人教版数学九年级上册配方法教案
人教版九年级数学上册《解一元二次方程—配方法》优秀教学设计设计

人教版九年级数学上册《解一元二次方程—配方法》优秀教学设计设计一. 教材分析人教版九年级数学上册《解一元二次方程—配方法》这一节,主要让学生掌握利用配方法解一元二次方程的方法。
教材通过引入具体的一元二次方程,引导学生发现解方程的规律,从而总结出配方法解一元二次方程的一般步骤。
教材内容由浅入深,逐步引导学生掌握解题技巧,培养学生的逻辑思维能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对一元二次方程有了初步的了解。
但在解一元二次方程方面,部分学生可能还停留在试错阶段,没有形成系统的解题方法。
因此,在教学过程中,需要关注学生的个体差异,引导他们发现解题规律,提高解题效率。
三. 教学目标1.知识与技能:使学生掌握配方法解一元二次方程的基本步骤和方法。
2.过程与方法:通过观察、分析、归纳,培养学生发现解题规律的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:配方法解一元二次方程的步骤及应用。
2.难点:如何引导学生发现配方法的解题规律。
五. 教学方法1.引导发现法:通过设置问题,引导学生观察、分析、归纳,发现解题规律。
2.案例教学法:以具体的一元二次方程为例,演示配方法解题过程。
3.小组合作学习:鼓励学生分组讨论,共同探索解题方法。
六. 教学准备1.准备相关的一元二次方程案例。
2.制作课件,展示解题过程。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用一个简单的一元二次方程,引导学生回顾已知的解题方法,为新课的学习做好铺垫。
2.呈现(15分钟)展示一个具体的一元二次方程,让学生尝试利用已知的解题方法进行求解。
在学生解题过程中,教师引导学生观察、分析,发现解题规律。
3.操练(15分钟)让学生分组合作,运用配方法解一元二次方程。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)呈现一组类似的一元二次方程,让学生独立运用配方法进行解答。
人教版九年级数学上册:21.2.1配方法(教案)

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“配方法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
对于难点(2),指导学生如何处理二次项系数不为1的情况,如方程2x^2 + 4x - 1 = 0,需要先将系数化为1,再进行配方。
对于难点(3),通过实际例题,如“一个长方形的长比宽多3厘米,面积为18平方厘米,求长和宽”,引导学生如何构建方程并配方求解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《配方法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决一元二次方程的情况?”(如面积计算、速度问题等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索配方法的奥秘。
2.培养学生数学建模和直观想象的核心素养,使学生能够运用配方方法解决实际问题,并培养从具体到抽象的数学思维能力;
3.培养学生运算能力和数据分析的核心素养,通过配方练习,提高学生的运算速度和准确性,培养学生对数据敏感度和分析能力;
4.培养学生团队合作和表达交流的核心素养,让学生在小组讨论和分享中,加深对配方方法的理解,提高数学表达和交流能力。
-配方步骤的应用:在具体操作过程中,学生可能会在系数化为1或加平方项时出错,这是配方的难点。
-配方在实际问题中的应用:如何从实际问题中抽象出一元二次方程,并将其配方求解,是学生需要克服的难点。
初中数学《九年级数学上册配方法》教案基于学科核心素养的教学设计及教学反思

教师活动
预设学生活动
设计意图
1.提出问题出示P31问题2
2、分析问题引导学生分析问题、解决问题
3.例题讲解分析讲解例题
4.课堂练习师巡视、指导、讲评
5.课堂小结师提问梳理引导归纳
6.作业布置
1.学生能列出方程,但可能不知怎么求解
2.对具体求解产生浓厚兴趣
3.逐渐掌握用配方法解方程
4.生自主练习
教学反思
配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征,我通过连续设计类似的提问让学生复习巩固完全平方式。当二次项系数为1时,常数项是一次项系数一半的平方。但学生在解二次项系数不为1的方程时掌握的不够好,虽然我强调了要先把二次项系数化为1,但还是有些同学处理起来有点困难,这就需要我在今后的教学中讲得再仔细一点
5.生回答归纳
1.让学生在解决实际问题中学习一元二次方程的解法
2.引发学生认知上的冲突,寻求解决途径
3.掌握解题的通常程序,并不断提高分析、解决问题的能力
4.即时巩固,反馈调控
5.即时梳理总结
板书设计
通过配成完全平方形式来解一元二次方程的方法,叫做配方法。
配方法的一般步骤:1.移项2.把二次项系数化为13.方程两边加一次项系数一半的平方配成完全平方4开平方“降次”求解
教学重点与难点
用配方法解一元二次方程。具体的配方过程。
学科核心素养分析
本节课是在前一节课学生掌握了直接开平方法后进行的教学,已经打下了基础,同时,配方法的掌握也为后面的公式法作好铺垫,本节内容在本章中非常重要,关系到学生能否掌握这种解一元二次方程的方法。
学生学情分析
本班的学生基础较差,但同学们的学习积极性还是比较高,且前一节课的直接开平方法学生掌握的还不错,故本节的内容学生掌握难度应该不大,但究竟如何配方可能是一个学习难点。
人教版数学九年级上册22.2.2《配方法》教学设计1

人教版数学九年级上册22.2.2《配方法》教学设计1一. 教材分析《配方法》是人教版数学九年级上册第22章第2节的内容,这部分内容是在学生已经掌握了整式的加减、乘除,以及完全平方公式的基础上进行学习的。
配方法是一种解决问题的方法,通过构造完全平方公式,将问题转化为学生已经掌握的知识点,从而解决问题。
配方法在解决二次方程、二次不等式以及函数图像的平移等问题中有着广泛的应用。
二. 学情分析九年级的学生已经具备了一定的数学基础,能够理解和运用整式的加减、乘除以及完全平方公式。
但是,对于配方法的原理和应用,他们可能还不太清楚。
因此,在教学过程中,需要通过具体例子让学生理解配方法的原理,并通过练习让学生掌握配方法的应用。
三. 教学目标1.知识与技能:让学生掌握配方法的原理,并能够运用配方法解决相关问题。
2.过程与方法:通过具体例子,让学生理解配方法的过程,并能够独立完成配方法的操作。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。
四. 教学重难点1.配方法的原理理解2.配方法在解决实际问题中的应用五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过具体例子引导学生理解配方法,并通过练习让学生巩固所学知识。
六. 教学准备1.教学PPT七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这类问题。
例如,解决方程x^2 -5x + 6 = 0。
2.呈现(15分钟)讲解配方法的原理,并通过PPT展示配方法的具体步骤。
配方法的步骤如下:(1)将方程写成完全平方的形式;(2)根据完全平方公式,构造出两个相同的因式;(3)将方程转化为两个因式的乘积等于0的形式;(4)根据乘积等于0的性质,解出方程的解。
3.操练(15分钟)让学生独立完成配方法的操作,教师巡回指导。
4.巩固(10分钟)让学生解答一些相关的练习题,检验学生对配方法的理解和掌握程度。
5.拓展(10分钟)讲解配方法在解决二次方程、二次不等式以及函数图像的平移等问题中的应用。
人教版初三数学上册《配方法》教案

第2课时配方法1.了解配方的概念,掌握运用配方法解一元二次方程的步骤.2.探索直接开平方法和配方法之间的区别和联系,能够熟练地运用配方法解决有关问题.一、情境导入李老师让学生解一元二次方程x2-6x-5=0,同学们都束手无策,学习委员蔡亮考虑了一下,在方程两边同时加上14,再把方程左边用完全平方公式分解因式……,你能按照他的想法求出这个方程的解吗?二、合作探究探究点:配方法【类型一】配方用配方法解一元二次方程x2-4x=5时,此方程可变形为( ) A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=9解析:由于方程左边关于x的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x2-4x=5,所以x2-4x+4=5+4,所以(x-2)2=9.故选D.方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【类型二】利用配方法解一元二次方程用配方法解方程:x2-4x+1=0.解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x+m)2=n(n≥0)的形式再用直接开平方法求解.解:移项,得x2-4x=-1.配方,得x2-4x+(-2)2=-1+(-2)2.即(x-2)2=3.解这个方程,得x-2=± 3.∴x1=2+3,x2=2- 3.方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式.【类型三】用配方解决求值问题已知:x2+4x+y2-6y+13=0,求x-2yx2+y2的值.解:原方程可化为(x +2)2+(y -3)2=0,∴(x +2)2=0且(y -3)2=0,∴x =-2且y =3,∴原式=-2-613=-813. 【类型四】用配方解决证明问题(1)用配方法证明2x 2-4x +7的值恒大于零;(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.证明:(1)2x 2-4x +7=2(x 2-2x )+7=2(x 2-2x +1-1)+7=2(x -1)2-2+7=2(x -1)2+5.∵2(x -1)2≥0,∴2(x -1)2+5≥5,即2x 2-4x +7≥5,故2x 2-4x +7的值恒大于零.(2)x 2-2x +3;2x 2-2x +5;3x 2+6x +8等.【类型五】配方法与不等式知识的综合应用证明关于x 的方程(m 2-8m +17)x 2+2mx +1=0不论m 为何值时,都是一元二次方程.解析:要证明“不论m 为何值时,方程都是一元二次方程”,只需证明二次项系数m2-8m +17的值不等于0.证明:∵二次项系数m 2-8m +17=m 2-8m +16+1=(m -4)2+1,又∵(m -4)2≥0,∴(m-4)2+1>0,即m 2-8m +17>0.∴不论m 为何值时,原方程都是一元二次方程.三、板书设计教学过程中,强调配方法解方程就是将方程左边配成完全平方式的过程.因此需熟练掌握完全平方式的形式.。
人教版数学九年级上册22.2.2《配方法》教案1

人教版数学九年级上册22.2.2《配方法》教案1一. 教材分析《配方法》是初中数学九年级上册的教学内容,主要目的是让学生掌握配方法的基本原理和应用。
配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,从而简化问题的求解过程。
本节课的内容是在学生已经掌握了二次方程的基本概念和求解方法的基础上进行讲解的,为后续学习更复杂的二次方程问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。
但是,对于配方法的理解和应用还需要进一步的引导和培养。
学生的学习兴趣和学习积极性较高,对于新的学习内容有一定的好奇心和求知欲。
三. 教学目标1.让学生掌握配方法的基本原理和应用。
2.培养学生解决二次方程问题的能力。
3.培养学生的逻辑思维能力和创新思维能力。
四. 教学重难点1.配方法的基本原理的理解和应用。
2.配方法在解决二次方程问题中的应用。
五. 教学方法采用问题驱动的教学方法,通过引导学生自主探究和合作交流,让学生在解决实际问题的过程中掌握配方法的基本原理和应用。
同时,运用案例教学法,结合具体的例子进行讲解,使学生更好地理解和掌握配方法。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备教学课件和教学素材。
七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题,例如:已知一个二次方程的解为x1=3和x2=4,求原方程。
让学生尝试解决这个问题,引发学生对配方法的好奇心和兴趣。
呈现(10分钟)讲解配方法的基本原理和步骤。
通过具体的例子进行讲解,让学生理解和掌握配方法的基本原理和应用。
同时,引导学生进行思考和讨论,巩固学生的理解。
操练(10分钟)让学生进行配方法的练习。
提供一些配方法的练习题,让学生独立完成。
在学生完成练习的过程中,进行巡视指导和解答学生的疑问。
巩固(10分钟)通过一些综合性的题目,让学生应用配方法解决实际问题。
引导学生进行合作交流,共同解决问题,巩固学生对配方法的理解和应用。
人教版数学九年级上册教案21.2.1《配方法》

人教版数学九年级上册教案21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21章第2节的内容,本节课主要让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。
教材通过引入“完全平方公式”的概念,引导学生探索如何将一个二次多项式转化为完全平方形式,从而引出配方法。
学生在学习过程中,需要理解并掌握配方法的基本步骤,以及如何判断一个多项式是否可以配成完全平方形式。
二. 学情分析学生在学习本节课之前,已经学习了二次方程的解法、完全平方公式等知识,对于二次多项式的基本概念和性质有一定的了解。
但学生在运用配方法解决实际问题时,可能会遇到一些困难,如判断多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
因此,在教学过程中,教师需要关注学生的学习情况,引导学生积极参与课堂活动,提高学生运用配方法解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握配方法的原理和步骤,能够运用配方法将一个二次多项式转化为完全平方形式。
2.过程与方法目标:通过小组合作、讨论交流等学习活动,培养学生探索问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。
四. 教学重难点1.重点:配方法的原理和步骤。
2.难点:如何判断一个多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
五. 教学方法1.启发式教学:教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。
2.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。
3.案例教学:教师通过举例子,让学生理解并掌握配方法的运用。
六. 教学准备1.准备相关教案和教学资料。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)教师通过提出一个实际问题,引导学生思考如何解决。
例如:已知一个二次多项式 f(x) = x^2 - 6x + 9,请问如何将其转化为完全平方形式?2.呈现(10分钟)教师引导学生回顾二次方程的解法和完全平方公式,然后引导学生探索如何将 f(x) = x^2 - 6x + 9 转化为完全平方形式。
初中数学人教版九年级上册:配方法 教案

21.2.1配方法教学目标(一)教学知识点1.会用配方法解简单的数字系数的一元二次方程.2.了解用配方法解一元二次方程的基本步骤.(二)能力训练要求1.理解配方法;知道“配方”是一种常用的数学方法.2.会用配方法解简单的数字系数的一元二次方程.3.能说出用配方法解一元二次方程的基本步骤.(三)情感与价值观要求通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力.教学重点用配方法求解一元二次方程.教学难点理解配方法.教学方法讲练结合法.教学过程我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.平方根的意义:如果x 2=a ,那么x=±a.完全平方式:式子a 2±2ab +b 2叫完全平方式,且a 2±2ab +b 2=(a±b)2用配方法解一元二次方程的步骤:移项:把常数项移到方程的右边;配方:方程两边都加上一次项系数绝对值一半的平方;变形:方程左边分解因式,右边合并同类项;开方:根据平方根的意义,方程两边开平方;求解:解一元一次方程;定解:写出原方程的解.探究:一桶油漆可刷的面积为1500dm 2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设一个盒子的棱长为xdm ,则它的外表面面积为____,10个这种盒子的外表面面积的和为____,由此你可得到方程为____,你能求出它的解吗?解:26x ,2106x ,21061500x ,整理得225x ,根据平方根的意义,得5x ,可以验证,5和-5是原方程的两个根,因为棱长不能为负值,所以盒子的棱长为5dm ,故5x dm .【归纳结论】一般地,对于方程2x p ,(Ⅰ)(1)当p>0时,根据平方根的意义,方程(Ⅰ)有两个不等的实数根1x,2x 师:(2)当p=0时,方程(Ⅰ)有两个相等的实数根120x x ;(3)当p<0时,因为对任意实数x ,都有20x ,所以方程(Ⅰ)无实数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5课时 21.2.1 配方法(2)
教学内容
给出配方法的概念,然后运用配方法解一元二次方程.
教学目标
了解配方法的概念,掌握运用配方法解一元二次方程的步骤.
通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.
重难点关键
1.重点:讲清配方法的解题步骤.
2.难点与关键:把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方.
教具、学具准备
小黑板
教学过程
一、复习引入
(学生活动)解下列方程:
(1)x2-4x+7=0 (2)2x2-8x+1=0
老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式,•不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.
解:略. (2)与(1)有何关联?
二、探索新知
讨论:配方法届一元二次方程的一般步骤:
(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)
常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.
例1.解下列方程
(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0 分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.
解:略
三、巩固练习
教材P 练习 2.(3)、(4)、(5)、(6).
四、归纳小结
本节课应掌握:
1.配方法的概念及用配方法解一元二次方程的步骤.
2.配方法是解一元二次方程的通法,它重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性(如例3)在今后学习二次函数,到高中学习二次曲线时,还将经常用到。
六、布置作业
1.教材P45复习巩固3.(3)(4)
补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,则求x+y+z的值(2)求证:无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是正数。