高效液相色谱法的简介..

合集下载

高效液相色谱简介及操作

高效液相色谱简介及操作

HPLC和经典液相色谱法的比较
3.高效液相色谱法的分类
• 通常将液相色谱法按分离机理分成吸附色谱法、分配色谱法、离子色 谱法和凝胶色谱法四大类。
4.如何阅读色谱图??
tR:保留时间;tM:死时间; :调整保留时间; W:峰宽
• 定性分析:在同一色谱系统中相同物质具 有相同的保留值 • 定量分析:组分含量与其响应值(峰高或 面积)成正比
2 色谱柱使用的注意事项
• 色谱柱在任何情况下不能碰撞、弯曲或强烈震动。 • 当分析柱长期不使用,应用适当有机溶剂保存(一般 为甲醇)。 • 每天工作结束后用适当的溶剂来清洗柱。
3 其他注意事项
• 未经提取净化的蛋白样品、血样、生物样品绝对禁 止直接进样分析。 • 要注意流动相的脱气。 • 避免使用高粘度的溶剂作为流动相。 • 使用新鲜配制的流动相,特别是水溶剂或缓冲液建 议不超过两天,最好每天更换。
(5)色谱柱平衡后,打开检测器(开灯) (6)测定样品 (7)清洗仪器
色谱柱及流路清洗 进样阀清洗 进样针清洗
四、主要注意事项
1 泵使用的注意事项

• •
• •
防止任何固体微粒进入泵体(用0.22 um或0.45 um 的微孔滤膜过滤) 流动相不应含有任何腐蚀性物质,含有缓冲盐的流 动相不应保留在泵内更不允许留在柱内。 泵工作时防止溶剂瓶内的流动相用完,否则空泵运 转一是会使大量空气进入柱内柱床崩塌、也会磨损柱塞、 密封圈,最终产生漏液。 输液泵的工作压力决不要超过规定的最高压力。 流动相应先脱气,以免在泵内产生气泡,影响流量 的稳定性和分析结果。
c. 荧光检测器 (FLD) 只适用于具有荧光的有机化合物(如多环芳烃、氨基 酸、胺类、维生素和某些蛋白质等)的测定。

高效液相色谱法 HPLC

高效液相色谱法 HPLC
点是固定液层的耐溶剂冲刷性能差,固 定液易流失,从而导致柱效降低,被键 合相填料所取代。 3.正相色谱-固定液极性 > 流动相极性(NLLC) 极性小的组分先出柱,极性大的组分后出柱, 适于分离极性组分。 反相色谱-固定液极性 < 流动相极性(RLLC) 极性大的组分先出柱,极性小的组分后出柱适 于分离非极性组分。
1)硅胶: <>无定型硅胶 最早使用,传质慢、柱效低 <>薄壳型硅胶 直径为30~40μm的玻璃珠表面涂布一层1~2μm 厚的硅胶微粒,孔径均一、渗透性好、传质 快,但柱容量有限。 <>全多孔球型硅胶 粒度一般为5~10μm,颗粒和孔径的均一性都比 前两种好,柱容量大,为当今液固色谱固定相 的主体,也是键合固定相的主要基质。
2.进样系统 a 隔膜进样(高分子有机硅胶垫→进样室) >GC系统压力较小,可以 >HPLC系统压力太大,须停泵进样(早期) b 阀进样:不必停泵,六通阀
3.分离系统-色谱柱 >直径4~6mm,柱长10~30cm,多为不锈钢材料 >柱效评价:色谱系统适应性试验 R,n,fs(拖尾因子) >色谱柱维护 >预柱和预饱和柱
(二)反相键合相固定相
1.分离机制:疏溶剂理论 正相——流动相与溶质排斥力强, 作用时间↑, k↑,组分tR↑ 反相——流动相与溶质排斥力弱, 作用时间↓, k↓,组分tR↓

二、HPLC与GC差别
1.分析对象的区别 GC:
适于能气化、热稳定性好、且沸点较低的样品; 但对高沸点、挥发性差、热稳定性差、离子型 及高聚物的样品,尤其对大多数生化样品不可 检测。(占有机物的20%)
HPLC: 适于溶解后能制成溶液的样品(包括有机介质溶 液),不受样品挥发性和热稳定性的限制,对分 子量大、难气化、热稳定性差的生化样品及高分 子和离子型样品均可检测用途广泛。(占有机物 的80%)

高效液相色谱法简介

高效液相色谱法简介

高效液相色谱的特点
高压——压力可达150~300 kg/cm2。色谱
柱每米降压为75 kg/cm2以上。
高速——流速为0.1~10.0 mL/min。 高效——塔板数可达5000/米。在一根柱中
同时分离成份可达100种。
高灵敏度——紫外检测器灵敏度可达0.01ng。
同时消耗样品少。
第二节
塑料块 Teflon
1 cm
工作电极 (Pt, Au, 碳糊)
e.电导检测器
电导检测器主要用于离子色谱的检测。 原理: 根据待测物在一些介质中电离后所产 生的电导(电阻的倒数)变化来测量电离物质 的含量。 电导检测器的主要部件是电导池。其响应 受温度影响较大,因此需要将电导池置于恒温 箱中。另外,当 pH>7时,该检测器不够灵敏。 电导检测器不能用于梯度洗脱。
◆恒流泵
注射型泵------输出精确,无脉动,需更换溶剂而中断工作。
往复型泵------造价低廉,溶剂更换方便,但存在脉动。 (使用较多) 对流量变化敏感的检测器会有噪声 干扰,此时可连接一脉动阻尼器。
◆恒压泵--------压力恒定,但流量不恒定(现在已经较少使用)。
输液泵操作注意事项:
防止固体微粒进入泵体 流动相不应含有腐蚀性物质 防止溶剂瓶内的流动相被用完 不超过规定的最高压力 流动相一般应该先脱气
F=2.3QKI0εCl
Q为量子产率,K为荧光效率,ε为摩尔吸光系 数,l为光径长度。
F=KC
特点:选择性好,
专属型检测器,灵敏 度比紫外检测器高 (检测限10-10 g/ml) 对多环芳烃,维 生素 B 、黄曲霉素、 卟啉类化合物、农药 、药物、氨基酸、甾 类化合物等有响应;
c. 示差折光检测器

hplc高效液相色谱法

hplc高效液相色谱法

HPLC高效液相色谱法简介高效液相色谱法(HPLC)是一种利用液体作为流动相,通过高压输液系统,将样品中的各组分在固定相和流动相之间进行分配或吸附等作用而实现分离和检测的色谱技术。

HPLC具有分离效率高、灵敏度高、选择性强、分析速度快、样品适用范围广等优点,已成为化学、生物、医药、环境等领域中最重要的分析方法之一。

本文将简要介绍HPLC的基本原理、仪器组成、常用的色谱模式和应用领域,以期对HPLC感兴趣的读者有所帮助。

一、HPLC的基本原理HPLC的基本原理是利用样品中的各组分在固定相和流动相之间的不同亲和力,使其在色谱柱内以不同的速度移动,从而达到分离的目的。

固定相是填充在色谱柱内的颗粒状物质,可以是固体或涂于固体载体上的液体。

流动相是通过高压泵送入色谱柱的溶剂或溶剂混合物,可以是极性或非极性的。

样品是通过进样器注入流动相中,并随流动相进入色谱柱。

当样品中的各组分经过固定相时,会发生吸附、分配、离子交换、排阻等作用,导致它们在固定相中停留不同的时间。

这个时间称为保留时间(retention time),通常用tR表示。

保留时间是反映样品组分在色谱柱内分离程度的重要参数,不同的组分有不同的保留时间。

当样品组分从色谱柱出口流出时,会被检测器检测到,并产生一个信号。

这个信号随时间变化而变化,形成一个色谱峰(chromatographic peak)。

色谱峰的位置反映了样品组分的保留时间,色谱峰的面积或高度反映了样品组分的含量或浓度。

将检测器信号随时间变化而绘制出来,就得到了一条色谱图(chromatogram)。

色谱图上可以看到不同的色谱峰,每个峰对应一个样品组分。

通过比较保留时间和色谱峰面积或高度,就可以对样品进行定性和定量分析。

二、HPLC仪器组成HPLC仪器主要由以下几个部分组成:溶剂供给系统(solvent delivery system):负责提供恒定压力和流速的流动相,并将溶剂混合成所需比例。

应用高效液相色谱法进行血红蛋白分析

应用高效液相色谱法进行血红蛋白分析

高效液相色谱法的优势
分离效果好
高效液相色谱法能够将血红蛋白和其 他蛋白质有效分离,获得高纯度的血
红蛋白样品。
检测灵敏度高
高效液相色谱法结合了质谱技术,能 够检测低浓度的血红蛋白,提高检测
灵敏度。
自动化程度高
高效液相色谱法可以实现自动化操作, 减少人为误差,提高分析效率。
高效液相色谱法的局限性
成本较高
02
血红蛋白分析的重要性
血红蛋白的生理功能
运输氧气和二氧化碳
血红蛋白能够结合和释放氧气和二氧化碳,维 持人体正常的气体交换。
维持酸碱平衡
血红蛋白能够缓冲血液中的酸碱度,维持人体 内环境的稳定。
调节体温
血红蛋白能够吸收和释放热量,参与体温调节。
血红蛋白异常的疾病
01
贫血
血红蛋白含量不足或质量异常, 导致红细胞携氧能力下降,引起 贫血。
应用高效液相色谱法 进行血红蛋白分析
目录
• 高效液相色谱法简介 • 血红蛋白分析的重要性 • 应用高效液相色谱法进行血红蛋白分析的
步骤 • 高效液相色谱法在血红蛋白分析中的优势
与局限性 • 血红蛋白分析的实验案例
01
高效液相色谱法简介
高效液相色谱法的定义
• 高效液相色谱法是一种分离和检 测复杂混合物中各组分的方法, 通过流动相携带样品经过固定相, 利用各组分在固定相和流动相之 间的吸附、溶解等作用的不同实 现分离。
监测治疗效果
02
通过定期监测患者的血红蛋白水平,医生可以评估治疗效果,调整治疗方案。指导输血和治疗03
根据患者的血红蛋白水平,医生可以决定是否需要输血或采取
其他治疗措施。
03
应用高效液相色谱法进 行血红蛋白分析的步骤

高效液相色谱-电化学法_概述及解释说明

高效液相色谱-电化学法_概述及解释说明

高效液相色谱-电化学法概述及解释说明1. 引言1.1 概述高效液相色谱-电化学法(简称HPLC-EC)是一种常用的分析技术,利用高效液相色谱技术和电化学检测原理相结合,实现对样品中化合物的分离和定量分析。

此方法具有灵敏度高、选择性好、重复性好等优点,因而在环境科学、生物医药和食品安全等领域得到广泛应用。

1.2 文章结构本文共分五个部分进行阐述。

引言部分是对整篇文章的概述,介绍了HPLC-EC 技术的背景和研究意义。

第二部分将对HPLC技术和电化学法以及它们之间的结合进行简要介绍。

接下来一节将详细讨论HPLC-EC的实验原理与分析过程。

第四部分将探讨HPLC-EC在环境污染物、生物医药和食品安全领域中的应用案例。

最后一节是总结与展望,回顾整篇文章所提到的内容,并展望该技术在未来发展中可能取得的进展。

1.3 目的本文旨在全面介绍高效液相色谱-电化学法的相关知识,深入探讨其原理及其在环境科学、生物医药和食品安全领域的应用。

通过文章阐述,读者可以对HPLC-EC技术有一个全面的了解,并且了解到该技术在不同领域的实际应用和发展趋势。

2. 高效液相色谱-电化学法概述:2.1 高效液相色谱技术简介高效液相色谱(HPLC)是一种广泛应用于分析化学领域的分离技术。

它基于物质在溶剂流动下通过固定相的不同速率进行分离,可用于分析和检测各种化合物。

HPLC技术具有分离效果好、选择性强、重复性好等特点,因此被广泛应用于环境、生物医药和食品安全等领域的样品分析中。

2.2 电化学法简介电化学法是利用电极与溶液中存在的化学反应产生的电流或电势来检测或测定物质的一种方法。

根据所使用的电极类型和测量参数,常见的电化学方法包括极谱法、电化学滴定法、恒定电位法等。

这些方法可以实现对不同种类和浓度范围内的物质进行快速准确的检测和分析。

2.3 结合应用优势高效液相色谱-电化学法(HPLC-EC)是将HPLC技术与电化学方法相结合而形成的一种分析技术。

高效液相色谱法的基本原理

高效液相色谱法的基本原理

高效液相色谱法的基本原理
高效液相色谱法(High Performance Liquid Chromatography,
简称HPLC)是一种以液相为工作介质的色谱分析技术。

其基
本原理包括以下几个方面:
1. 选择合适的固定相:HPLC中的固定相多数是疏水材料,常
见的包括疏水性化合物、正相材料和离子交换树脂等。

固定相的选择要根据待分离物的性质和目标进行,以实现分离的目的。

2. 样品的进样:待分离的样品通过自动进样器进入HPLC系统,通常通过注射器来确保精确的进样量。

3. 流动相的选择:流动相是在HPLC柱中进行分离的介质,
包括溶剂和缓冲溶液,可以根据实验要求选择不同的组合。

常见的流动相如水、有机溶剂、酸、碱等。

4. 柱子的选择:HPLC中的柱子一般由不同材质制成,如不锈钢、硅胶、聚合物等。

根据待分离物的性质和目标,选择合适的柱子进行分离。

5. 进行分离:样品进入柱子后,固定相将会提供分离作用,不同组分会按照其相互作用力的大小而在柱子中发生分离。

分离的时间取决于各组分与固定相之间的相互作用力。

6. 检测和分析:通过检测器对分离出的组分进行检测,一般使用紫外光谱、荧光检测器等进行定量分析,从而得到各组分的峰高、峰面积等信息。

7. 数据处理和解释:对检测到的数据进行处理和解释,包括峰识别、峰面积计算、定量分析等。

总之,高效液相色谱法的基本原理是利用液相中溶质与固定相之间的相互作用力的差异来实现样品的分离和定量分析。

高效液相色谱HPLC简介.ppt

高效液相色谱HPLC简介.ppt

种连续多次交换过程。它借溶质在两相间分配系数、亲和力、吸附力或分子大小不
同而引起的排阻作用的差别使不同溶质得以分离。
2
操作过程图示
3
色谱分离的机理
分离是一个 物理的过程。
固定相(Stationary Phase) 流动相(Mobile Phase) 样品 (溶解于流动相中的溶质)
4
项目 进样方式 流动相 分离原理 检测器
14
液-液分配色谱
固定相与流动相均为液体(互不相溶); 基本原理:组分在固定相和流动相上的分配; 流动相:对于亲水性固定液,采用疏水性流动相,即流动相的极性小于固定 液的极性(正相 normal phase),反之,流动相的极性大于固定液的极性 (反相 reverse phase)。正相与反相的出峰顺序相反; 固定相:早期涂渍固定液,固定液流失,较少采用; 化学键合固定相:将各种不同基团通过化学反应键合到硅胶(担体)表面的 游离羟基上。反相键合相色谱柱最常用的就是ODS柱,也就是C18柱。
15
液相色谱类型
• 正相色谱:固定相为极性,流动相为非极性。 • 反相色谱:固定相为非极性,流动相为极性。用的最多,约占60~70%。
16
色谱柱简介
• 正相柱------固定相通常为硅胶以及其他具有极性官能团胺基团,如(NH2) 和氰基团(CN)的键合相填料。 由于硅胶表面的硅羟基(SiOH)或其他极性基团极性较强,因此,分离 的次序是依据样品中各组分的极性大小,即极性较弱的组份最先被冲洗出色 谱柱。正相色谱使用的流动相极性相对比固定相低,如正已烷,氯仿,二氯 甲烷等。
9
检测器简介(二)
◆ 电导检测器(ECD) 原理:监测溶液的电导率变化的检测器。 特点:选择性检测器、测量时要求恒温、对流动相的组成变化有明显响应、 灵敏度低(10-3g)。适用于离子型化合物。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.操作条件差别
GC:加温操作
HPLC:室温;高压(液体粘度大,峰展宽小)
二. 高效液相色谱法的特点和应用
“三高” “一快” “一广” 高压 高柱效——n=104片/米,柱效高(远高于一般LC) 高灵敏度 分析速度快 应用范围广泛(可分析80%有机化合物)
三.各类高效液相色谱法

液-固吸附色谱 液-液分配色谱

3.1 液-固吸附色谱法
固定相为固体吸附剂,流动相为液体。

固定相:固体吸附剂为,如硅胶、氧化铝等,较常 使用的是5~10μm的硅胶吸附剂;
流动相:各种不同极性的一元或多元溶剂

分离机制:利用溶质分子占据固定相表面吸附活性 中心能力的差异,即物质吸附作用的不同来分离的。

适用于分离相对分子质量中等的油溶性试样,对具 有官能团的化合物和异构体有较高选择性
3.2 液-液分配色谱


固定相与流动相均为液体(互不相溶);
基本原理:组分在固定相和流动相上的分配; 流动相 :对于亲水性固定液,采用疏水性流动相,即 流动相的极性小于固定液的极性(正相色谱),反之, 流动相的极性大于固定液的极性(反相色谱)。正相 与反相的出峰顺序相反; 固定相:早期涂渍固定液,固定液流失较多,较少采 用;


离子交换色谱
离子色谱
排阻色谱
亲和色谱
高效液相色谱固定相和流动相 (-)固定相
1. 高效液相色谱固定相以承受高压能力来分类,可分为刚性固体和硬胶两 大类:
刚性固体:以二氧化硅为基质,可承受 7.O×108 ~ 1.O×109Pa 的高压,可 制成直径、形状、孔隙度不同的颗粒。如果在二氧化硅表面键合各种官 能团,就是键合固定相。 硬胶:主要用于离子交换和尺寸排阻色谱中,它由聚苯乙烯与二乙烯苯基 交联而成。可承受压力上限为3.5×108Pa。
可以在线检测
1.2 HPLC与GC差别
1.分析对象
GC:能气化、热稳定性好、且沸点较低的样品, 高沸点、挥发性差、热稳定性差、离子型及
高聚物的样品不可检测 ,占有机物的20%.
HPLC:溶解后能制成溶液的样品,不受样品挥发性 和热稳定性的限制,分子量大、难气化、热稳 定性差及高分子和离子型样品均可检测.用途广范, 占有机物的80%。

相同:兼具分离和分析功能,均可以在线检测
主要差别:分析对象的差别和流动相的差别
2.流动相差别
GC:流动相为惰性气体 组分与流动相无亲合作用力,只与固定相作用 HPLC:流动相为液体 流动相与组分间有亲合作用力,为提高柱的选择性、改善分离度增加了 因素,对分离起很大作用,流动相种类较多,选择余地广,流动相极性和 pH值的选择也对分离起到重要作用,选用不同比例的两种或两种以上液 体作为流动相 ,可以增大分离选择性.
全多孔型固定相:

它由直径为 10nm 的硅胶微粒凝聚而成。也可由氧化铝微 粒凝聚成全多孔型固定相。 特点:颗粒很细(3~10μm),孔仍然较浅,传质速率快, 最大允许进样量比表面多空型固定相大,易实现高效、高 速。特别适合复杂混合物分离及痕量分析

(二)流动相
由于高效液相色谱中流动相是液体,它对组分有亲 和力,并参与固定相对组分的竞争。因此,正确选 择流动相直接影响组分的分离度。对流动相溶剂的 要求是: (1) 高纯度。由于高效液相灵敏度高,对流动相溶剂 的纯度 也要求高。 (2) 低粘度。使用高粘度溶剂,会增高压力,不利于 分 离。常用的低粘度溶剂有丙酮、乙醇、乙晴等。 粘度过于低的溶剂易在色谱柱或检测器内形成气 泡,影响分离. 一般溶剂沸点要高于55℃,以便降低 其挥发度
2. 固定相按孔隙深度分类,可分为表面多孔型和全 多孔型固定相两类
表面多孔型固定相:
它的基体是实心玻璃珠,在玻璃球外面覆盖一层多 孔活性材料,如硅胶、氧化铝、离子交换剂、分子 筛、聚酰胺等。 特点:多孔层厚度小、孔浅,相对死体积小,出峰 迅速、柱效亦高;颗粒较大,渗透性好,装柱容易 ,梯度淋洗时能迅速达平衡,较适合做常规分析。 由于多孔层厚度薄,最大允许量受限制。
高效液相色谱法
(High Performance Liquid Chromatography,HPLC)
一.
高效液相色谱法的产生和发展
performance liquid
高 效 , HPLC)是20世纪六十年代末在经典
液相色谱法( LC )的基础上引入了气相色谱( GC )的 理 论 和 技 术 ,采用高压泵、高效固定相以及高灵敏度 检测器发展而成的分离分析方法。


化学键合固定相 :(将各种不同基团通过化学反应键 合到硅胶(担体)表面的游离羟基上。 C-18柱(反相 柱)。
正相高效液相色谱

正相高效液相色谱是指以亲水性的填料作固定相 (如在 硅胶上键合羟基、氨基或氰基的极性固定相 ),以疏水 性溶剂或混合物作流动相(如己烷)的液相色谱。在液相 色谱发展的早期,类似于气相色谱把含羟基、氨基或 氰基的极性固定相涂渍在硅胶上这样容易被流动相冲 洗掉,现在几乎都使用键合固定相了。
固定相极性大 正相键合色谱法 流动相极性小 分析对象 硅胶-OH(或双-OH),硅胶-CN 烃类+适量极性溶剂(CHCl3,CH3OH,CH3CN) 多用于极性或中等极性化合物的分离。还可用于分离 异构体、极性不同的化合物以及不同类型的化合物。

(3) 化学稳定性好。不能选与样品发生反应或聚合的
溶剂。也要避免流动相与固定相发生作用而使柱效下 降或损坏柱子。如使固定液溶解流失。

(4) 溶剂对于待测样品,必须具有合适的极性和良好 的选择性。
(5) 溶剂要与检测器匹配。 对于紫外吸收检测器,流动相不应有紫外吸收。 对于折光率检测器,要求选择与组分折光率有较 大差别的溶剂作流动相,以达最高灵敏度。
1.1 HPLC与经典LC区别

主要区别:固定相差别,输液设备和检测手段
1.经典LC:仅做为一种分离手段 柱内径1~3cm,固定相粒径>100μm 且不均匀 常压输送流动相 柱效低 分析周期长 无法在线检测 2.HPLC:分离和分析
柱内径2~6mm,固定相粒径<10μm(球形,匀浆装柱)
高压输送流动相 柱效高 分析时间大大缩短
相关文档
最新文档