合题意,故②正确;当 k =2 时,G与 G 平行正确,过点 M 作 MP ⊥NQ ,则 MN =3,由 y =2x +3,且 MN ∥x 轴,可知,tan ∠PNM =2,∴PM =2PN ,由勾股定理得:PN +PM =MN∴(2PN )+(PN ) =9,∴PN =∴PM =,故③正确.综上,故选:D .【点评】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次2 21 12 1 2 11 2 1 1 2 2 2 2 2 2 2函数的性质逐条分析解答,难度较大.二、填空题(本大题有 3 个小题,共 12 分.17~18 小题各 3 分;19 小题有 2 个空,每空 3 分.把答案写在题中横线上)17.(3 分)的立方根是 ﹣ .【分析】如果一个数 x 的立方等于 a ,那么 x 是 a 的立方根,根据此定义求解即可. 【解答】解:∵(﹣) =﹣ ,∴﹣ 的立方根根是:﹣ .故答案是:﹣ .【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数 的立方根与原数的性质符号相同.18.(3 分)若 a+3=2b ,则 a ﹣2ab +3a = 0 .【分析】利用提公因式法将多项式分解为 a (a +3)﹣2ab ,将 a +3=2b 代入可求出其值. 【解答】解:∵a +3=2b ,∴a ﹣2ab +3a =a (a +3)﹣2ab =2ab ﹣2ab =0,故答案为:0.【点评】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键. 19.(6 分)有三个大小一样的正六边形,可按下列方式进行拼接:方式 1:如图 1;方式 2:如图 2;若有四个边长均为 1 的正六边形,采用方式 1 拼接,所得图案的外轮廓的周长是.有 n个长均为 1 的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外 轮廓的周长为 18,则 n 的最大值为 7 .【分析】有四个边长均为 1 的正六边形,采用方式 1 拼接,利用 4n +2 的规律计算;把六3 2 3 2 22 3 2个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多.【解答】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18;按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为7.故答案为7.【点评】本题考查了正多边形和圆:熟练掌握正多边形的性质.三、解答题(本大题共7个小题,共66分.解答应写出文字说明、证明过程或验算步骤)20.(8分)李宁准备完成题目;解二元一次方程组,发现系数□“”印刷不清楚.(1)他把“□”猜成3,请你解二元一次方程组;(2)张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?【分析】(1)②+①得出4x=﹣4,求出x,把x=﹣1代入①求出y即可;(2)把x=﹣y代入x﹣y=4求出y,再求出x,最后求出答案即可.【解答】解:(1)②+①得:4x=﹣4,解得:x=﹣1,把x=﹣1代入①得:﹣1﹣y=4,解得:y=﹣5,所以方程组的解是:;(2)设“□”为a,∵x、y是一对相反数,∴把x=﹣y代入x﹣y=4得:﹣y﹣y=4,解得:y=﹣2,即x=2,所以方程组的解是,代入ax+y=﹣8得:2a﹣2=﹣8,解得:a=﹣3,即原题中“□”是﹣3.【点评】本题考查了解二元一次方程组,也考查了二元一次方程组的解,能得出关于a 的方程是解(2)的关键.21.(9 分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.(1)这组成绩的众数是10;(2)求这组成绩的方差;(3)若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.【分析】(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案.(2)先求这组成绩的平均数,再求这组成绩的方差;(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数.【解答】解:(1)由折线统计图可知10出现的次数最多,则众数是10(环).故答案为:10.(2)这组成绩的平均数为:(10+7+10+10+9+8+9)=9(环),这组成绩的方差为:[(10﹣9) ×3+(9﹣9) ×2+(8﹣9) +(7﹣9) ]= ;即这组成绩的方差是 ;(3)原来 7 次成绩从小到大排列是:7,8,9,9,10,10,10,原来 7 次成绩的中位数是:9,∵嘉淇再射击一次得到这 8 次射击成绩的中位数恰好就是原来 7 次成绩的中位数, ∴第 8 次的射击成绩的最大环数是 9 环.【点评】本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、 方差以及平均数的定义是解题的关键.22.(9 分)如下表所示,有 A 、B 两组数:第 1 个数 第 2 个数 第 3 个数 第 4 个数 …… 第 9 个数……第 n 个数A 组B 组﹣61﹣54﹣27 10…………5825…………n ﹣2n ﹣5(1)A 组第 4 个数是 3 ;(2)用含 n 的代数式表示 B 组第 n 个数是 3n ﹣2 ,并简述理由;(3)在这两组数中,是否存在同一列上的两个数相等,请说明.【分析】(1)将 n =4 代入 n ﹣2n ﹣5 中即可求解;(2)当 n =1,2,3,…,9,…,时对应的数分别为 3×1﹣2,3×2﹣2,3×4﹣2,…, 3×9﹣2…,由此可归纳出第 n 个数是 3n ﹣2;(3)根据“在这两组数中,是否存在同一列上的两个数相等”,即将问题转换为n ﹣2n ﹣5=3n ﹣2 有无正整数解的问题.【解答】解:(1)∵A 组第 n 个数为 n﹣2n ﹣5,∴A 组第 4 个数是 3,故答案为:3;(2)∵第 1 个数为 1,可写成 3×1﹣2;2 2 2 2 2 2 22第2个数为4,可写成3×2﹣2;第3个数为7,可写成3×3﹣2;第4个数为10,可写成3×4﹣2;……第9个数为25,可写成3×9﹣2;∴第n个数为3n﹣2;故答案为:3n﹣2;(3)在这两组数中,不存在同一列上的两个数相等.理由如下:由题意可得:2n﹣2n﹣5=3n﹣2,解得:n=或n=,∵n为正整数,∴在这两组数中,不存在同一列上的两个数相等.【点评】本题考查了数字的变化类,正确找出各个题的规律是解题的关键.23.(9分)如图,在△ABC 中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.(1)求证:△ABE≌△ACD;(2)若AB=BE,求∠DAE的度数;拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.【分析】(1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证△明ABE≌△ACD即可;(2)由等腰三角形的性质和三角形内角和定理求出∠B EA=∠EAB=70°,作出AC=CD,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE的度数;拓展:对△ABD的外心位置进行推理,即可得出结论.【解答】(1)证明:∵点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B 点后运动停止,∴BD=CE,∴BC﹣BD=BC﹣CE,即BE=CD,∵∠B=∠C=40°,∴AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS);(2)解:∵∠B=∠C=40°,AB=BE,∴∠BEA=∠EAB=(180°﹣40°)=70°,∵BE=CD,AB=AC,∴AC=CD,∴∠ADC=∠DAC=(180°﹣40°)=70°,∴∠DAE=180°﹣∠ADC﹣∠BEA=180°﹣70°﹣70°=40°;拓展:解:若△ABD的外心在其内部时,则△ABD是锐角三角形.∴∠BAD=140°﹣∠BDA<90°.∴∠BDA>50°,又∵∠BDA<90°,∴50°<∠BDA<90°.【点评】本题考查了全等三角形的与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键.24.(10分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.(1)求y与x之间的函数关系式;(2)设种植的总成本为w元,①求w与x之间的函数关系式;②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.【分析】(1)先求出种植C种树苗的人数,根据现种植A、B、C三种树苗一共480棵,可以列出等量关系,解出y与x之间的关系;(2)①分别求出种植A,B,C三种树苗的成本,然后相加即可;②求出种植C种树苗工人的人数,然后用种植C种树苗工人的人数÷总人数即可求出概率.【解答】解:(1)设种植A种树苗的工人为x名,种植B种树苗的工人为y名,则种植C种树苗的人数为(80﹣x﹣y)人,根据题意,得:8x+6y+5(80﹣x﹣y)=480,整理,得:y=﹣3x+80;(2)①w=15×8x+12×6y+8×5(80﹣x﹣y)=80x=32y+3200,把y=﹣3x+80 带入,得:w=﹣16x+5760,②种植的总成本为5600元时,w=﹣16x+5760=5600,解得x=10,y=﹣3×10+80=50,即种植A种树苗的工人为10名,种植B 种树苗的工人为50名,种植B种树苗的工人为:80﹣10﹣50=20名.采访到种植C种树苗工人的概率为:.【点评】本题主要考查了一次函数的实际问题,以及概率的求法,能够将实际问题转化成数学模型是解答此题的关键.25.(10分)如图1,已知点A、O在直线l上,且AO=6,OD⊥l于O点,且OD=6,以OD为直径在OD的左侧作半圆E,AB⊥AC于A,且∠CAO=60°.(1)若半圆E上有一点F,则AF的最大值为6;(2)向右沿直线l平移∠BAC得到∠B'A'C';①如图2,若A'C'截半圆E的的长为π,求∠A'GO的度数;②当半圆E与∠B'A'C'的边相切时,求平移距离.【分析】(1)当F与D重合时,AF的值最大,由勾股定理求出即可;(2)①连接EH、EG、DH,则半圆E的半径ED=EO=OD=3,由弧长公式求出∠GEH=60°,得出△EGH是等边三角形,证出E G∥l,得出E G⊥OD,求出∠DEH=30°,由等腰三角形性质和三角形内角和定理求出∠D=75°,再由圆内接四边形的性质即可得出结果;②分两种情况:当半圆E与A'C'相切时,由切线长定理得出OA'=PA'’,由直角三角形的性质得出OA'=OE=3,得出平移距离AA'=AO﹣OA'=6﹣3;当半圆E与A'B'相切时,由切线长定理和弦切角定理得出∠OEA'=30°,由直角三角形的性质得出OA'=,即可得出平移距离AA'=AO﹣OA'=6﹣.【解答】解:(1)∵OD⊥l,∴∠AOD=90°,若半圆E上有一点F,当F与D重合时,AF的值最大,如图1所示:最大值===6;故答案为:6;(2)①连接EH、EG、DH,如图2所示:则半圆E的半径ED=EO=OD=3,设∠GEH=n°,∵A'C'截半圆E的的长为π,∴=π,解得:n=60,∴∠GEH=60°,∵EH=EG,∴△EGH是等边三角形,∴∠EGH=60°=∠C'A'O=60°.∴EG∥l,∵OD⊥l,∴EG⊥OD,∴∠DEH=90°﹣60°=30°,∵ED=EH,∴∠D=(180°﹣30°)=75°,由圆内接四边形的性质得:∠A'GO=∠D=75°;②分两种情况:当半圆E与A'C'相切时,如图3所示:∵OA'⊥OD,OD⊥l,∴l是半圆E的切线,∴OA'=PA',∠OA'E=∠C'A'O=30°,∴OA'=OE=3,∴平移距离AA'=AO﹣OA'=6﹣3;当半圆E与A'B'相切时,如图4所示:则∠PA'A=180°﹣90°﹣60°=30°,∵OA'=PA',∴∠POA'=15°,∴∠OEA'=2∠PA'A=30°,∴OE=∴OA'=OA'=3,,∴平移距离AA'=AO﹣OA'=6﹣;综上所述,当半圆E与∠B'A'C'的边相切时,平移距离为6﹣3或6﹣.【点评】本题是圆的综合题目,考查了切线的性质与判定、弧长公式、切线长定理、圆内接四边形的性质、勾股定理、等边三角形的判定与性质、含30°的直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握切线长定理是解题的关键.26.(10分)如图,在平面直角坐标系中,抛物线y=x(x﹣b)﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x ≤1 时,该抛物线上最高点与最低点纵坐标的差为 h ,求出 h 与 b 的关系; 若 h 有最大值或最小值,直接写出这个最大值或最小值.【分析】(1)由点 B 与点 C 关于直线 x =1 对称,可得出抛物线的对称轴为直线 x =1, 再利用二次函数的性质可求出 b 值;(2)利用二次函数图象上点的坐标特征可求出点 A 的坐标,结合 OA =OB 可得出点 B的坐标,由点 B 的坐标利用待定系数法可求出抛物线的解析式,由抛物线的解析式利用二次函数图象上点的坐标特征可求出点 C 的坐标,利用配方法可求出点 P 的坐标,再利 用三角形的面积公式即可求出△BCP 的面积;(3)分 b ≥2,0≤b <2,﹣2<b <0 和 b ≤﹣2 四种情况考虑,利用二次函数图象上点的坐标特征结合二次函数的图象找出 h 关于 b 的关系式,再找出 h 的最值即可得出结论.【解答】解:(1)∵点 B 与点 C 关于直线 x =1 对称,y =x (x ﹣b )﹣ =x ﹣bx ﹣ , ∴﹣ =1,解得:b =2.(2)当 x =0 时,y =x﹣bx ﹣ =﹣ ,∴点 A 的坐标为(0,﹣ ).又∵OB =OA ,∴点 B 的坐标为(﹣ ,0).将 B (﹣ ,0)代入 y =x﹣bx ﹣ ,得:0= + b ﹣ ,解得:b = ,∴抛物线的解析式为 y =x﹣ x ﹣ . 22 2 2∵y =x﹣ x ﹣ =(x ﹣ ) ﹣∴点 P 的坐标为( ,﹣ ).当 y =0 时,x﹣ x ﹣ =0,解得:x =﹣ ,x =1,∴点 C 的坐标为(1,0).,∴S△= ×[1﹣(﹣ )]×|﹣|= .(3)y =x ﹣bx ﹣ =(x ﹣ ) ﹣ ﹣当 ≥1,即 b ≥2 时,如图 1 所示,.y 最大=b + ,y 最小=﹣b + ,∴h =2b ;当 0≤ <1,即 0≤b <2 时,如图 2 所示,y 最大=b + ,y 最小=﹣ ﹣,∴h =1+b +=(1+ ) ;当﹣1< <0,﹣2<b <0 时,如图 3 所示y 最大= ﹣b ,y=﹣ ﹣最小,∴h =1﹣b +=(1﹣ ) ;当 ≤﹣1,即 b ≤﹣2 时,如图 4 所示,y 最大=﹣b + ,y 最小=b + ,h =﹣2b .综上所述:h = ,h 存在最小值,最小值为 1.2 2 2 1 2 BCP 2222【点评】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式、三角形的面积、二次函数图象以及二次函数的最值,解题的关键是:(1)利用二次函数的性质,求出b的值;(2)利用二次函数图象上的坐标特征及配方法,求出点B,C,P的坐标;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况,找出h 关于b的关系式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年河北省保定市南市区中考数学一模试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算:20190﹣|﹣2|=()A.2021B.2017C.﹣1D.32.(3分)下列运算正确的是()A.||=B.x3•x2=x6C.x2+x2=x4D.(3x2)2=6x43.(3分)如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A.主视图B.左视图C.俯视图D.主视图和俯视图4.(3分)若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可以是()A.﹣1B.1C.3D.55.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°7.(3分)某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是()A.B.C.D.8.(3分)在正方形网格中,△ABC的位置如图所示,则cos B的值为()A.B.C.D.9.(3分)把二次函数y=(2x﹣1)2+3的图象,先向左平移1个单位,再向上平移1个单位,平移后的二次函数解析式为()A.y=2x2+4B.y=4x2+4x+5C.y=4x2﹣4x+5D.y=4x2+4x+410.(3分)关于x的分式方程+3=无解,m的值为()A.7B.﹣7C.1D.﹣111.(2分)在同一平面坐标系内,若直线y=3x﹣1与直线y=x﹣k的交点在第四象限的角平分线上,则k 的值为()A.k=﹣B.k=C.k=D.k=112.(2分)如图所示在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,……,组成一条平滑的曲线,点P从原点O出发沿这条曲线向右运动,速度为每秒个单位长度,则第2019秒时,点P的坐标是()A.(2018,0)B.(2019,1)C.(2019,﹣1)D.(2020,0)13.(2分)如图,已知点M为平行四边形ABCD边AB的中点,线段CM交BD于点E,S△BEM=2,则图中阴影部分的面积为()A.5B.4C.8D.614.(2分)如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,则巡逻船从出发到成功拦截捕鱼船所用的时间是()A.1小时B.2小时C.3小时D.4小时15.(2分)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<﹣4或x>2B.﹣4<x<2C.x<0或x>2D.0<x<216.(2分)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△ABC,M是BC 的中点,P是A’B’的中点,连接PM.若BC=4,∠BAC=30°,则线段PM的最大值是()A.8B.6C.4D.5二、填空题(本大题有3小题,共10分.17-18小题各3分;19题有2个空,每空2分把答案写在题中横线上)17.(3分)分解因式:a3﹣4a=.18.(3分)如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是.19.(4分)我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,如果我们规定一个新数“i”使它满足i2=﹣1(即x2=﹣1有一个根为i),并且进一步规定:一切实数可以与新数“i”进行四则运算,且原有的运算律和运算法则仍然成立,于是有:i1=i,i2=﹣1,i3=i2•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,由于i4n=(i4)n=1n=1,i4n+1=i4n•i=1•i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,那么,i9=;i2019=.三、解答题(本大题有7个小题,共68分解答应写出必要的文字说明、证明过程或演算步骤)20.(8分)先化简,再求值:(﹣)÷,其中x的值从不等式组的整数解中选取.21.(9分)在春季运动会上,某学校教工组和学生组进行定点投篮比赛,每组均派五名选手参加,每名选手投篮十次,投中记1分,不中记零分,3分以上(含3分)视为合格,比赛成绩绘制成条形统计图如下:(1)请你根据条形统计图中的数据填写表格:(2)如果小亮认为教工组的成绩优于学生组,你认为他的理由是什么?小明认为学生组成绩优于教工组,他的理由又是什么?(3)若再让一名体育教师投篮后,六名教师成绩平均数大于学生组成绩的中位数设这名体育教师命中m分,求m的值.22.(8分)如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE;(2)若BE=10,CE=6,连接OE,求△ODE的面积.23.(9分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,……均是直角三角形,其直角顶点P1(4,4),P2,P3……P n均在反比例函数y=(k>0)的图象上(1)求k的值;(2)分别求出P2、P3的坐标;(3)试用含n的式子表示P n的坐标(直接写出).24.(10分)如图,正方形ABCD的边长为2,点A的坐标为(0,4),直线1:y=mx+m(m≠0)(1)直线L经过一个定点,求此定点坐标;(2)当直线L与正方形ABCD有公共点时,求m的取值范围;(3)直线L能否将正方形分成1:3的两部分,如果能,请直接写出m的值,如果不能,请说明理由.25.(12分)某公司销售一种产品,进价为20元/件,售价为80元/件,公司为了促销,规定凡一次性购买10万件以上的产品,每多买1万件,每件产品的售价就减少2元,但售价最低不能低于40元/件,设一次性购买x万件(x>10)(1)若x=15,则售价应是元/件;(2)若以最低价购买此产品,求x的值;(3)当x>10时,求此产品的利润y(万元)与购买数量x(万件)的关系式;(4)经营中公司发现售出19万件的利润反而比售出24万件的利润还多,在促销条件不变的情况下,为了使每次销售的越多总利润也越多,最低售价应调整到多少元/件?并说明理由.26.(12分)如图,点B在数轴上对应的数是﹣2,以原点O为原心、OB的长为半径作优弧AB,使点A 在原点的左上方,且tan∠AOB=,点C为OB的中点,点D在数轴上对应的数为4.(1)S扇形AOB=(大于半圆的扇形);(2)点P是优弧AB上任意一点,则∠PDB的最大值为°(3)在(2)的条件下,当∠PDB最大,且∠AOP<180°时,固定△OPD的形状和大小,以原点O 为旋转中心,将△OPD顺时针旋转α(0°≤α≤360°)①连接CP,AD.在旋转过程中,CP与AD有何数量关系,并说明理由;②当PD∥AO时,求AD2的值;③直接写出在旋转过程中,点C到PD所在直线的距离d的取值范围.2019年河北省保定市南市区中考数学一模试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算:20190﹣|﹣2|=()A.2021B.2017C.﹣1D.3【分析】直接利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:20190﹣|﹣2|=1﹣2=﹣1.故选:C.2.(3分)下列运算正确的是()A.||=B.x3•x2=x6C.x2+x2=x4D.(3x2)2=6x4【分析】分别利用绝对值以及同底数幂的乘法运算法则、合并同类项、积的乘方运算法则分别化简求出答案.【解答】解:A、|﹣1|=﹣1,正确,符合题意;B、x3•x2=x5,故此选项错误;C、x2+x2=2x2,故此选项错误;D、(3x2)2=9x4,故此选项错误;故选:A.3.(3分)如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A.主视图B.左视图C.俯视图D.主视图和俯视图【分析】主视图是从正面观察得到的图形,左视图是从左侧面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.【解答】解:根据图形,可得:平移过程中不变的是的左视图,变化的是主视图和俯视图.故选:B.4.(3分)若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可以是()A.﹣1B.1C.3D.5【分析】根据方程的系数结合根的判别式△>0,可得出关于m的一元一次不等式,解之即可得出m的取值范围,对照四个选项即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.故选:A.5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】根据不等式组的解法求出不等式组的解集,再根据>,≥向右画;<,≤向左画,在数轴上表示出来,从而得出正确答案.【解答】解:,由①得:x≤1,由②得:x>﹣3,则不等式组的解集是﹣3<x≤1;故选:D.6.(3分)如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:由三角形的外角性质可得,∠3=∠1+∠B=65°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣65°﹣90°=25°.故选:B.7.(3分)某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是()A.B.C.D.【分析】画出树状图,根据概率公式求解即可.【解答】解:如图,,共有16种结果,小明和小红分在同一个班的结果有4种,故小明和小红分在同一个班的机会==.故选:A.8.(3分)在正方形网格中,△ABC的位置如图所示,则cos B的值为()A.B.C.D.【分析】先设小正方形的边长为1,然后找个与∠B有关的Rt△ABD,算出AB的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选:B.9.(3分)把二次函数y=(2x﹣1)2+3的图象,先向左平移1个单位,再向上平移1个单位,平移后的二次函数解析式为()A.y=2x2+4B.y=4x2+4x+5C.y=4x2﹣4x+5D.y=4x2+4x+4【分析】利用平移的规律“左加右减,上加下减”可得到答案.【解答】解:∵y=(2x﹣1)2+3=4(x﹣)2﹣1,∴把二次函数y=(2x﹣1)2+3的图象向左平移1个单位,其解析式为y=4(x﹣+1)2+3,再y=4(x﹣+1)2+3图象向上平移1个单位,其解析式为y=4(x﹣+1)2+3+1,即y=4x2+4x+5,故选:B.10.(3分)关于x的分式方程+3=无解,m的值为()A.7B.﹣7C.1D.﹣1【分析】根据分式方程无解,可得分式方程的增根,根据分式方程的增根适合整式方程,可得关于m 的方程,根据解方程,可得答案.【解答】解:两边都乘以(x﹣1),得7+3(x﹣1)=m,m=3x+4,分式方程的增根是x=1,将x=1代入,得m=3×1+4=7.故选:A.11.(2分)在同一平面坐标系内,若直线y=3x﹣1与直线y=x﹣k的交点在第四象限的角平分线上,则k 的值为()A.k=﹣B.k=C.k=D.k=1【分析】先解关于x,y的方程组,得到用k表示x,y的代数式,由于交点在第四象限的角平分线上得到方程=﹣,解方程求解即可.【解答】解:解关于x,y的方程组,解得:,∵交点在第四象限的角平分线上∴=﹣,解得k=.故选:C.12.(2分)如图所示在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,……,组成一条平滑的曲线,点P从原点O出发沿这条曲线向右运动,速度为每秒个单位长度,则第2019秒时,点P的坐标是()A.(2018,0)B.(2019,1)C.(2019,﹣1)D.(2020,0)【分析】计算点P走一个半圆的时间,确定第2019秒点P的位置.【解答】解:点运动一个半圆用时为秒∵2019=1009×2+1∴2019秒时,P在第1010个的半圆的中点处∴点P坐标为(2019,﹣1)故选:C.13.(2分)如图,已知点M为平行四边形ABCD边AB的中点,线段CM交BD于点E,S△BEM=2,则图中阴影部分的面积为()A.5B.4C.8D.6【分析】利用等高模型证明S△DMB=S△CBM,推出S△DEM=S△CEB,求出△CEB的面积即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴S△DMB=S△CBM,∴S△DEM=S△CEB,∵AM=BM=AB=CD,∴==2,∴S△CEB=2S△BME=4,∴S阴=4+4=8,故选:C.14.(2分)如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,则巡逻船从出发到成功拦截捕鱼船所用的时间是()A.1小时B.2小时C.3小时D.4小时【分析】设巡逻船从出发到成功拦截所用时间为x小时,由题意得出∠ABC=120°,AB=12,BC=10x,AC=14x,过点A作AD⊥CB的延长线于点D,在Rt△ABD中,由三角函数得出BD、AD的长度,得出CD=10x+6.在Rt△ACD中,由勾股定理得出方程,解方程即可.【解答】解:设巡逻船从出发到成功拦截所用时间为x小时;如图所示,由题意得:∠ABC=45°+75°=120°,AB=12,BC=10x,AC=14x,过点A作AD⊥CB的延长线于点D,在Rt△ABD中,AB=12,∠ABD=45°+(90°﹣75°)=60°,∴BD=AB•cos60°=AB=6,AD=AB•sin60°=6,∴CD=10x+6.在Rt△ACD中,由勾股定理得:,解得:(不合题意舍去).答:巡逻船从出发到成功拦截所用时间为2小时.故选:B.15.(2分)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<﹣4或x>2B.﹣4<x<2C.x<0或x>2D.0<x<2【分析】先求出抛物线的对称轴方程,再利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(﹣4,0),然后利用函数图象写出抛物线在x轴下方所对应的自变量的范围即可.【解答】解:抛物线y=ax2+2ax+m的对称轴为直线x=﹣=﹣1,而抛物线与x轴的一个交点坐标为(2,0),∴抛物线与x轴的另一个交点坐标为(﹣4,0),∵a<0,∴抛物线开口向下,∴当x<﹣4或x>2时,y<0.故选:A.16.(2分)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△ABC,M是BC 的中点,P是A’B’的中点,连接PM.若BC=4,∠BAC=30°,则线段PM的最大值是()A.8B.6C.4D.5【分析】如图连接PC,由直角三角形性质和旋转性质可得A′B′=AB=8,PC=4,根据PM≤PC+CM,可得PM≤6,由此即可解决问题.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=4,∴AB=8,根据旋转不变性可知,A′B′=AB=8,∴A′P=PB′,∴PC=A′B′=4,∵CM=BM=2,又∵PM≤PC+CM,即PM≤6,∴PM的最大值为6(此时P、C、M共线).故选:B.二、填空题(本大题有3小题,共10分.17-18小题各3分;19题有2个空,每空2分把答案写在题中横线上)17.(3分)分解因式:a3﹣4a=a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)18.(3分)如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是(5,1).【分析】过B作BE⊥x轴于E,根据矩形的性质得到CD=AB,∠DAB=90°,根据余角的性质得到∠ABE=∠DAO,根据相似三角形的性质得到AE=OD=2,BE=OA=1,于是得到结论.【解答】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴CD=AB,∠DAB=90°,∴∠DAO+∠BAE=∠BAE+∠ABE=90°,∴∠DAO=∠ABE,∴△ADO∽△ABE,∴,∵OD=2OA=6,AD:AB=3:1,∴OA=3,BE=1∴AE=OD=2,∴OE=5,∴B(5,1),故答案为:(5,1).19.(4分)我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,如果我们规定一个新数“i”使它满足i2=﹣1(即x2=﹣1有一个根为i),并且进一步规定:一切实数可以与新数“i”进行四则运算,且原有的运算律和运算法则仍然成立,于是有:i1=i,i2=﹣1,i3=i2•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,由于i4n=(i4)n=1n=1,i4n+1=i4n•i=1•i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,那么,i9=i;i2019=﹣i.【分析】先变形得到i9=i4×2+1;i2019=i4×504+3,然后根据i4n+1=i,i4n+3=﹣i进行计算.【解答】解:i9=i4×2+1=i;i2019=i4×504+3=﹣i.故答案为i;﹣i.三、解答题(本大题有7个小题,共68分解答应写出必要的文字说明、证明过程或演算步骤)20.(8分)先化简,再求值:(﹣)÷,其中x的值从不等式组的整数解中选取.【分析】首先化简(﹣)÷,然后根据x的值从不等式组的整数解中选取,求出x的值是多少,再把求出的x的值代入化简后的算式,求出算式的值是多少即可.【解答】解:(﹣)÷=÷=解不等式组,可得:﹣2<x≤2,∴x=﹣1,0,1,2,∵x=﹣1,0,1时,分式无意义,∴x=2,∴原式==﹣.21.(9分)在春季运动会上,某学校教工组和学生组进行定点投篮比赛,每组均派五名选手参加,每名选手投篮十次,投中记1分,不中记零分,3分以上(含3分)视为合格,比赛成绩绘制成条形统计图如下:(1)请你根据条形统计图中的数据填写表格:(2)如果小亮认为教工组的成绩优于学生组,你认为他的理由是什么?小明认为学生组成绩优于教工组,他的理由又是什么?(3)若再让一名体育教师投篮后,六名教师成绩平均数大于学生组成绩的中位数设这名体育教师命中m分,求m的值.【分析】(1)由条形图得出教工组和学生组人数,根据平均数、方差和中位数的定义求解可得;(2)从优秀率和平均数的意义解答可得;(3)根据平均数的定义列出关于m的不等式,解之可得.【解答】解:(1)由条形图知教工组成绩为1、3、3、4、5,则其平均数为=3.2,方差为×[(1﹣3.2)2+(3﹣3.2)2+(3﹣3.2)2+(4﹣3.2)2+(5﹣3.2)2]=1.76,学生组的成绩为1、2、4、5、6,则其中位数为4,补全表格如下:(2)优于教工组合格率高于学生组,据此知教工组优于学生组;由于学生组平均成绩高于教工组,据此可知学生组优于教工组;(3)根据题意知,>4,解得:m>8,所以m=9或m=10.22.(8分)如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE;(2)若BE=10,CE=6,连接OE,求△ODE的面积.【分析】(1)根据矩形的对角线相等可得AC=BD,对边平行可得AB∥CD,再求出四边形ABEC是平行四边形,根据平行四边形的对边相等可得AC=BE,从而得证;(2)如图,过点O作OF⊥CD于点F,根据平行四边形的性质得出AC=BE,求出OF和EF的长,从而求得三角形的面积即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE;(2)解:过点O作OF⊥CD于点F,∵由(1)知:四边形ABEC为平行四边形,∴AC=BE,∴BE=BD=10,∵△BCD≌△BCE,∴CD=CE=6,∵四边形ABCD是矩形,∴DO=OB,∠BCD=90°,∵OF⊥CD,∴OF∥BC,∴CF=DF=CD=3,∴EF=6+3=9,在Rt△BCE中,由勾股定理可得BC=8,∵OB=OD,∴OF为△BCD的中位线,∴OF=BC=4.∴△ODE的面积为DE•OF=×12×4=24.23.(9分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,……均是直角三角形,其直角顶点P1(4,4),P2,P3……P n均在反比例函数y=(k>0)的图象上(1)求k的值;(2)分别求出P2、P3的坐标;(3)试用含n的式子表示P n的坐标(直接写出).【分析】(1)把点P1(4,4)代入反比例函数y=(k>0),求出k=16即可;(2)作P1A⊥OA1于A,P2B⊥A1A2于B,P3⊥A2A3于C,证出AA1=OA=4,△P1OA1,△P2A1A2,△P3A2A3,……均是等腰直角三角形,得出OA1=8,设P2(8+b,b),则b(8+b)=16,解得b=﹣4+4,得出OB=8﹣4+4=4+4,因此P2(4+4,﹣4+4),A2A1=2b=﹣8+8,同理得出P3(4+4,﹣4+4);(3)由(2)得出规律,即可得出结果.【解答】解:(1)∵点P1(4,4)在反比例函数y=(k>0)的图象上,∴k=4×4=16;(2)作P1A⊥OA1于A,P2B⊥A1A2于B,P3⊥A2A3于C,如图所示:∵P1(4,4),∴OA=P1A,△OAP1时等腰直角三角形,∴∠OP1A=45°,∴∠A1P1A=45°,∵P1A⊥OA1,∴△AA1P1是等腰直角三角形,∴AA1=OA=4,△P1OA1,△P2A1A2,△P3A2A3,……均是等腰直角三角形,∴OA1=8,设P2(8+b,b),则b(8+b)=16,解得:b1=﹣4﹣4(舍去),b2=﹣4+4,∴OB=8﹣4+4=4+4,∴P2(4+4,﹣4+4),A2A1=2b=﹣8+8,∴OA2=8﹣8+8=8,设P3(8+c,c),则c(8+c)=16,解得:c1=﹣4﹣4(舍去),c2=﹣4+4,∴OC=8﹣4+4=4+4,∴P3(4+4,﹣4+4);(3)由(2)得:P n的坐标为(4+4,4﹣4).24.(10分)如图,正方形ABCD的边长为2,点A的坐标为(0,4),直线1:y=mx+m(m≠0)(1)直线L经过一个定点,求此定点坐标;(2)当直线L与正方形ABCD有公共点时,求m的取值范围;(3)直线L能否将正方形分成1:3的两部分,如果能,请直接写出m的值,如果不能,请说明理由.【分析】(1)由y=mx+m=m(x+1)知x=﹣1时y=0,从而得出答案;(2)把点A,C的坐标分别代入直线y=mx+m,分别求得m的值即可求出m的取值范围;(3)把B的坐标代入直线L,由直线L能将正方形分成1:3的两部分,即可求出m值;再由直线L 交DC与BC且满足直线L能将正方形分成1:3的两部分也可求出m的值,本题可求解.【解答】解:(1)∵y=mx+m=m(x+1),∴不论m为何值时,x=﹣1时y=0,故这个定点的坐标为(﹣1,0)(2)∵正方形ABCD的边长为2,点A的坐标为(0,4),∴B(0,2),C(2,2),D(2,4),把A(0,4)代入y=mx+m得,m=4,把C(2,2)代入得,2=3m,解得m=,直线L与正方形ABCD有公共点,m的取值范围是≤m≤4;故直线L与正方形ABCD有公共点时,m的取值范围是≤m≤4;(3)能理由:∵正方形ABCD的边长为2,∴正方形的面积为4,分情况讨论:(Ⅰ):当直线L过点B时,把点B代入y=mx+m,得m=1,∴直线L与AD的交点E的坐标为(1,4),S△ABE=AB•AE=×2×1=1,∴S△ABE=S正方形ABCD∴当m=1时,直线L能否将正方形分成1:3的两部分;(Ⅱ):设直线L过DC上点F,BC上的点G时,把x=2代入直线L,y=2m+m=3m,得F(2,3m),FC=3m﹣2把y=2代入直线L,2=mx+m,x=,得G(,2),CG=2﹣∴S△GCF=×FC•CG=×(3m﹣2)(2﹣)=由S△GCF=S正方形ABCD得,∴=×4,解,得m=(负值不合题意,舍去),∴当m=时,直线L能否将正方形分成1:3的两部分;综上所述,存在这样的m值,使直线L能否将正方形分成1:3的两部分,故m的值为1或.25.(12分)某公司销售一种产品,进价为20元/件,售价为80元/件,公司为了促销,规定凡一次性购买10万件以上的产品,每多买1万件,每件产品的售价就减少2元,但售价最低不能低于40元/件,设一次性购买x万件(x>10)(1)若x=15,则售价应是70元/件;(2)若以最低价购买此产品,求x的值;(3)当x>10时,求此产品的利润y(万元)与购买数量x(万件)的关系式;(4)经营中公司发现售出19万件的利润反而比售出24万件的利润还多,在促销条件不变的情况下,为了使每次销售的越多总利润也越多,最低售价应调整到多少元/件?并说明理由.【分析】(1)由一次性购买x万件时,售价为80﹣2(x﹣10)=100﹣2x(元/件),据此将x=15代入计算可得;(2)由题意得出100﹣2x=40,解之可得;(3)根据总利润=单件利润×销售量求解可得;(4)由y=﹣2x2+80x=﹣2(x﹣20)2+800,利用二次函数的性质求解可得.【解答】解:(1)由题意知,一次性购买x万件时,售价为80﹣2(x﹣10)=100﹣2x(元/件),当x=15时,100﹣2x=70(元/件),故答案为:70;(2)由题意知100﹣2x=40,解得:x=30;(3)根据题意知,y=(100﹣2x﹣20)x=﹣2x2+80x(10<x<30);(4)为了使每次销售的越多总利润也越多,最低售价应调整到60元/件,∵y=﹣2x2+80x=﹣2(x﹣20)2+800,∴当x≤20时,y随x的增大而增大,当x=20时,最低售价为60元/件.26.(12分)如图,点B在数轴上对应的数是﹣2,以原点O为原心、OB的长为半径作优弧AB,使点A 在原点的左上方,且tan∠AOB=,点C为OB的中点,点D在数轴上对应的数为4.(1)S扇形AOB=(大于半圆的扇形);(2)点P是优弧AB上任意一点,则∠PDB的最大值为30°(3)在(2)的条件下,当∠PDB最大,且∠AOP<180°时,固定△OPD的形状和大小,以原点O 为旋转中心,将△OPD顺时针旋转α(0°≤α≤360°)①连接CP,AD.在旋转过程中,CP与AD有何数量关系,并说明理由;②当PD∥AO时,求AD2的值;③直接写出在旋转过程中,点C到PD所在直线的距离d的取值范围.【分析】(1)利用扇形的面积公式计算即可.(2)如图1中,当PD与⊙O相切时,∠PDB的值最大.解直角三角形即可解决问题.(3)①结论:AD=2PC.如图2中,连接AB,AC.证明△COP∽△AOD,即可解决问题.②分两种情形:如图3中,当PD∥OA时,设OD交⊙O于K,连接PK交OC于H.求出PC即可.如图④中,当P A∥OA时,作PK⊥OB于K,同法可得.③判断出PC的取值范围即可解决问题.【解答】解:(1)∵tan∠AOB=,∴∠AOB=60°,∴S扇形AOB==(大于半圆的扇形),故答案为.(2)如图1中,当PD与⊙O相切时,∠PDB的值最大.∵PD是⊙O的切线,∴OP⊥PD,∴∠OPD=90°,∵sin∠PDO===,∴∠PDB=30°,同法当DP′与⊙O相切时,∠BDP′=30°,∴∠PDB的最大值为30°.故答案为30.(3)①结论:AD=2PC.理由:如图2中,连接AB,AC.∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∵BC=OC,∴AC⊥OB,∵∠AOC=∠DOP=60°,∴∠COP=∠AOD,∵==2,∴△COP∽△AOD,∴==2,∴AD=2PC.②如图3中,当PD∥OA时,设OD交⊙O于K,连接PK交OC于H.∵OP=OK,∠POK=60°,∴△OPK是等边三角形,∵PD∥OA,∴∠AOP=∠OPD=90°,∴∠POH+∠AOC=90°,∵∠AOC=60°,∴∠POH=30°,∴PH=OP=1,OH=PH=,∴PC===,∵AD=2PC,∴AD2=4(5+2)=20+8.如图④中,当P A∥OA时,作PK⊥OB于K,同法可得:PC2=12+(﹣1)2=5﹣2,AD2=4PC2=20﹣8.③由题意1≤PC≤3,∴在旋转过程中,点C到PD所在直线的距离d的取值范围为1≤d≤3.。

相关文档
最新文档