《数据结构》习题汇编06第六章树和二叉树试题

合集下载

数据结构习题第六章 树和二叉树答案

数据结构习题第六章  树和二叉树答案

第六章树和二叉树注:参考答案只能作为参考,也是有错的,自己要学会辨别。

一、单项选择题1.A2.D3.A4.C5.B6.D7.E8. D9.C10.B11. C12.A13.D14.B15.C16.B17.D18.B19. D20.C二、判断题(在各题后填写“√”或“×”)1. 完全二叉树一定存在度为1的结点。

×2. 对于有N个结点的二叉树,其高度为log2n。

×3. 二叉树的遍历只是为了在应用中找到一种线性次序。

√4. 一棵一般树的结点的前序遍历和后序遍历分别与它相应二叉树的结点前序遍历和后序遍历是一致的。

×5. 用一维数组存储二叉树时,总是以前序遍历顺序存储结点。

×6.中序遍历一棵二叉排序树的结点就可得到排好序的结点序列√7.完全二叉树中,若一个结点没有左孩子,则它必是树叶。

√8. 二叉树只能用二叉链表表示。

×9. 给定一棵树,可以找到唯一的一棵二叉树与之对应。

√10. 用链表(llink-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n-1个空指针。

×11.树形结构中元素之间存在一个对多个的关系。

√12.将一棵树转成二叉树,根结点没有左子树。

×13.度为二的树就是二叉树。

×14.二叉树中序线索化后,不存在空指针域。

×15.霍夫曼树的结点个数不能是偶数。

√16.哈夫曼树是带权路径长度最短的树,路径上权值较大的结点离根较近。

√三、填空题1.p->lchild==null && p->rchlid==null2.(1)2k-1 (2)2k-13.644. 2n n-1 n+15.先序遍历后序遍历中序遍历6..(1)2k-2+1(第k层1个结点,总结点个数是2H-1,其双亲是2H-1/2=2k-2)(2) ⎣log2i⎦+1 7.48.任何结点至多只有右子女的二叉树。

计算机专业基础综合数据结构(树和二叉树)历年真题试卷汇编6

计算机专业基础综合数据结构(树和二叉树)历年真题试卷汇编6

计算机专业基础综合数据结构(树和二叉树)历年真题试卷汇编6(总分:88.00,做题时间:90分钟)一、单项选择题(总题数:33,分数:66.00)1.一棵完全二叉树又是一棵( )。

【华中科技大学2006一、7(2分)】A.平衡二叉树B.堆√C.二叉排序树D.哈夫曼(Huffman)树完全二叉树的叶子至多在下面两层上,且一个结点若无左子树,绝不能有右子树。

平衡二叉树任何结点的左右子树的高度差的绝对值不超过1,但其结点的值符合二叉排序树的定义。

平衡二叉树(包括二叉排序树)的树形不一定是完全二叉树。

堆是一个序列,有大堆和小堆,编号为i的结点,其父结点、左右子女结点之间位置的关系,符合完全二叉树父结点、左右子女结点之间的关系,从这点上说,可以把堆看成完全二叉树。

哈夫曼树是二叉树,但树形不一定满足完全二叉树的定义。

2.一棵左子树为空的二叉树在先序线索化后,其中空的链域的个数是( )。

【合肥工业大学1999一、5(2分)】A.不确定B.0C.1D.2 √左子树为空的二叉树的根结点的左线索为空(无前驱),先序序列的最后结点的右线索为空(无后继),共2个空链域。

3.一棵左右子树均不空的二叉树在先序线索化后,其中空的链域的个数是( )。

【合肥工业大学2000一、5(2分)】A.0B.1 √C.2D.不确定4.若X是二叉中序线索树中一个有左孩子的结点,且X不为根,则X的前驱为( )。

【南京理工大学1996一、6(2分)】A.X的双亲B.X的右子树中最左的结点C.X的左子树中最右结点√D.X的左子树中最右叶结点5.引入二叉线索树的目的是( )。

【南京理工大学1998一、5(2分)】A.加快查找结点的前驱或后继的速度√B.为了能在二叉树中方便地进行插入与删除C.为了能方便地找到双亲D.使二叉树的遍历结果唯一6.线素二叉树是一种( )结构。

【西安电子科技大学1996一、9(2分)】A.逻辑B.逻辑和存储C.物理√D.线性7.甩个结点的线索二叉树上含有的线索数为( )。

数据结构-习题-第六章-树

数据结构-习题-第六章-树

数据结构-习题-第六章-树和二叉树E F D G A B / + + * - C * 第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/EC .-+*ABC/DE D. -+A*BC/DE【北京航空航天大学 1999 一、3 (2分)】2.算术表达式a+b*(c+d/e )转为后缀表达式后为( )【中山大学 1999 一、5】A .ab+cde/*B .abcde/+*+C .abcde/*++D .abcde*/++ 3. 设有一表示算术表达式的二叉树(见下图), 它所表示的算术表达式是( )【南京理工大学1999 一、20(2分)】A. A*B+C/(D*E)+(F-G)B.(A*B+C)/(D*E)+(F-G)C. (A*B+C)/(D*E+(F-G ))D.A*B+C/D*E+F-G4. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D.8【南京理工大学 2000 一、8 (1.5分)】5. 在下述结论中,正确的是()【南京理工大学 1999 一、4 (1分)】①只有一个结点的二叉树的度为0; ②二叉树的度为2;③二叉树的左右子树可任意交换;④深度为K的完全二叉树的结点个数小于或等于深度相同的满二叉树。

A.①②③ B.②③④ C.②④ D.①④6. 设森林F对应的二叉树为B,它有m个结点,B的根为p,p的右子树结点个数为n,森林F中第一棵树的结点个数是()A.m-n B.m-n-1 C.n+1 D.条件不足,无法确定【南京理工大学2000 一、17(1.5分)】7. 树是结点的有限集合,它( (1))根结点,记为T。

其余结点分成为m(m>0)个((2))的集合T1,T2,…,Tm,每个集合又都是树,此时结点T称为Ti的父结点,Ti称为T的子结点(1≤i≤m)。

《数据结构》习题汇编06 第六章 树和二叉树 试题

《数据结构》习题汇编06 第六章 树和二叉树 试题

第六章树和二叉树试题一、单项选择题1.树中所有结点的度等于所有结点数加()。

A. 0B. 1C. -1D. 22.在一棵树中,()没有前驱结点。

A. 分支结点B. 叶结点C. 根结点D. 空结点3.在一棵二叉树的二叉链表中,空指针域数等于非空指针域数加()。

A. 2B. 1C. 0D. -14.在一棵具有n个结点的二叉树中,所有结点的空子树个数等于()。

A. nB. n-1C. n+1D. 2*n5.在一棵具有n个结点的二叉树的第i层上(假定根结点为第0层,i大于等于0而小于等于树的高度),最多具有()个结点。

A. 2iB. 2i+1C. 2i-1D. 2n6.在一棵高度为h(假定根结点的层号为0)的完全二叉树中,所含结点个数不小于()。

A. 2h-1B. 2h+1C. 2h-1D. 2h7.在一棵具有35个结点的完全二叉树中,该树的高度为()。

假定空树的高度为-1。

A. 5B. 6C. 7D. 88.在一棵具有n个结点的完全二叉树中,分支结点的最大编号为()。

假定树根结点的编号为0。

A. (n-1)/2B. n/2C. n/2D.n/2 -19.在一棵完全二叉树中,若编号为i的结点存在左孩子,则左子女结点的编号为()。

假定根结点的编号为0A. 2iB. 2i-1C. 2i+1D. 2i+210.在一棵完全二叉树中,假定根结点的编号为0,则对于编号为i(i>0)的结点,其双亲结点的编号为()。

A. (i+1)/2B. (i-1)/2C. i/2D.i/2-111.在一棵树的左子女-右兄弟表示法中,一个结点的右孩子是该结点的()结点。

A. 兄弟B. 子女C. 祖先D. 子孙12.在一棵树的静态双亲表示中,每个存储结点包含()个域。

A. 1B. 2C. 3D. 413.已知一棵二叉树的广义表表示为a (b (c), d (e ( , g (h) ), f ) ),则该二叉树的高度为()。

假定根结点的高度为0。

数据结构 第六章 树和二叉树作业及答案

数据结构 第六章 树和二叉树作业及答案

第六章树和二叉树作业一、选择题(每题2分,共24分)。

1. 一棵二叉树的顺序存储情况如下:树中,度为2的结点数为( C )。

A.1 B.2 C.3 D.42. 一棵“完全二叉树”结点数为25,高度为(B )。

A.4 B.5 C.6 D.不确定3.下列说法中,(B )是正确的。

A. 二叉树就是度为2的树B. 二叉树中不存在度大于2的结点C. 二叉树是有序树D. 二叉树中每个结点的度均为24.一棵二叉树的前序遍历序列为ABCDEFG,它的中序遍历序列可能是(B )。

A. CABDEFGB. BCDAEFGC. DACEFBGD. ADBCFEG5.线索二叉树中的线索指的是(C )。

A.左孩子 B.遍历 C.指针 D.标志6. 建立线索二叉树的目的是(A )。

A. 方便查找某结点的前驱或后继B. 方便二叉树的插入与删除C. 方便查找某结点的双亲D. 使二叉树的遍历结果唯一7. 有 D )示意。

A.B.C.D.8. 一颗有2046个结点的完全二叉树的第10层上共有(B )个结点。

A. 511B. 512C. 1023D. 10249. 一棵完全二叉树一定是一棵(A )。

A. 平衡二叉树B. 二叉排序树C. 堆D. 哈夫曼树10.某二叉树的中序遍历序列和后序遍历序列正好相反,则该二叉树一定是( C )的二叉树。

A .空或只有一个结点B .高度等于其结点数C .任一结点无左孩子D .任一结点无右孩子11.一棵二叉树的顺序存储情况如下:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15A B C D E 0 F 0 0 G H 0 0 0 X结点D 的左孩子结点为( D )。

A .EB .C C .FD .没有12.一棵“完全二叉树”结点数为25,高度为( B )。

A .4B .5C .6D .不确定二、填空题(每空3分,共18分)。

1. 树的路径长度:是从树根到每个结点的路径长度之和。

对结点数相同的树来说,路径长度最短的是 完全 二叉树。

数据结构习题第六章树和二叉树

数据结构习题第六章树和二叉树

第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/E C .-+*ABC/DE D.-+A*BC/DE【北京航空航天大学 1999 一、3 (2分)】2.算术表达式a+b*(c+d/e )转为后缀表达式后为( )【中山大学 1999 一、5】A .ab+cde/*B .abcde/+*+C .abcde/*++D 3. 设有一表示算术表达式的二叉树(见下图),它所表示的算术表达式是( ) 【南京理工大学1999 一、20(2分)】 A. A*B+C/(D*E)+(F-G) B. (A*B+C)/(D*E)+(F-G) C. (A*B+C)/(D*E+(F-G )) D. A*B+C/D*E+F-G 4. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D .8【南京理工大学 2000 一、8 (1.5分)】5. 在下述结论中,正确的是( )【南京理工大学 1999 一、4 (1分)】①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意交换;④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。

A .①②③B .②③④C .②④D .①④6. 设森林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,森林F 中第一棵树的结点个数是( )A .m-nB .m-n-1C .n+1D .条件不足,无法确定 【南京理工大学2000一、17(1.5分)】7. 树是结点的有限集合,它( (1))根结点,记为T 。

其余结点分成为m (m>0)个((2))的集合T1,T2, …,Tm ,每个集合又都是树,此时结点T 称为Ti 的父结点,Ti 称为T的子结点(1≤i ≤m )。

第6章_数据结构习题题目及答案_树和二叉树_参考答案

第6章_数据结构习题题目及答案_树和二叉树_参考答案

一、基础知识题6.1设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1,求树T中的叶子数。

【解答】设度为m的树中度为0,1,2,…,m的结点数分别为n0, n1, n2,…, nm,结点总数为n,分枝数为B,则下面二式成立n= n0+n1+n2+…+nm (1)n=B+1= n1+2n2 +…+mnm+1 (2)由(1)和(2)得叶子结点数n0=1+即: n0=1+(1-1)*4+(2-1)*2+(3-1)*1+(4-1)*1=86.2一棵完全二叉树上有1001个结点,求叶子结点的个数。

【解答】因为在任意二叉树中度为2 的结点数n2和叶子结点数n0有如下关系:n2=n0-1,所以设二叉树的结点数为n, 度为1的结点数为n1,则n= n0+ n1+ n2n=2n0+n1-11002=2n0+n1由于在完全二叉树中,度为1的结点数n1至多为1,叶子数n0是整数。

本题中度为1的结点数n1只能是0,故叶子结点的个数n0为501.注:解本题时要使用以上公式,不要先判断完全二叉树高10,前9层是满二叉树,第10层都是叶子,……。

虽然解法也对,但步骤多且复杂,极易出错。

6.3 一棵124个叶结点的完全二叉树,最多有多少个结点。

【解答】由公式n=2n0+n1-1,当n1为1时,结点数达到最多248个。

6.4.一棵完全二叉树有500个结点,请问该完全二叉树有多少个叶子结点?有多少个度为1的结点?有多少个度为2的结点?如果完全二叉树有501个结点,结果如何?请写出推导过程。

【解答】由公式n=2n0+n1-1,带入具体数得,500=2n0+n1-1,叶子数是整数,度为1的结点数只能为1,故叶子数为250,度为2的结点数是249。

若完全二叉树有501个结点,则叶子数251,度为2的结点数是250,度为1的结点数为0。

6.5 某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数是多少。

《数据结构题集》答案 第6章 树和二叉树

《数据结构题集》答案 第6章 树和二叉树

第六章树和二叉树6.33int Is_Descendant_C(int u,int v)//在孩子存储结构上判断u是否v的子孙,是则返回1,否则返回0{if(u==v) return 1;else{if(L[v])if (Is_Descendant(u,L[v])) return 1;if(R[v])if (Is_Descendant(u,R[v])) return 1; //这是个递归算法}return 0;}//Is_Descendant_C6.34int Is_Descendant_P(int u,int v)//在双亲存储结构上判断u是否v的子孙,是则返回1,否则返回0{for(p=u;p!=v&&p;p=T[p]);if(p==v) return 1;else return 0;}//Is_Descendant_P6.35这一题根本不需要写什么算法,见书后注释:两个整数的值是相等的.6.36int Bitree_Sim(Bitree B1,Bitree B2)//判断两棵树是否相似的递归算法{if(!B1&&!B2) return 1;elseif(B1&&B2&&Bitree_Sim(B1->lchild,B2->lchild)&&Bitree_Sim(B1->rchild,B2->rc hild))return 1;else return 0;}//Bitree_Sim6.37void PreOrder_Nonrecursive(Bitree T)//先序遍历二叉树的非递归算法{InitStack(S);Push(S,T); //根指针进栈while(!StackEmpty(S)){while(Gettop(S,p)&&p){visit(p->data);push(S,p->lchild);} //向左走到尽头pop(S,p);if(!StackEmpty(S)){pop(S,p);push(S,p->rchild); //向右一步}}//while}//PreOrder_Nonrecursive6.38typedef struct {BTNode* ptr;enum {0,1,2} mark;} PMType; //有mark域的结点指针类型void PostOrder_Stack(BiTree T)//后续遍历二叉树的非递归算法,用栈{PMType a;InitStack(S); //S的元素为PMType类型Push (S,{T,0}); //根结点入栈while(!StackEmpty(S)){Pop(S,a);switch(a.mark){case 0:Push(S,{a.ptr,1}); //修改mark域if(a.ptr->lchild) Push(S,{a.ptr->lchild,0}); //访问左子树break;case 1:Push(S,{a.ptr,2}); //修改mark域if(a.ptr->rchild) Push(S,{a.ptr->rchild,0}); //访问右子树break;case 2:visit(a.ptr); //访问结点,返回}}//while}//PostOrder_Stack分析:为了区分两次过栈的不同处理方式,在堆栈中增加一个mark域,mark=0表示刚刚访问此结点,mark=1表示左子树处理结束返回,mark=2表示右子树处理结束返回.每次根据栈顶元素的mark域值决定做何种动作.6.39typedef struct {int data;EBTNode *lchild;EBTNode *rchild;EBTNode *parent;enum {0,1,2} mark;} EBTNode,EBitree; //有mark域和双亲指针域的二叉树结点类型void PostOrder_Nonrecursive(EBitree T)//后序遍历二叉树的非递归算法,不用栈{p=T;while(p)switch(p->mark){case 0:p->mark=1;if(p->lchild) p=p->lchild; //访问左子树break;case 1:p->mark=2;if(p->rchild) p=p->rchild; //访问右子树break;case 2:visit(p);p->mark=0; //恢复mark值p=p->parent; //返回双亲结点}}//PostOrder_Nonrecursive分析:本题思路与上一题完全相同,只不过结点的mark值是储存在结点中的,而不是暂存在堆栈中,所以访问完毕后要将mark域恢复为0,以备下一次遍历.6.40typedef struct {int data;PBTNode *lchild;PBTNode *rchild;PBTNode *parent;} PBTNode,PBitree; //有双亲指针域的二叉树结点类型void Inorder_Nonrecursive(PBitree T)//不设栈非递归遍历有双亲指针的二叉树{p=T;while(p->lchild) p=p->lchild; //向左走到尽头while(p){visit(p);if(p->rchild) //寻找中序后继:当有右子树时{p=p->rchild;while(p->lchild) p=p->lchild; //后继就是在右子树中向左走到尽头}else if(p->parent->lchild==p) p=p->parent; //当自己是双亲的左孩子时后继就是双亲else{p=p->parent;while(p->parent&&p->parent->rchild==p) p=p->parent;p=p->parent;} //当自己是双亲的右孩子时后继就是向上返回直到遇到自己是在其左子树中的祖先}//while}//Inorder_Nonrecursive6.41int c,k; //这里把k和计数器c作为全局变量处理void Get_PreSeq(Bitree T)//求先序序列为k的结点的值{if(T){c++; //每访问一个子树的根都会使前序序号计数器加1if(c==k){printf("Value is %d\n",T->data);exit (1);}{Get_PreSeq(T->lchild); //在左子树中查找Get_PreSeq(T->rchild); //在右子树中查找}}//if}//Get_PreSeqmain(){...scanf("%d",&k);c=0; //在主函数中调用前,要给计数器赋初值0Get_PreSeq(T,k);...}//main6.42int LeafCount_BiTree(Bitree T)//求二叉树中叶子结点的数目{if(!T) return 0; //空树没有叶子else if(!T->lchild&&!T->rchild) return 1; //叶子结点else return Leaf_Count(T->lchild)+Leaf_Count(T->rchild);//左子树的叶子数加上右子树的叶子数}//LeafCount_BiTree6.43void Bitree_Revolute(Bitree T)//交换所有结点的左右子树{T->lchild<->T->rchild; //交换左右子树if(T->lchild) Bitree_Revolute(T->lchild);if(T->rchild) Bitree_Revolute(T->rchild); //左右子树再分别交换各自的左右子树}//Bitree_Revolute6.44int Get_Sub_Depth(Bitree T,int x)//求二叉树中以值为x的结点为根的子树深度{if(T->data==x){printf("%d\n",Get_Depth(T)); //找到了值为x的结点,求其深度exit 1;}{if(T->lchild) Get_Sub_Depth(T->lchild,x);if(T->rchild) Get_Sub_Depth(T->rchild,x); //在左右子树中继续寻找 }}//Get_Sub_Depthint Get_Depth(Bitree T)//求子树深度的递归算法{if(!T) return 0;else{m=Get_Depth(T->lchild);n=Get_Depth(T->rchild);return (m>n?m:n)+1;}}//Get_Depth6.45void Del_Sub_x(Bitree T,int x)//删除所有以元素x为根的子树{if(T->data==x) Del_Sub(T); //删除该子树else{if(T->lchild) Del_Sub_x(T->lchild,x);if(T->rchild) Del_Sub_x(T->rchild,x); //在左右子树中继续查找}//else}//Del_Sub_xvoid Del_Sub(Bitree T)//删除子树T{if(T->lchild) Del_Sub(T->lchild);if(T->rchild) Del_Sub(T->rchild);free(T);}//Del_Sub6.46void Bitree_Copy_Nonrecursive(Bitree T,Bitree &U)//非递归复制二叉树{InitStack(S1);InitStack(S2);push(S1,T); //根指针进栈U=(BTNode*)malloc(sizeof(BTNode));U->data=T->data;q=U;push(S2,U);while(!StackEmpty(S)){while(Gettop(S1,p)&&p){q->lchild=(BTNode*)malloc(sizeof(BTNode));q=q->lchild;q->data=p->data;push(S1,p->lchild);push(S2,q);} //向左走到尽头pop(S1,p);pop(S2,q);if(!StackEmpty(S1)){pop(S1,p);pop(S2,q);q->rchild=(BTNode*)malloc(sizeof(BTNode));q=q->rchild;q->data=p->data;push(S1,p->rchild); //向右一步push(S2,q);}}//while}//BiTree_Copy_Nonrecursive分析:本题的算法系从6.37改写而来.6.47void LayerOrder(Bitree T)//层序遍历二叉树{InitQueue(Q); //建立工作队列EnQueue(Q,T);while(!QueueEmpty(Q)){DeQueue(Q,p);visit(p);if(p->lchild) EnQueue(Q,p->lchild);if(p->rchild) EnQueue(Q,p->rchild);}}//LayerOrder6.48int found=FALSE;Bitree* Find_Near_Ancient(Bitree T,Bitree p,Bitree q)//求二叉树T中结点p和q的最近共同祖先{Bitree pathp[ 100 ],pathq[ 100 ] //设立两个辅助数组暂存从根到p,q的路径Findpath(T,p,pathp,0);found=FALSE;Findpath(T,q,pathq,0); //求从根到p,q的路径放在pathp和pathq中for(i=0;pathp[i]==pathq[i]&&pathp[i];i++); //查找两条路径上最后一个相同结点 return pathp[--i];}//Find_Near_Ancientvoid Findpath(Bitree T,Bitree p,Bitree path[ ],int i)//求从T到p路径的递归算法{if(T==p){found=TRUE;return; //找到}path[i]=T; //当前结点存入路径if(T->lchild) Findpath(T->lchild,p,path,i+1); //在左子树中继续寻找if(T->rchild&&!found) Findpath(T->rchild,p,path,i+1); //在右子树中继续寻找if(!found) path[i]=NULL; //回溯}//Findpath6.49int IsFull_Bitree(Bitree T)//判断二叉树是否完全二叉树,是则返回1,否则返回0 {InitQueue(Q);flag=0;EnQueue(Q,T); //建立工作队列while(!QueueEmpty(Q)){DeQueue(Q,p);if(!p) flag=1;else if(flag) return 0;else{EnQueue(Q,p->lchild);EnQueue(Q,p->rchild); //不管孩子是否为空,都入队列}}//whilereturn 1;}//IsFull_Bitree分析:该问题可以通过层序遍历的方法来解决.与6.47相比,作了一个修改,不管当前结点是否有左右孩子,都入队列.这样当树为完全二叉树时,遍历时得到是一个连续的不包含空指针的序列.反之,则序列中会含有空指针.Status CreateBitree_Triplet(Bitree &T)//输入三元组建立二叉树{if(getchar()!='^') return ERROR;T=(BTNode*)malloc(sizeof(BTNode));p=T;p->data=getchar();getchar(); //滤去多余字符InitQueue(Q);EnQueue(Q,T);while((parent=getchar())!='^'&&(child=getchar())&&(side=getchar())){while(QueueHead(Q)!=parent&&!QueueEmpty(Q)) DeQueue(Q,e);if(QueueEmpty(Q)) return ERROR; //未按层序输入p=QueueHead(Q);q=(BTNode*)malloc(sizeof(BTNode));if(side=='L') p->lchild=q;else if(side=='R') p->rchild=q;else return ERROR; //格式不正确q->data=child;EnQueue(Q,q);}return OK;}//CreateBitree_Triplet6.51Status Print_Expression(Bitree T)//按标准形式输出以二叉树存储的表达式{if(T->data是字母) printf("%c",T->data);else if(T->data是操作符){if(!T->lchild||!T->rchild) return ERROR; //格式错误if(T->lchild->data是操作符&&T->lchild->data优先级低于T->data){printf("(");if(!Print_Expression(T->lchild)) return ERROR;printf(")");} //注意在什么情况下要加括号else if(!Print_Expression(T->lchild)) return ERROR;if(T->rchild->data是操作符&&T->rchild->data优先级低于T->data){printf("(");if(!Print_Expression(T->rchild)) return ERROR;printf(")");else if(!Print_Expression(T->rchild)) return ERROR;}else return ERROR; //非法字符return OK;}//Print_Expression6.52typedef struct{BTNode node;int layer;} BTNRecord; //包含结点所在层次的记录类型int FanMao(Bitree T)//求一棵二叉树的"繁茂度"{int countd; //count数组存放每一层的结点数InitQueue(Q); //Q的元素为BTNRecord类型EnQueue(Q,{T,0});while(!QueueEmpty(Q)){DeQueue(Q,r);count[yer]++;if(r.node->lchild) EnQueue(Q,{r.node->lchild,yer+1});if(r.node->rchild) EnQueue(Q,{r.node->rchild,yer+1});} //利用层序遍历来统计各层的结点数h=yer; //最后一个队列元素所在层就是树的高度for(maxn=count[0],i=1;count[i];i++)if(count[i]>maxn) maxn=count[i]; //求层最大结点数return h*maxn;}//FanMao分析:如果不允许使用辅助数组,就必须在遍历的同时求出层最大结点数,形式上会复杂一些,你能写出来吗?6.53int maxh;Status Printpath_MaxdepthS1(Bitree T)//求深度等于树高度减一的最靠左的结点{Bitree pathd;maxh=Get_Depth(T); //Get_Depth函数见6.44if(maxh<2) return ERROR; //无符合条件结点Find_h(T,1);return OK;}//Printpath_MaxdepthS1void Find_h(Bitree T,int h)//寻找深度为maxh-1的结点{path[h]=T;if(h==maxh-1){for(i=1;path[i];i++) printf("%c",path[i]->data);exit; //打印输出路径}else{if(T->lchild) Find_h(T->lchild,h+1);if(T->rchild) Find_h(T->rchild,h+1);}path[h]=NULL; //回溯}//Find_h6.54Status CreateBitree_SqList(Bitree &T,SqList sa)//根据顺序存储结构建立二叉链表{Bitree ptr[st+1]; //该数组储存与sa中各结点对应的树指针if(!st){T=NULL; //空树return;}ptr[1]=(BTNode*)malloc(sizeof(BTNode));ptr[1]->data=sa.elem[1]; //建立树根T=ptr[1];for(i=2;i<=st;i++){if(!sa.elem[i]) return ERROR; //顺序错误ptr[i]=(BTNode*)malloc(sizeof(BTNode));ptr[i]->data=sa.elem[i];j=i/2; //找到结点i的双亲jif(i-j*2) ptr[j]->rchild=ptr[i]; //i是j的右孩子else ptr[j]->lchild=ptr[i]; //i是j的左孩子}return OK;}//CreateBitree_SqList6.55int DescNum(Bitree T)//求树结点T的子孙总数填入DescNum域中,并返回该数{if(!T) return -1;else d=(DescNum(T->lchild)+DescNum(T->rchild)+2); //计算公式T->DescNum=d;return d;}//DescNum分析:该算法时间复杂度为O(n),n为树结点总数.注意:为了能用一个统一的公式计算子孙数目,所以当T为空指针时,要返回-1而不是0.6.56BTNode *PreOrder_Next(BTNode *p)//在先序后继线索二叉树中查找结点p的先序后继,并返回指针{if(p->lchild) return p->lchild;else return p->rchild;}//PreOrder_Next分析:总觉得不会这么简单.是不是哪儿理解错了?6.57Bitree PostOrder_Next(Bitree p)//在后序后继线索二叉树中查找结点p的后序后继,并返回指针{if(p->rtag) return p->rchild; //p有后继线索else if(!p->parent) return NULL; //p是根结点else if(p==p->parent->rchild) return p->parent; //p是右孩子else if(p==p->parent->lchild&&p->parent->rtag)return p->parent; //p是左孩子且双亲没有右孩子else //p是左孩子且双亲有右孩子{q=p->parent->rchild;while(q->lchild||!q->rtag){if(q->lchild) q=q->lchild;else q=q->rchild;} //从p的双亲的右孩子向下走到底return q;}//else}//PostOrder_Next6.58Status Insert_BiThrTree(BiThrTree &T,BiThrTree &p,BiThrTree &x)//在中序线索二叉树T的结点p下插入子树x{if(p->ltag) //x作为p的左子树{s=p->lchild; //s为p的前驱p->ltag=Link;p->lchild=x;q=x;while(q->lchild&&!q->ltag) q=q->lchild;q->lchild=s; //找到子树中的最左结点,并修改其前驱指向sx->rtag=Thread;x->rchild=p; //x的后继指向p}else if(p->rtag) //x作为p的右子树{s=p->rchild; //s为p的后继p->rtag=Link;p->rchild=x;q=x;while(q->lchild&&!q->ltag) q=q->lchild;q->lchild=p; //找到子树中的最左结点,并修改其前驱指向px->rtag=Thread;x->rchild=s; //x的后继指向p的后继}else//x作为p的左子树,p的左子树作为x的右子树{s=p->lchild;t=s;while(t->lchild&&!t->ltag) t=t->lchild;u=t->lchild; //找到p的左子树的最左节点t和前驱up->lchild=x;x->rtag=Link;x->rchild=s; //x作为p的左子树,p的左子树s作为x的右子树t->lchild=x;q=x;while(q->lchild&&!q->ltag) q=q->lchild;q->lchild=u; //找到子树中的最左结点,并修改其前驱指向u}return OK;}//Insert_BiThrTree6.59void Print_CSTree(CSTree T)//输出孩子兄弟链表表示的树T的各边{for(child=T->firstchild;child;child=child->nextsib){printf("(%c,%c),",T->data,child->data);Print_CSTree(child);}}//Print_CSTree6.60int LeafCount_CSTree(CSTree T)//求孩子兄弟链表表示的树T的叶子数目{if(!T->firstchild) return 1; //叶子结点else{count=0;for(child=T->firstchild;child;child=child->nextsib)count+=LeafCount_CSTree(child);return count; //各子树的叶子数之和}}//LeafCount_CSTree6.61int GetDegree_CSTree(CSTree T)//求孩子兄弟链表表示的树T的度{if(!T->firstchild) return 0; //空树else{degree=0;for(p=T->firstchild;p;p=p->nextsib) degree++;//本结点的度for(p=T->firstchild;p;p=p->nextsib){d=GetDegree_CSTree(p);if(d>degree) degree=d; //孩子结点的度的最大值}return degree;}//else}//GetDegree_CSTree6.62int GetDepth_CSTree(CSTree T)//求孩子兄弟链表表示的树T的深度{if(!T) return 0; //空树else{for(maxd=0,p=T->firstchild;p;p=p->nextsib)if((d=GetDepth_CSTree(p))>maxd) maxd=d; //子树的最大深度return maxd+1;}}//GetDepth_CSTree6.63int GetDepth_CTree(CTree A)//求孩子链表表示的树A的深度{return SubDepth(A.r);}//GetDepth_CTreeint SubDepth(int T)//求子树T的深度{if(!A.nodes[T].firstchild) return 1;for(sd=1,p=A.nodes[T].firstchild;p;p=p->next)if((d=SubDepth(p->child))>sd) sd=d;return sd+1;}//SubDepth6.64int GetDepth_PTree(PTree T)//求双亲表表示的树T的深度{maxdep=0;for(i=0;i<T.n;i++){dep=0;for(j=i;j>=0;j=T.nodes[j].parent) dep++; //求每一个结点的深度if(dep>maxdep) maxdep=dep;}return maxdep;}//GetDepth_PTree6.65char Pred,Ind; //假设前序序列和中序序列已经分别储存在数组Pre和In中Bitree Build_Sub(int Pre_Start,int Pre_End,int In_Start,int In_End)//由子树的前序和中序序列建立其二叉链表{sroot=(BTNode*)malloc(sizeof(BTNode)); //建根sroot->data=Pre[Pre_Start];for(i=In_Start;In[i]!=sroot->data;i++); //在中序序列中查找子树根leftlen=i-In_Start;rightlen=In_End-i; //计算左右子树的大小if(leftlen){lroot=Build_Sub(Pre_Start+1,Pre_Start+leftlen,In_Start,In_Start+leftlen-1);sroot->lchild=lroot;} //建左子树,注意参数表的计算if(rightlen){rroot=Build_Sub(Pre_End-rightlen+1,Pre_End,In_End-rightlen+1,In_End);sroot->rchild=rroot;} //建右子树,注意参数表的计算return sroot; //返回子树根}//Build_Submain(){...Build_Sub(1,n,1,n); //初始调用参数,n为树结点总数...}分析:本算法利用了这样一个性质,即一棵子树在前序和中序序列中所占的位置总是连续的.因此,就可以用起始下标和终止下标来确定一棵子树.Pre_Start,Pre_End,In_Start和In_End分别指示子树在前序子序列里的起始下标,终止下标,和在中序子序列里的起始和终止下标.6.66typedef struct{CSNode *ptr;CSNode *lastchild;} NodeMsg; //结点的指针和其最后一个孩子的指针Status Build_CSTree_PTree(PTree T)//由树T的双亲表构造其孩子兄弟链表{NodeMsg Tree[MAXSIZE];for(i=0;i<T.n;i++){Tree[i].ptr=(CSNode*)malloc(sizeof(CSNode));Tree[i].ptr->data=T.node[i].data; //建结点if(T.nodes[i].parent>=0) //不是树根{j=T.nodes[i].parent; //本算法要求双亲表必须是按层序存储if(!(Tree[j].lastchild)) //双亲当前还没有孩子Tree[j].ptr->firstchild=Tree[i].ptr; //成为双亲的第一个孩子else //双亲已经有了孩子Tree[j].lastchild->nextsib=Tree[i].ptr; //成为双亲最后一个孩子的下一个兄弟 Tree[j].lastchild=Tree[i].ptr; //成为双亲的最后一个孩子}//if}//for}//Build_CSTree_PTree6.67typedef struct{char data;CSNode *ptr;CSNode *lastchild;} NodeInfo; //结点数据,结点指针和最后一个孩子的指针Status CreateCSTree_Duplet(CSTree &T)//输入二元组建立树的孩子兄弟链表{NodeInfo Treed;n=1;k=0;if(getchar()!='^') return ERROR; //未按格式输入if((c=getchar())=='^') T=NULL; //空树Tree[0].ptr=(CSNode*)malloc(sizeof(CSNode));Tree[0].data=c;Tree[0].ptr->data=c;while((p=getchar())!='^'&&(c=getchar())!='^'){Tree[n].ptr=(CSNode*)malloc(sizeof(CSNode));Tree[n].data=c;Tree[n].ptr->data=c;for(k=0;Tree[k].data!=p;k++); //查找当前边的双亲结点if(Tree[k].data!=p) return ERROR; //未找到:未按层序输入r=Tree[k].ptr;if(!r->firstchild)r->firstchild=Tree[n].ptr;else Tree[k].lastchild->nextsib=Tree[n].ptr;Tree[k].lastchild=Tree[n].ptr; //这一段含义同上一题n++;}//whilereturn OK;}//CreateCSTree_Duplet6.68Status CreateCSTree_Degree(char node[ ],int degree[ ])//由结点的层序序列和各结点的度构造树的孩子兄弟链表{CSNode * ptr[MAXSIZE]; //树结点指针的辅助存储ptr[0]=(CSNode*)malloc(sizeof(CSNode));i=0;k=1; //i为当前结点序号,k为当前孩子的序号while(node[i]){ptr[i]->data=node[i];d=degree[i];if(d){ptr[k]=(CSNode*)malloc(sizeof(CSNode)); //k为当前孩子的序号ptr[i]->firstchild=ptr[k]; //建立i与第一个孩子k之间的联系for(j=2;j<=d;j++){ptr[k]=(CSNode*)malloc(sizeof(CSNode));ptr[k-1]->nextsib=ptr[k]; //当结点的度大于1时,为其孩子建立兄弟链表k++;}//forptr[k-1]->nextsib=NULL;}//ifi++;}//while}//CreateCSTree_Degree6.69void Print_BiTree(BiTree T,int i)//按树状打印输出二叉树的元素,i表示结点所在层次,初次调用时i=0{if(T->rchild) Print_BiTree(T->rchild,i+1);for(j=1;j<=i;j++) printf(" "); //打印i个空格以表示出层次printf("%c\n",T->data); //打印T元素,换行if(T->lchild) Print_BiTree(T->rchild,i+1);}//Print_BiTree分析:该递归算法实际上是带层次信息的中序遍历,只不过按照题目要求,顺序为先右后左.6.70Status CreateBiTree_GList(BiTree &T)//由广义表形式的输入建立二叉链表{c=getchar();if(c=='#') T=NULL; //空子树else{T=(CSNode*)malloc(sizeof(CSNode));T->data=c;if(getchar()!='(') return ERROR;if(!CreateBiTree_GList(pl)) return ERROR;T->lchild=pl;if(getchar()!=',') return ERROR;if(!CreateBiTree_GList(pr)) return ERROR;T->rchild=pr;if(getchar()!=')') return ERROR; //这些语句是为了保证输入符合A(B,C)的格式 }return OK;}//CreateBiTree_GList6.71void Print_CSTree(CSTree T,int i)//按凹入表形式打印输出树的元素,i表示结点所在层次,初次调用时i=0{for(j=1;j<=i;j++) printf(" "); //留出i个空格以表现出层次printf("%c\n",T->data); //打印元素,换行for(p=T->firstchild;p;p=p->nextsib)Print_CSTree(p,i+1); //打印子树}//Print_CSTree6.72void Print_CTree(int e,int i)//按凹入表形式打印输出树的元素,i表示结点所在层次{for(j=1;j<=i;j++) printf(" "); //留出i个空格以表现出层次printf("%c\n",T.nodes[e].data); //打印元素,换行for(p=T.nodes[e].firstchild;p;p=p->next)Print_CSTree(p->child,i+1); //打印子树}//Print_CSTreemain(){...Print_CTree(T.r,0); //初次调用时i=0...}//main6.73char c; //全局变量,指示当前字符Status CreateCSTree_GList(CSTree &T)//由广义表形式的输入建立孩子兄弟链表{c=getchar();T=(CSNode*)malloc(sizeof(CSNode));T->data=c;if((c=getchar())=='(') //非叶结点{if(!CreateCSTree_GList(fc)) return ERROR; //建第一个孩子T->firstchild=fc;for(p=fc;c==',';p->nextsib=nc,p=nc) //建兄弟链if(!CreateCSTree_GList(nc)) return ERROR;p->nextsib=NULL;if((c=getchar())!=')') return ERROR; //括号不配对}else T->firtchild=NULL; //叶子结点return OK;}//CreateBiTree_GList分析:书后给出了两个间接递归的算法,事实上合成一个算法在形式上可能更好一些.本算法另一个改进之处在于加入了广义表格式是否合法的判断.6.74void PrintGlist_CSTree(CSTree T)//按广义表形式输出孩子兄弟链表表示的树{printf("%c",T->data);if(T->firstchild) //非叶结点{printf("(");for(p=T->firstchild;p;p=p->nextsib){PrintGlist_CSTree(p);if(p->nextsib) printf(","); //最后一个孩子后面不需要加逗号}printf(")");}//if}//PrintGlist_CSTree6.75char c;int pos=0; //pos是全局变量,指示已经分配到了哪个结点Status CreateCTree_GList(CTree &T,int &i)//由广义表形式的输入建立孩子链表{c=getchar();T.nodes[pos].data=c;i=pos++; //i是局部变量,指示当前正在处理的子树根if((c=getchar())=='(') //非叶结点{CreateCTree_GList();p=(CTBox*)malloc(sizeof(CTBox));T.nodes[i].firstchild=p;p->child=pos; //建立孩子链的头for(;c==',';p=p->next) //建立孩子链{CreateCTree_GList(T,j); //用j返回分配得到的子树根位置p->child=j;p->next=(CTBox*)malloc(sizeof(CTBox));}p->next=NULL;if((c=getchar())!=')') return ERROR; //括号不配对}//ifelse T.nodes[i].firtchild=NULL; //叶子结点return OK;}//CreateBiTree_GList分析:该算法中,pos变量起着"分配"结点在表中的位置的作用,是按先序序列从上向下分配,因此树根T.r一定等于0,而最终的pos值就是结点数T.n.6.76void PrintGList_CTree(CTree T,int i)//按广义表形式输出孩子链表表示的树{printf("%c",T.nodes[i].data);if(T.nodes[i].firstchild) //非叶结点{printf("(");for(p=T->firstchild;p;p=p->nextsib){PrintGlist_CSTree(T,p->child);if(p->nextsib) printf(","); //最后一个孩子后面不需要加逗号}printf(")");}//if}//PrintGlist_CTree另解:第六章树习题及答案(上)题号:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819 20 21一、基础知识题6.1.假设在树中,结点x是结点y的双亲时,用(x,y)来表示树边.已知一棵树边的集合为{(i,m),(i,n),(e,i),(b,e),(b,d),(a,b),(g,j),(g,k),(c,g),(c,f),(h,l),(c,h),(a,c)}用树形表示法出此树,并回答下列问题:(1)哪个是根结点? (2)哪些是叶结点? (3)哪个是g的双亲? (4)哪些是g的祖先?(5)哪些是g的孩子? (6)哪些是e的子孙? (7)哪些是e的兄弟?哪些是f的兄弟?(8)结点b和n的层次各是多少? (9)树的深度是多少? (10)以结点c为根的子树的深度是多少? (11)树的度数是多少?6.1: 图见网页动画。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
19. 若 有一个结点是二叉树中某个子树的前序遍历结果序列的最后一个结点,则它一定是该子树的中序遍 历结果序列的最后一个结点。
20. 若 有一个叶子结点是二叉树中某个子树的中序遍历结果序列的最后一个结点,则它一定是该子树的前 序遍历结果序列的最后一个结点。
21. 若 有一个叶子结点是二叉树中某个子树的前序遍历结果序列的最后一个结点,则它一定是该子树的中 序遍历结果序列的最后一个结点。
,分别写出先根、后根、
4. 已知一棵二叉树的前序和中序序列,求该二叉树的后序序列。 前序序列: A, B, C, D, E, F, G, H, I, J 中序序列: C, B, A, E, F, D, I, H, J, G 后序序列: ______________________
2. 当从一个小根堆(最小堆)中删除一个元素时,需要把堆尾元素填补到堆顶位置,然后再按条件把它 逐层向下调整,直到调整到合适位置为止。
3. 二叉树是一棵无序树。
4. 在一棵二叉树中,假定每个结点只有左子女,没有右子女,对它分别进行前序遍历和后序遍历,则具 有相同的遍历结果。
5. 在一棵二叉树中,假定每个结点只有左子女,没有右子女,对它分别进行中序遍历和后序遍历,则具 有相同的遍历结果。
3. 叶子 8. 6 13. 2 h
18. 2i+2 23. n 1 -1
4. 2 9. 63 14. 2 h+1 -1
19. 最小值 24. 19
5. 3 10. 3 15. 2 20. 最大值
3
三、判断题
1. 当向一个小根堆(最小堆)中插入一个具有最小值的元素时,该元素需要逐层向上调整,直到被调整 到堆顶位置为止。
15. 若 将一棵树 A (B (C, D, E), F (G (H), I) ) 叉树中度为 2 的结点个数为 ______ 个。
按照左子女 - 右兄弟表示法转换为二叉树,该二
16. 一 棵树按照左子女 - 右兄弟表示法转换成对应的二叉树,则该二叉树中
______ 结点肯定没有右子女。
17. 在 一个堆的顺序存储中, 若一个元素的下标为 i ( 0≤ i ≤n-1 ),则它的左子女元素的下标为 ______ 。
)。
A. 55
B. 29
C. 58
D. 38
17. 一 棵树的广义表表示为 a (b, c (e, f (g) ), d)
非空的结点个数为(
)。
A. 1
B. 2
C. 3
,当用左子女 - 右兄弟链表表示时,右指针域 D. 4
18. 向 具有 n 个结点的堆中插入一个新元素的时间复杂度为(
一棵二叉树的广义表表示为 A (B ( , D (G) ), C (E, F) ) 序、后序、按层遍历的结果。 前序: __________________________ 中序: __________________________ 后序: __________________________ 按层: __________________________
24. 将 含有 82 个结点的完全二叉树从根结点开始顺序编号,根结点为第
0 号,其他结点自上向下,同一
层自左向右连续编号。则第 40 号结点的双亲结点的编号为 ________ 。
参考答案:
1. n-1 6. 4 11. 6 16. 根 21. 132
2. 树根 7. 85 12. 4 17. 2i+1 22. n 2 +n 3+n 4
9. 对于一棵具有 n 个结点,其高度为 h 的二叉树,进行任一种次序遍历的时间复杂度为
O(n) 。
10. 对 于一棵具有 n 个结点,其高度为 h 的二叉树,进行任一种次序遍历的时间复杂度为
O(h) 。
11. 对 于一棵具有 n 个结点的任何二叉树,进行前序、中序或后序的任一种次序遍历的空间复杂度为 O(log 2n) 。
,结点 f 的层
6. 假定一棵三叉树(即度为 3 的树)的结点个数为 50 ,则它的最小高度为 ______ 。假定根结点的高度 为 0。
7. 在一棵高度为 3 的四叉树中,最多含有 ______ 结点。
8. 在一棵三叉树中,度为 3 的结点数有 2 个,度为 2 的结点数有 1 个,度为 1 的结点数为 2 个,那么 度为 0 的结点数有 ______ 个。
,分别写出对它进行前序、中
3. 假定一棵普通树的广义表表示为 按层遍历的结果。
a (b (e), c (f (h, i, j), g), d)
先根: __________________________
后根: __________________________
按层: __________________________
第六章 树和二叉树 试题
一、单项选择题
1. 树中所有结点的度等于所有结点数加(
)。
A. 0
B. 1
C. -1
D. 2
2. 在一棵树中, (
A.
分支结点
)没有前驱结点。 B. 叶结点
C. 根结点
D. 空结点
3. 在一棵二叉树的二叉链表中,空指针域数等于非空指针域数加(
A. 2
B. 1
C. 0
)。 D. -1
2
9. 一棵高度为 5 的完全二叉树中,最多包含有 ______ 个结点。假定根结点的高度为 0 。
10. 假 定一棵树的广义表表示为 A (B (C, D (E, F, G), H (I, J) ) ) 假定根结点的高度为 0 。
,则该树的高度为 ______ 。
11. 在 一棵二叉树中,假定度为 2 的结点个数为 5 个,度为 1 的结点个数为 6 个,则叶结点数为 ______ 个。
2. 在一棵树中, ______ 结点没有前驱结点。
3. 在一棵树中, ______ 结点没有后继结点。
4. 一棵树的广义表表示为 a (b (c, d (e, f), g (h) ), i (j, k (x, y) ) ) 有祖先的结点数为 ______ 个。
,结点 k 的所
5. 一棵树的广义表表示为 a (b (c, d (e, f), g (h) ), i (j, k (x, y) ) ) 数为 ______ 。假定根结点的层数为 0 。
12. 在 一棵具有 n 个结点的线索化二叉树中,每个结点的指针域可能指向子女结点,也可能作为线索,使
之指向某一种遍历次序的前驱或后继结点,所有结点中作为线索使用的指针域共有
n 个。
13. 线 索化二叉树中的每个结点通常包含有 5 个数据成员。
14. 线 索化二叉树中的每个结点通常包含有 3 个数据成员。
A.
(n-1)/2
B. n/2
C. n/2
)。假定树根结点的编号为 0 。 D. n/2 -1
9. 在一棵完全二叉树中,若编号为
点的编号为 0
A. 2i
B. 2i-1
i 的结点存在左孩子,则左子女结点的编号为(
C. 2i+1
D. 2i+2
)。假定根结
10. 在 一棵完全二叉树中,假定根结点的编号为
为(
18. 在 一个堆的顺序存储中, 若一个元素的下标为 i ( 0≤ i ≤n-1 ),则它的右子女元素的下标为 ______ 。
19. 在 一个小根堆(即最小堆)中,堆顶结点的值是所有结点中的
______ 。
20. 在 一个大根堆(即最大堆)中,堆顶结点的值是所有结点中的 21. 6 个结点可构造出 ________ 种不同形态的二叉树。
<F, I>} ,则该树的高度为(
)。假定根结点的高度为 0。
A. 2
B. 3
C. 4
D. 5
15. 利 用 n 个值作为叶结点上的权值生成的霍夫曼树中共包含有(
A. n
B. n+1
C. 2*n
)个结点。 D. 2*n-1
16. 利 用 3, 6, 8, 12 这四个值作为叶结点的权值生成一棵霍夫曼树,该树的带权路径长度为(
6. 在一棵高度为 h (假定根结点的层号为 0 )的完全二叉树中,所含结点个数不小于(
)。
A. 2
h-1
B. 2 h+1
C. 2 h-1
D. 2 h
7. 在一棵具有 35 个结点的完全二叉树中,该树的高度为(
A. 5
B. 6
C. 7
)。假定空树的高度为 -1 。 D. 8
8. 在一棵具有 n 个结点的完全二叉树中,分支结点的最大编号为(
B. O(n)
C. O(log 2n) D. O(nlog
2 n)
参考答案:
1. C 6. D 11. A 16. A
2. C 7. A 12. B 17. C
3. A 8. D 13. B 18. C
4. C 9. C 14. B
5. A 10. B 15. D
二、填空题
1. 对于一棵具有 n 个结点的树,该树中所有结点的度数之和为 ______ 。
4. 在一棵具有 n 个结点的二叉树中,所有结点的空子树个数等于(
A. n
B. n-1
C. n+1
)。 D. 2*n
5. 在一棵具有 n 个结点的二叉树的第 i 层上(假定根结点为第 0 层,i 大于等于 0 而小于等于树的高度) ,
最多具有(
A. 2
i
)个结点。 B. 2 i+1
C. 2 i-1
D. 2 n
)。
A.
(i+1)/2
B. (i-1)/2
0 ,则对于编号为 i ( i >0 )的结点,其双亲结点的编号
C. i/2
相关文档
最新文档