数据结构—最优二叉树及其应用

合集下载

数据结构哈夫曼树和哈夫曼编码权值

数据结构哈夫曼树和哈夫曼编码权值

数据结构哈夫曼树和哈夫曼编码权值一、引言在计算机领域,数据结构是非常重要的一部分,而哈夫曼树和哈夫曼编码是数据结构中非常经典的部分之一。

本文将对哈夫曼树和哈夫曼编码的权值进行全面评估,并探讨其深度和广度。

通过逐步分析和讨论,以期让读者更深入地理解哈夫曼树和哈夫曼编码的权值。

二、哈夫曼树和哈夫曼编码的基本概念1. 哈夫曼树哈夫曼树,又称最优二叉树,是一种带权路径长度最短的二叉树。

它的概念来源于一种数据压缩算法,可以有效地减少数据的存储空间和传输时间。

哈夫曼树的构建过程是基于给定的权值序列,通过反复选择两个最小权值的节点构建出来。

在构建过程中,需要不断地重排权值序列,直到构建出一个满足条件的哈夫曼树。

2. 哈夫曼编码哈夫曼编码是一种变长编码方式,它利用了哈夫曼树的特点,对不同的字符赋予不同长度的编码。

通过构建哈夫曼树,可以得到一套满足最优存储空间的编码规则。

在实际应用中,哈夫曼编码经常用于数据压缩和加密传输,能够有效地提高数据的传输效率和安全性。

三、哈夫曼树和哈夫曼编码的权值评估1. 深度评估哈夫曼树和哈夫曼编码的权值深度值得我们深入探究。

从构建哈夫曼树的角度来看,权值决定了节点在树中的位置和层次。

权值越大的节点往往位于树的底层,而权值较小的节点则位于树的高层。

这种特性使得哈夫曼树在数据搜索和遍历过程中能够更快地找到目标节点,提高了数据的处理效率。

而从哈夫曼编码的角度来看,权值的大小直接决定了编码的长度。

权值越大的字符被赋予的编码越短,可以有效地减少数据传输的长度,提高了数据的压缩率。

2. 广度评估另哈夫曼树和哈夫曼编码的权值也需要进行广度评估。

在构建哈夫曼树的过程中,权值的大小直接影响了树的结构和形状。

当权值序列较为分散时,哈夫曼树的结构会更加平衡,节点的深度差异较小。

然而,当权值序列的差异较大时,哈夫曼树的结构也会更不平衡,而且可能出现退化现象。

这会导致数据的处理效率降低,需要进行额外的平衡调整。

动态规划-最优二叉搜索树

动态规划-最优二叉搜索树

动态规划-最优⼆叉搜索树摘要: 本章介绍了⼆叉查找树的概念及操作。

主要内容包括⼆叉查找树的性质,如何在⼆叉查找树中查找最⼤值、最⼩值和给定的值,如何找出某⼀个元素的前驱和后继,如何在⼆叉查找树中进⾏插⼊和删除操作。

在⼆叉查找树上执⾏这些基本操作的时间与树的⾼度成正⽐,⼀棵随机构造的⼆叉查找树的期望⾼度为O(lgn),从⽽基本动态集合的操作平均时间为θ(lgn)。

1、⼆叉查找树 ⼆叉查找树是按照⼆叉树结构来组织的,因此可以⽤⼆叉链表结构表⽰。

⼆叉查找树中的关键字的存储⽅式满⾜的特征是:设x为⼆叉查找树中的⼀个结点。

如果y是x的左⼦树中的⼀个结点,则key[y]≤key[x]。

如果y是x的右⼦树中的⼀个结点,则key[x]≤key[y]。

根据⼆叉查找树的特征可知,采⽤中根遍历⼀棵⼆叉查找树,可以得到树中关键字有⼩到⼤的序列。

介绍了⼆叉树概念及其遍历。

⼀棵⼆叉树查找及其中根遍历结果如下图所⽰:书中给出了⼀个定理:如果x是⼀棵包含n个结点的⼦树的根,则其中根遍历运⾏时间为θ(n)。

问题:⼆叉查找树性质与最⼩堆之间有什么区别?能否利⽤最⼩堆的性质在O(n)时间内,按序输出含有n个结点的树中的所有关键字?2、查询⼆叉查找树 ⼆叉查找树中最常见的操作是查找树中的某个关键字,除了基本的查询,还⽀持最⼤值、最⼩值、前驱和后继查询操作,书中就每种查询进⾏了详细的讲解。

(1)查找SEARCH 在⼆叉查找树中查找⼀个给定的关键字k的过程与⼆分查找很类似,根据⼆叉查找树在的关键字存放的特征,很容易得出查找过程:⾸先是关键字k与树根的关键字进⾏⽐较,如果k⼤⽐根的关键字⼤,则在根的右⼦树中查找,否则在根的左⼦树中查找,重复此过程,直到找到与遇到空结点为⽌。

例如下图所⽰的查找关键字13的过程:(查找过程每次在左右⼦树中做出选择,减少⼀半的⼯作量)书中给出了查找过程的递归和⾮递归形式的伪代码:1 TREE_SEARCH(x,k)2 if x=NULL or k=key[x]3 then return x4 if(k<key[x])5 then return TREE_SEARCH(left[x],k)6 else7 then return TREE_SEARCH(right[x],k)1 ITERATIVE_TREE_SEARCH(x,k)2 while x!=NULL and k!=key[x]3 do if k<key[x]4 then x=left[x]5 else6 then x=right[x]7 return x(2)查找最⼤关键字和最⼩关键字 根据⼆叉查找树的特征,很容易查找出最⼤和最⼩关键字。

《数据结构及其应用》笔记含答案 第五章_树和二叉树

《数据结构及其应用》笔记含答案 第五章_树和二叉树

第5章树和二叉树一、填空题1、指向结点前驱和后继的指针称为线索。

二、判断题1、二叉树是树的特殊形式。

()2、完全二叉树中,若一个结点没有左孩子,则它必是叶子。

()3、对于有N个结点的二叉树,其高度为。

()4、满二叉树一定是完全二叉树,反之未必。

()5、完全二叉树可采用顺序存储结构实现存储,非完全二叉树则不能。

()6、若一个结点是某二叉树子树的中序遍历序列中的第一个结点,则它必是该子树的后序遍历序列中的第一个结点。

()7、不使用递归也可实现二叉树的先序、中序和后序遍历。

()8、先序遍历二叉树的序列中,任何结点的子树的所有结点不一定跟在该结点之后。

()9、赫夫曼树是带权路径长度最短的树,路径上权值较大的结点离根较近。

()110、在赫夫曼编码中,出现频率相同的字符编码长度也一定相同。

()三、单项选择题1、把一棵树转换为二叉树后,这棵二叉树的形态是(A)。

A.唯一的B.有多种C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子解释:因为二叉树有左孩子、右孩子之分,故一棵树转换为二叉树后,这棵二叉树的形态是唯一的。

2、由3个结点可以构造出多少种不同的二叉树?(D)A.2 B.3 C.4 D.5解释:五种情况如下:3、一棵完全二叉树上有1001个结点,其中叶子结点的个数是(D)。

A.250 B. 500 C.254 D.501解释:设度为0结点(叶子结点)个数为A,度为1的结点个数为B,度为2的结点个数为C,有A=C+1,A+B+C=1001,可得2C+B=1000,由完全二叉树的性质可得B=0或1,又因为C为整数,所以B=0,C=500,A=501,即有501个叶子结点。

4、一个具有1025个结点的二叉树的高h为(C)。

A.11 B.10 C.11至1025之间 D.10至1024之间解释:若每层仅有一个结点,则树高h为1025;且其最小树高为⎣log21025⎦ + 1=11,即h在11至1025之间。

二叉树的储存结构的实现及应用

二叉树的储存结构的实现及应用

二叉树的储存结构的实现及应用二叉树是一种常见的数据结构,它在计算机科学和算法设计中广泛应用。

二叉树的储存结构有多种实现方式,包括顺序储存结构和链式储存结构。

本文将从这两种储存结构的实现和应用角度进行详细介绍,以便读者更好地理解二叉树的储存结构及其在实际应用中的作用。

一、顺序储存结构的实现及应用顺序储存结构是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一维数组中。

通常采用数组来实现顺序储存结构,数组的下标和节点的位置之间存在一定的对应关系,通过数学计算可以快速找到节点的父节点、左孩子和右孩子。

顺序储存结构的实现相对简单,利用数组的特性可以迅速随机访问节点,适用于完全二叉树。

1.1 实现过程在采用顺序储存结构的实现中,需要首先确定二叉树的深度,然后根据深度确定数组的长度。

通过数学计算可以得到节点间的位置关系,初始化数组并按照规定的顺序将二叉树节点逐一填入数组中。

在访问二叉树节点时,可以通过计算得到节点的父节点和子节点的位置,从而实现随机访问。

1.2 应用场景顺序储存结构适用于完全二叉树的储存和遍历,常见的应用场景包括二叉堆和哈夫曼树。

二叉堆是一种特殊的二叉树,顺序储存结构可以方便地实现它的插入、删除和调整操作,因此在堆排序、优先队列等算法中得到广泛应用。

哈夫曼树则是数据压缩领域的重要应用,通过顺序储存结构可以有效地构建和处理哈夫曼树,实现压缩编码和解码操作。

二、链式储存结构的实现及应用链式储存结构是通过指针将二叉树的节点连接起来,形成一个类似链表的结构。

每个节点包含数据域和指针域,指针域指向节点的左右孩子节点。

链式储存结构的实现相对灵活,适用于任意形态的二叉树,但需要额外的指针空间来存储节点的地址信息。

2.1 实现过程在链式储存结构的实现中,每个节点需要定义为一个包含数据域和指针域的结构体或类。

通过指针来连接各个节点,形成一个二叉树的结构。

在树的遍历和操作中,可以通过指针的操作来实现节点的访问和处理,具有较高的灵活性和可扩展性。

数据结构之二叉树(BinaryTree)

数据结构之二叉树(BinaryTree)

数据结构之⼆叉树(BinaryTree)⽬录导读 ⼆叉树是⼀种很常见的数据结构,但要注意的是,⼆叉树并不是树的特殊情况,⼆叉树与树是两种不⼀样的数据结构。

⽬录 ⼀、⼆叉树的定义 ⼆、⼆叉树为何不是特殊的树 三、⼆叉树的五种基本形态 四、⼆叉树相关术语 五、⼆叉树的主要性质(6个) 六、⼆叉树的存储结构(2种) 七、⼆叉树的遍历算法(4种) ⼋、⼆叉树的基本应⽤:⼆叉排序树、平衡⼆叉树、赫夫曼树及赫夫曼编码⼀、⼆叉树的定义 如果你知道树的定义(有限个结点组成的具有层次关系的集合),那么就很好理解⼆叉树了。

定义:⼆叉树是n(n≥0)个结点的有限集,⼆叉树是每个结点最多有两个⼦树的树结构,它由⼀个根结点及左⼦树和右⼦树组成。

(这⾥的左⼦树和右⼦树也是⼆叉树)。

值得注意的是,⼆叉树和“度⾄多为2的有序树”⼏乎⼀样,但,⼆叉树不是树的特殊情形。

具体分析如下⼆、⼆叉树为何不是特殊的树 1、⼆叉树与⽆序树不同 ⼆叉树的⼦树有左右之分,不能颠倒。

⽆序树的⼦树⽆左右之分。

2、⼆叉树与有序树也不同(关键) 当有序树有两个⼦树时,确实可以看做⼀颗⼆叉树,但当只有⼀个⼦树时,就没有了左右之分,如图所⽰:三、⼆叉树的五种基本状态四、⼆叉树相关术语是满⼆叉树;⽽国际定义为,不存在度为1的结点,即结点的度要么为2要么为0,这样的⼆叉树就称为满⼆叉树。

这两种概念完全不同,既然在国内,我们就默认第⼀种定义就好)。

完全⼆叉树:如果将⼀颗深度为K的⼆叉树按从上到下、从左到右的顺序进⾏编号,如果各结点的编号与深度为K的满⼆叉树相同位置的编号完全对应,那么这就是⼀颗完全⼆叉树。

如图所⽰:五、⼆叉树的主要性质 ⼆叉树的性质是基于它的结构⽽得来的,这些性质不必死记,使⽤到再查询或者⾃⼰根据⼆叉树结构进⾏推理即可。

性质1:⾮空⼆叉树的叶⼦结点数等于双分⽀结点数加1。

证明:设⼆叉树的叶⼦结点数为X,单分⽀结点数为Y,双分⽀结点数为Z。

二叉树的遍历及其应用

二叉树的遍历及其应用

0引言
所谓遍历,是指沿着某条搜索路线,依次对树中每个结点均做一次 且仅做一次访问。访问结点所做的操作依赖于具体的应用问题。 遍历 在二叉树上最重要的运算之一,是二叉树上进行其它运算之基础。二叉 树作为一种重要的数据结构是工农业应用与开发的重要工具。遍历是二 叉树算法设计中经典且永恒的话题。经典的算法大多采用递归搜索。递 归算法具有简练、清晰等优点,但因其执行过程涉及到大量的堆栈使 用,难于应用到一些严格限制堆栈使用的系统,也无法应用到一些不支 持递归的语言环境[9]。
由先序序列和中序序列来还原二叉树的过程算法思想[7]: (1)若二叉树空,返回空; (2)若不空,取先序序列第一个元素,建立根节点; (3)在中序序列中查找根节点,以此来确定左右子树的先序序列和中 序序列; (4)递归调用自己,建左子树; (5)递归调用自己,建右子树。
4二叉树的遍历的应用
根据二叉树的遍历算法, 可得出如下规律: 规律1: 前序序列遍历第一个为根结点, 后序遍历的最后一个结点为 根结点。 规律2: 前序序列遍历最后一个为根结点右子树的最右叶子结点, 中 序遍历的最后一个结点为根结点右子树的最右叶子结点。 规律3: 中序序列遍历第一个结点为根结点左子树的最左叶子结点,
1遍历二叉树的概念
所谓遍历二叉树,就是遵从某种次序,访问二叉树中的所有结点, 使得每个结点仅被访问一次。这里提到的“访问”是指对结点施行某种 操作,操作可以是输出结点信息,修改结点的数据值等,但要求这种访
问不破坏它原来的数据结构。在本文中,我们规定访问是输出结点信息 data,且以二叉链表作为二叉树的存贮结构。由于二叉树是一种非线性 结构,每个结点可能有一个以上的直接后继,因此,必须规定遍历的规 则,并按此规则遍历二叉树,最后得到二叉树所有结点的一个线性序 列[1]。

最优二叉树

最优二叉树

哈夫曼编码的另一种表示: 1.00
0 0.40 0 g 0.21 1
1
b 0.19
0
0.28 0 0.17 1
0.60 1 e 0.32
0.11 0 1
0
1 d 0.07 0.06
h 0.10
哈夫曼编码树
a
0.05
0 f 0.03 1 c 0.02
练习题:设计哈夫曼编码,通信中可能有8种字符,其频率 分别为:0.05,0.29,0.07,0.08,0.14,0.23,0.03,0.11
0 d
1
0
i 0 a
1
1 n
Huffman编码结果:d=0, i=10, a=110, n=111 WPL=1bit×7+2bit×5+3bit(2+4)=35(小于等长码的WPL=36) 特征:每一码不会是另一码的前缀,译码时唯一,不会错! Huffman编码也称为前缀码
Huffman编码
哈夫曼编码的基本思想是——— 出现概率大的信息用短码,概率小的用长码
最佳判定方法
Y Y E Y D Y a<60 N a<70 N C Y B Y D 70a<80 N 80a<90 N 60a<70 N
a<80
N a<90 N A
Y
E
C
Y B
a<60
N A
(b)WPL=40x1+30x2+15x3+5x4+10x4=205
(a)WPL=10x4+30x4+40x3+15x2+5x1=315
void Select (HuffmanTree HT,int t,int&s1,int&s2) {//在HT[1...t]中选择parent为0且权值最小的两个结点,其 序号分别为s1和s2 int i, m, n; m=n=100000; for(i=1;i<=t;i++) {if(HT[i].parent==0&&(HT[i].weight<m||HT[i].weight<n)) if(m<n) { n=HT[i].weight ; s2=i ; } else { m=HT[i].weight ; s1=i ; } } if(s1>s2) //s1放较小的序号 {i=s1;s1=s2;s2=i;} }

二叉树用途

二叉树用途

二叉树用途二叉树是一种常用的数据结构,由节点和连接节点的边组成,其中每个节点最多有两个子节点,被称为左子节点和右子节点。

二叉树具有以下特点:1. 有层次结构:节点按照层次排列,每层从左到右。

2. 可以拥有零个、一个或两个子节点。

3. 二叉树的子树也是二叉树。

4. 深度为d的二叉树最多含有2^d-1个节点,其中d为二叉树的深度。

二叉树的用途非常广泛,下面将详细讨论几个主要的应用场景。

1. 搜索、排序和查找:二叉树可以用于快速搜索、排序和查找数据。

二叉搜索树是一种常用的二叉树类型,其中每个节点的值大于左子树的所有节点的值,小于右子树的所有节点的值。

通过二分查找算法,在二叉搜索树中可以快速定位目标值。

2. 堆:二叉堆是一种用于实现优先队列的数据结构。

它具有以下特点:任意节点的关键字值都小于(或大于)或等于其子节点的关键字值,根节点的关键字值最小(或最大);并且堆是一颗完全二叉树。

二叉堆的插入和删除操作的时间复杂度为O(log n),适用于一些需要高效的优先级操作的场景,例如任务调度。

3. 表达式树:二叉树可以用于存储和计算数学表达式。

表达式树是一种二叉树,其叶节点是操作数,内部节点是操作符。

通过遍历表达式树,我们可以通过递归的方式计算整个表达式的值。

4. 文件系统:二叉树可以用于组织和管理文件系统中的文件和文件夹。

每个节点代表一个文件或文件夹,左子节点代表文件夹下的子文件夹,右子节点代表同一层级下的其他文件或文件夹。

通过遍历二叉树,可以实现文件的查找、创建、删除等操作。

5. 数据压缩:哈夫曼树是一种常用的数据压缩算法,通过构建二叉树来实现。

在哈夫曼树中,出现频率较高的字符对应的节点位于树的较低层,而出现频率较低的字符对应的节点位于树的较高层。

通过对字符进行编码,并使用相对较短的编码表示高频字符,可以实现对数据的高效压缩和解压缩。

6. 平衡树:平衡树是一种特殊类型的二叉树,其左子树和右子树的高度差不超过1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一最优二叉树及其应用1.程序设计简介本实验程序用于验证最优二叉树的算法。

树的存储采用带孩子的双亲顺序存储方法。

2.源程序//最优二叉树#include<iostream>#include<iomanip>using namespace std;//定义结点类型template <class T>struct hufnode{T wei;//权值int prt;//指向父结点的指针域(结点元素的下标)int lch;//左指针域(结点元素的下标)int rch;//右指针域(结点元素的下标)};//由于数组下标一般是非负数整数,因此可以用-1作为空指针值template <class T>class huffman_BT{int nn;//叶子结点的个数hufnode<T>*BT;//最优二叉树顺序存储空间的首地址public:huffman_BT(){BT=NULL;}//构造函数,对最优二叉树进行初始化void creat_hufm_BT(int n,T w[]);//生成最优二叉树void select(hufnode<T>*p,int k,int *i,int *j);void prt_hufm_BT();//输出最优二叉树存储空间状、};//生成最优二叉树template <class T>void huffman_BT<T>::creat_hufm_BT(int n,T w[]){//n是叶子结点的个数,w是叶子结点的权值数组hufnode<T> *p;int k,i,j,m;nn=n;m=n*2-1;BT=new hufnode<T>[m];//申请最优二叉树存储空间p=BT;for(k=0;k<m;k++){//设置初始状态,所有结点的指针为空(p+k)->prt=-1;(p+k)->lch=-1;(p+k)->rch=-1;}for(k=0;k<n;k++){//前n个结点的权值分别为个结点的权值(p+k)->wei=w[k];}for(k=n;k<m;k++){//构造最优二叉树select(p,k,&i,&j);//在前K-1个结点中选择权值最小的两个根结点i和j(p+i)->prt=k;(p+j)->prt=k;//合并构成新的二叉树(p+k)->lch=i;(p+k)->rch=j;(p+k)->wei=(p+i)->wei+(p+j)->wei;}}template <class T>void huffman_BT<T>::select(hufnode<T>*p,int k,int *i,int *j){//在前K-1个结点中选择权值最小的两个根结点i和jT w;int n=0;while(n<k&&(p+n)->prt!=-1) n++;//寻找指向父结点指针为空的起始结点w=(p+n)->wei;*i=n;while(n<k){if((((p+n)->wei)<w)&&((p+n)->prt==-1)){*i=n;w=(p+n)->wei;}n++;}n=0;while((n<k)&&((p+n)->prt!=-1)||(n==(*i))) n++;w=(p+n)->wei;*j=n;while(n<k){if(((p+n)->wei<w)&&(n!=(*i))&&((p+n)->prt==-1)){*j=n;w=(p+n)->wei;}n++;}if((*i)>(*j)){n=(*i);*i=*j;*j=n;}}template <class T>void huffman_BT<T>::prt_hufm_BT(){hufnode <T>*p;int k;p=BT;cout<<"k"<<setw(7)<<"WEI"<<setw(7)<<"PRT"<<setw(7)<<"LCH"<<setw(7)<<"RCH"<<endl;for(k=0;k<2*nn-1;k++){cout<<k<<setw(7)<<(p+k)->wei<<setw(7)<<(p+k)->prt<<setw(7)<<(p+k)->lch<<setw(7)<<(p+k)->rch<<endl;} }void main(){int *w;int op;int i;huffman_BT<int> b;do{cout<<"1-输入结点权值"<<endl;cout<<"2-生成最优二叉树"<<endl;cout<<"3-退出程序"<<endl;cout<<"请选择操作:[ ]";cout<<"\b\b";cin>>op;switch(op){case 1:cout<<"请输入结点的个数:";int sum;cin>>sum;w=new int[sum];cout<<"请依次输入权值:"<<endl;for(i=0;i<sum;i++){ cout<<"请输入第"<<i+1<<"个权值:";cin>>w[i];}break;case 2:b.creat_hufm_BT(sum,w);b.prt_hufm_BT();system("pause");break;case 3:cout<<"结束运行,Bye-Bye!"<<endl;break;}}while(op!=3);}3.运行结果实验二二叉树相似问题1.问题描述两棵二叉树相似,指要么它们都为空或都只有一个根结点,要么它们的左右子树均相似。

本问题是:设计一个算法,判断两棵二叉树是否相似。

2.基本要求(1)设计二叉树的存储结构和建立算法;(2)设计二叉树相似的判断算法;(3)输入:两棵二叉树;(4)输出:判定结果,相似或不相似。

3.源代码#include<iostream>using namespace std;static int count=1;struct node{char data;node *lchild;node *rchild;};class Bitree{public:node *root;Bitree(){root=NULL;}void CreatBitree();void PretraBitree();};static void Create(node*p,int k){ //创建二叉树node *q;char x;cin>>x;if(x!='#'){q=new node;q->data=x;if(k==1)p->lchild=q;if(k==2)p->rchild=q;Create(q,1);Create(q,2);}else{ q=new node;q->data=x;q->lchild=NULL;q->rchild=NULL;if(k==1)p->lchild=q;if(k==2)p->rchild=q;}}void Bitree::CreatBitree(){node *p;char x;cin>>x;if(x=='#'){p=new node;p->data=x;p->lchild=NULL;p->rchild=NULL;}else{p=new node;p->data=x;root=p;Create(p,1);Create(p,2);}}static void pretraverse(node *p) { //遍历二叉树if(p!=NULL){pretraverse(p->lchild);pretraverse(p->rchild);}}void Bitree::PretraBitree(){node *p;p=root;pretraverse(p);cout<<endl;}static void like(node *a,node *b){if(a!=NULL&&b!=NULL){if((a->data=='#'&&b->data!='#')||(a->data!='#'&&b->data=='#'))count=0;like(a->lchild,b->lchild);like(a->rchild,b->rchild);}}void work(){Bitree a;Bitree b;cout<<"输入二叉树A:"<<endl;a.CreatBitree(); //创建二叉树Aa.PretraBitree();// 先序遍历二叉树Acout<<"输入二叉树B:"<<endl;b.CreatBitree(); //创建二叉树Bb.PretraBitree();// 先序遍历二叉树Blike(a.root,b.root); //判断AB是否相似cout<<"判断结果:";if(count==1) cout<<"A与B相似"<<endl;else cout<<"A与B不相似"<<endl;}int main(){work();return 0;}4.运行结果:心得与体会:这次的实验使我了解到,平时对知识的积累相当重要,同时也要注重课上老师的讲解,老师在课上的延伸是课本上所没有的,这些知识对于我们对程序的编写有很大的作用,同时,编程也要求我们有足够的耐心,细细推敲。

相关文档
最新文档