中国研究生数学建模竞赛历届竞赛题目(截止2016年)
2016数学建模国赛赛题

2016数学建模国赛赛题
2016年数学建模国赛赛题一般是指《数学建模入门教程》中的赛题,主要
有以下三类:
1. 问题一:水深测量与海洋动力现象模拟。
要求:使用集中质量法将系统中的各个物体视为一个质点,对各个物体建立静力平衡方程,在水深18m时给定浮标在海水中所受浮力,从而根据建
立的平衡方程求出各物体的倾斜角度,再根据几何关系求出海域的模拟深度。
通过不断修正浮标的浮力,使得海域的模拟深度等于18m,最终求得风速
分别为12m/s和24m/s时浮标的吃水深度和各节钢管的倾斜角度。
2. 问题二:交通流模型与小区开放对周边道路通行的影响。
要求:利用元胞自动机的方法,分别分析不同道路车量位置与车流量变化、负荷系数以及基于交通流的车速。
先对不同小区进行划分,再利用问题一的方法和结论,分别模拟不同小区、不同路段开放小区对车辆通行情况的分析。
最后根据第一问选取出的六个指标,依据其计算公式,分别得出所有样本的所有指标值。
再根据这些指标值,利用投影寻踪法,得到不同小区、不同路段下,开放小区对周围道路通行的影响。
3. 问题三: Braess 悖论。
要求:对于这个问题没有给出具体的要求,因为这是一个理论问题,主要探讨的是网络流理论中的一个著名悖论。
请注意,由于题目较为复杂,建议在数学建模课程或相关论坛中寻找更详细的解答。
中国研究生数学建模竞赛历届竞赛题目截止

中国研究生数学建模竞赛历届竞赛题目第一届2004年题目A题发现黄球并定位B题实用下料问题C题售后服务数据的运用D题研究生录取问题第二届2005年题目A题HighwayTravelingtimeEstimateandOptimalRoutingB题空中加油C题城市交通管理中的出租车规划D题仓库容量有限条件下的随机存贮管理第三届2006年题目A题AdHoc网络中的区域划分和资源分配问题B题确定高精度参数问题C题维修线性流量阀时的内筒设计问题D题学生面试问题第四届2007年题目A题建立食品卫生安全保障体系数学模型及改进模型的若干理论问题B题械臂运动路径设计问题C题探讨提高高速公路路面质量的改进方案D题邮政运输网络中的邮路规划和邮车调运第五届2008年题目A题汶川地震中唐家山堪塞湖泄洪问题B题城市道路交通信号实时控制问题C题货运列车的编组调度问题D题中央空调系统节能设计问题第六届2009年题目A题我国就业人数或城镇登记失业率的数学建模B题枪弹头痕迹自动比对方法的研究C题多传感器数据融合与航迹预测D题110警车配置及巡逻方案第七届2010年题目A题确定肿瘤的重要基因信息B题与封堵渍口有关的重物落水后运动过程的数学建模C题神经元的形态分类和识别D题特殊工件磨削加工的数学建模第八届2011年题目A题基于光的波粒二象性一种猜想的数学仿真B题吸波材料与微波暗室问题的数学建模C题小麦发育后期茎轩抗倒性的数学模型D题房地产行业的数学建模第九届2012年题目A题基因识别问题及其算法实现B题基于卫星无源探测的空间飞行器主动段轨道估计与误差分析C题有杆抽油系统的数学建模及诊断D题基于卫星云图的风矢场(云导风)度量模型与算法探讨第十届2013年题目A题变循环发动机部件法建模及优化B题功率放大器非线性特性及预失真建模C题微蜂窝环境中无线接收信号的特性分析D题空气中PM2.5问题的研究attachmentE题中等收入定位与人口度量模型研究F题可持续的中国城乡居民养老保险体系的数学模型研究第十一届2014年题目A题小鼠视觉感受区电位信号(LFP)与视觉刺激之间的关系研究B题机动目标的跟踪与反跟踪C题无线通信中的快时变信道建模D题人体营养健康角度的中国果蔬发展战略研究E题乘用车物流运输计划问题第十二届2015年题目A题水面舰艇编队防空和信息化战争评估模型B题数据的多流形结构分析C题移动通信中的无线信道“指纹”特征建模D题面向节能的单/多列车优化决策问题E题数控加工刀具运动的优化控制F题旅游路线规划问题第十三届2016年题目A题多无人机协同任务规划B题具有遗传性疾病和性状的遗传位点分析C题基于无线通信基站的室内三维定位问题D题军事行动避空侦察的时机和路线选择E题粮食最低收购价政策问题研究数据来源:。
2016 全国研究生 数学建模竞赛 B题

2016年全国研究生数学建模竞赛B题具有遗传性疾病和性状的遗传位点分析人体的每条染色体携带一个DNA分子,人的遗传密码由人体中的DNA携带。
DNA是由分别带有A,T,C,G四种碱基的脱氧核苷酸链接组成的双螺旋长链分子。
在这条双螺旋的长链中,共有约30亿个碱基对,而基因则是DNA长链中有遗传效应的一些片段。
在组成DNA 的数量浩瀚的碱基对(或对应的脱氧核苷酸)中,有一些特定位置的单个核苷酸经常发生变异引起DNA的多态性,我们称之为位点。
染色体、基因和位点的结构关系见图1.在DNA长链中,位点个数约为碱基对个数的1/1000。
由于位点在DNA长链中出现频繁,多态性丰富,近年来成为人们研究DNA遗传信息的重要载体,被称为人类研究遗传学的第三类遗传标记。
大量研究表明,人体的许多表型性状差异以及对药物和疾病的易感性等都可能与某些位点相关联,或和包含有多个位点的基因相关联。
因此,定位与性状或疾病相关联的位点在染色体或基因中的位置,能帮助研究人员了解性状和一些疾病的遗传机理,也能使人们对致病位点加以干预,防止一些遗传病的发生。
近年来,研究人员大都采用全基因组的方法来确定致病位点或致病基因,具体做法是:招募大量志愿者(样本),包括具有某种遗传病的人和健康的人,通常用1表示病人,0表示健康者。
对每个样本,采用碱基(A,T,C,G)的编码方式来获取每个位点的信息(因为染色体具有双螺旋结构,所以用两个碱基的组合表示一个位点的信息);如表1中,在位点rs100015位置,不同样本的编码都是T和C的组合,有三种不同编码方式TT,TC和CC。
类似地其他的位点虽然碱基的组合不同,但也只有三种不同编码。
研究人员可以通过对样本的健康状况和位点编码的对比分析来确定致病位点,从而发现遗传病或性状的遗传机理。
1表1. 在对每个样本采集完全基因组信息后,一般有以下的数据信息(以6个样本为例,其中3个病人,3个健康者):2基因位点染色体图1. 染色体、基因和位点的结构关系.本题目针对某种遗传疾病(简称疾病A)提供1000个样本的信息,这些信息包括这1000个样本的疾病信息、样本的9445个位点编码信息,以及包含这些位点的基因信息。
中国研究生数学建模竞赛试题

中国研究生数学建模竞赛试题
假设一个线性回归模型的系数为β0=3, β1=2,则该模型的截距和斜率分别为:
A. 截距为3,斜率为2
B. 截距为2,斜率为3
C. 截距为3,斜率为-2
D. 截距为-2,斜率为3
在假设检验中,如果p值小于显著性水平α,则我们:
A. 接受原假设
B. 拒绝原假设
C. 不能确定是否接受或拒绝原假设
D. 以上都不对
下列哪一项不是聚类分析的主要目标?
A. 发现数据中的潜在结构
B. 对数据进行分类
C. 预测未来的数据点
D. 可视化数据的分布
对于一个随机变量X,如果其期望E(X)存在,则下列性质正确的是:
A. E(aX + b) = aE(X) + b,其中a和b是常数
B. E(X^2) = [E(X)]^2
C. E(X^2) ≥ [E(X)]^2
D. E(X) = E(-X)
在时间序列分析中,如果时间序列是平稳的,则:
A. 它的均值和方差都是常数
B. 它的均值随时间变化
C. 它的方差随时间变化
D. 以上都不对
对于二元正态分布,下列说法正确的是:
A. 边缘分布一定是一元正态分布
B. 条件分布一定不是正态分布
C. 协方差矩阵一定是正定的
D. 相关系数一定是1或-1
在多元线性回归模型中,如果增加一个解释变量,则模型的:
A. R平方一定增加
B. 调整R平方一定增加
C. F统计量一定增加
D. 以上都不对
假设检验中第一类错误的概率通常表示为:
A. α
B. β
C. 1-α
D. 1-β。
全国研究生数学建模竞赛题目

中国研究生数学建模竞赛试题汇总2021赛题汇总2021-A:相关矩阵组的低复杂度计算和存储建模2021-B:空气质量预报二次建模2021-C:帕金森病的脑深部电刺激治疗建模研究2021-D:抗乳腺癌候选药物的优化建模2021-E:信号干扰下的超宽带(UWB)精确定位问题2021-F:航空公司机组优化排班问题2020赛题汇总2020-A:芯片相噪算法2020-B:汽油辛烷值建模2020-C:面向康复工程的脑信号分析和判别建模2020-D:无人机集群协同对抗2020-E:能见度估计与预测2020-F:飞行器质心平衡供油策略优化2019赛题汇总2019-A: 无线智能传播模型2019-B:天文导航中的星图识别2019-C:视觉情报信息分析2019-D:汽车行驶工况构建2019-E:全球变暖?2019-F:多约束条件下智能飞行器航迹快速规划2018赛题汇总2018-A :关于跳台跳水体型系数设置的建模分析2018-B:光传送网建模与价值评估2018-C:对恐怖袭击事件记录数据的量化分析2018-D:基于卫星高度计海面高度异常资料获取潮汐调和常数方法及应用2018-E:多无人机对组网雷达的协同干扰2018-F:机场新增卫星厅对中转旅客影响的评估方法2017赛题汇总2017-A:无人机在抢险救灾中的优化运用2017-B:面向下一代光通信的VCSEL激光器仿真模型(华为命题)2017-C:航班恢复问题2017-D:基于监控视频的前景目标提取2017-E:多波次导弹发射中的规划问题2017-F:构建地下物流系统网络2016赛题汇总2016-A:多无人机协同任务规划2016-B:具有遗传性疾病和性状的遗传位点分析2016-C:基于无线通信基站的室内三维定位问题2016-D:军事行动避空侦察的时机和路线选择2016-E:粮食最低收购价政策问题研究2015赛题汇总2015-A:水面舰艇编队防空和信息化战争评估模型2015-B:数据的多流形结构分析2015-C:移动通信中的无线信道“指纹”特征建模2015-D:面向节能的单/多列车优化决策问题2015-E:数控加工刀具运动的优化控制2015-F:旅游路线规划问题2014赛题汇总2014-A:小鼠视觉感受区电位信号(LFP)与视觉刺激之间的关系研究2014-B:机动目标的跟踪与反跟踪2014-C:无线通信中的快时变信道建模2014-D:人体营养健康角度的中国果蔬发展战略研究2014-E:乘用车物流运输计划问题2013赛题汇总2013-A:变循环发动机部件法建模及优化2013-B:功率放大器非线性特性及预失真建模2013-C:微蜂窝环境中无线接收信号的特性分析2013-D:空气中PM2.5问题的研究2013-E:中等收入定位与人口度量模型研究2013-F:可持续的中国城乡居民养老保险体系的数学模型研究2012赛题汇总2012-A:基因识别问题及其算法实现2012-B:基于卫星无源探测的空间飞行器主动段轨道估计与误差分析2012-C:有杆抽油系统的数学建模及诊断2012-D:基于卫星云图的风矢场(云导风)度量模型与算法探讨2011赛题汇总2011-A:基于光的波粒二象性一种猜想的数学仿真2011-B:吸波材料与微波暗室问题的数学建模2011-C:小麦发育后期茎秆抗倒性的数学模型2011-D:房地产行业的数学建模2010赛题汇总2010-A:确定肿瘤的重要基因信息2010-B:与封堵溃口有关的重物落水后运动过程的数学建模2010-C:神经元的形态分类和识别2010-D:特殊工件磨削加工的数学建模2009赛题汇总2009-A:我国就业人数或城镇登记失业率的数学建模2009-B:枪弹头痕迹自动比对方法的研究2009-C:多传感器数据融合与航迹预测2009-D:110警车配置及巡逻方案2008赛题汇总2008-A:汶川地震中唐家山堰塞湖泄洪问题2008-B:城市道路交通信号实时控制问题2008-C:货运列车的编组调度问题2008-D:中央空调系统节能设计问题2007赛题汇总2007-A:建立食品卫生安全保障体系数学模型及改进模型的若干理论问题2007-B:机械臂运动路径设计问题2007-C:探讨提高高速公路路面质量的改进方案2007-D:邮政运输网络中的邮路规划和邮车调度2006赛题汇总2006-A:Ad Hoc网络中的区域划分和资源分配问题2006-B:确定高精度参数问题2006-C:维修线性流量阀时的内筒设计问题2006-D:学生面试问题2005赛题汇总2005-A:Highway Traveling time Estimate and Optimal Routing 2005-B:空中加油2005-C:城市交通管理中的出租车规划2005-D:仓库容量有限条件下的随机存贮管理2004赛题汇总2004A:发现黄球并定位2004B:实用下料问题2004C:售后服务数据的运用2004D:研究生录取问题。
2016年研究生数学建模竞赛b题综述

2016年研究生数学建模竞赛b题综述
2016年研究生数学建模竞赛B题是一个关于城市交通流量控制的问题。
本题的背景是一个虚拟的城市,城市中有多个经过交叉口的道路,每条道路上的车辆数量和行驶速度都会影响整个城市的交通流量。
竞赛要求参赛者设计一个交通控制系统,以最大限度地提高城市的交通流量,并减少交通拥堵状况。
在这个问题中,参赛者需要考虑多个因素。
首先,他们需要确定每个交叉口的信号灯的时序,以确保车辆能够顺利通过交叉口。
其次,他们需要设计一个算法来优化整个城市的交通流量。
这可以包括调整车辆的行驶速度,改变车辆的路线或者限制车辆的数量等。
最后,他们还需要考虑交通规则和交通事故对交通流量的影响。
为了解决这个问题,参赛者可以使用数学建模的方法。
他们可以建立一个数学模型来描述城市中的交通流量,然后使用优化算法来寻找最佳的交通控制策略。
在建模过程中,他们需要考虑交通流量的变化、信号灯的时序、车辆的行驶速度等因素,并将其纳入到数学模型中。
在解决这个问题的过程中,参赛者还可以借鉴现有的交通控制方法和算法。
例如,他们可以使用交叉口控制算法、最短路径算法或者交通流量模型等来优化交通流量。
此外,他们还可以使用计算机模拟来测试和验证他们的交通控制系统。
总之,2016年研究生数学建模竞赛B题是一个关于城市交通流量控制的问题。
参赛者需要设计一个交通控制系统,以最大限度地提高城市的交通流量,并减少交通拥堵状况。
他们可以使用数学建模的方法,并借鉴现有的交通控制方法和算法来解决这个问题。
2016数学建模国赛

4
为浮标游动范围。最后对结果进行灵敏度分析,通过在极小范围内改变风速,看结 果
是否有较大的变动来验证结果的稳定性。
。 图 1 问题一分析流程图 对于问题二,要求计算风速为 36m / s 时钢桶和各节钢管的倾斜角度、锚链形状 和浮标的游动区域,并建立使钢桶的倾斜角度不超过 5 度、锚链在锚点与海床的夹 角不超过 16 度的重物球质量计算模型。对于第一个问题,可建立计算锚链在锚点 与海床夹角的模型。将最后一节链节与海床的夹角视为锚链与海床夹角,在链节两 端设坐标,结合问题一的受力分析建立模型,根据题中数据进行求解。以链节两端 坐标的斜率大小来判断是否满足锚链在锚点与海床的夹角不超过 16 度的条件,且 计算锚链与锚连接处坐标的解即为所需结果。对于第二个问题,可建立重物球质量 计算模型。需满足的条件一为钢桶的倾斜角度不超过 5 度,二为浮标不得完全沉入 水中,三为锚链在锚点与海床的夹角不超过 16 度。对前两个条件,可用问题一建 立的计算模型将临界值带入并求解出重物球质量范围;对于第三个条件,可用前面 建立的锚链在锚点与海床夹角计算模型代入临界值求解出。将得出的三个范围取交 集,得到最终结果。最后分别对钢管倾斜角度、浮标吃水深度、锚链在锚点与海床 的夹角与重物球质量的正反相关性进行分析,验证临界值取值的正误,若取值正确, 则结果可信。 对于问题三,要求给出考虑风力、水流力和水深情况下的系泊系统设计。可建 立多目标规划模型来求解问题,首先根据问题一对浮标、钢管、钢桶、锚链进行受 力分析,钢管和钢桶因为受力情况相似且受力平衡,故可看作一个整体根据虚位移 原理进行分析。然后分析系统的约束条件,由题中信息可知设计的系泊系统需满足 锚链末端与锚连接处的切线方向与海床的夹角不超过 16 度,根据问题二中锚链在
F r WF 0
全国研究生数学建模竞赛历年题目

全国研究生数学建模竞赛历年题目
以下是全国研究生数学建模竞赛历年题目的一些例子:
1. 2019年题目:小型机翼气动弹性特性分析及优化设计
2. 2018年题目:风险规避投资组合模型
3. 2017年题目:基于某高速磁悬浮列车系统动力学模型的优化设计
4. 2016年题目:区域旅游吸引力与经济发展耦合对策研究
5. 2015年题目:地铁线网方案设计
6. 2014年题目:基于对抗博弈的恶意代码入侵防御策略设计
7. 2013年题目:煤矿安全监控系统优化设计
8. 2012年题目:基于机器学习的电子商务推荐系统设计
以上只是一些例子,每年竞赛的题目都不同,但都涵盖了数学建模的基本内容,如模型构建、问题分析、数据处理、优化设计等。
具体的题目可以通过全国研究生数学建模竞赛的官方网站或相关渠道获取。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国研究生数学建模竞赛历届竞赛题目
第一届2004年题目
A题发现黄球并定位
B题实用下料问题
C题售后服务数据的运用
D题研究生录取问题
第二届2005年题目
A 题Highway Traveling time Estimate and Optimal Routing
B 题空中加油
C 题城市交通管理中的出租车规划
D 题仓库容量有限条件下的随机存贮管理
第三届2006年题目
A 题Ad Hoc 网络中的区域划分和资源分配问题
B 题确定高精度参数问题
C 题维修线性流量阀时的内筒设计问题
D 题学生面试问题
第四届2007年题目
A 题建立食品卫生安全保障体系数学模型及改进模型的若干理论问题
B 题械臂运动路径设计问题
C 题探讨提高高速公路路面质量的改进方案
D 题邮政运输网络中的邮路规划和邮车调运
第五届2008年题目
A 题汶川地震中唐家山堪塞湖泄洪问题
B 题城市道路交通信号实时控制问题
C 题货运列车的编组调度问题
D 题中央空调系统节能设计问题
第六届2009 年题目
A 题我国就业人数或城镇登记失业率的数学建模
B 题枪弹头痕迹自动比对方法的研究
C 题多传感器数据融合与航迹预测
D 题110 警车配置及巡逻方案
第七届2010 年题目
A 题确定肿瘤的重要基因信息
B 题与封堵渍口有关的重物落水后运动过程的数学建模
C 题神经元的形态分类和识别
D 题特殊工件磨削加工的数学建模
第八届2011 年题目
A 题基于光的波粒二象性一种猜想的数学仿真
B 题吸波材料与微波暗室问题的数学建模
C 题小麦发育后期茎轩抗倒性的数学模型
D 题房地产行业的数学建模
第九届2012年题目
A 题基因识别问题及其算法实现
B 题基于卫星无源探测的空间飞行器主动段轨道估计与误差分析
C 题有杆抽油系统的数学建模及诊断
D 题基于卫星云图的风矢场(云导风)度量模型与算法探讨
第十届2013年题目
A题变循环发动机部件法建模及优化
B题功率放大器非线性特性及预失真建模
C题微蜂窝环境中无线接收信号的特性分析
D题空气中PM2.5问题的研究attachment
E题中等收入定位与人口度量模型研究
F题可持续的中国城乡居民养老保险体系的数学模型研究
第十一届2014年题目
A题小鼠视觉感受区电位信号(LFP)与视觉刺激之间的关系研究
B题机动目标的跟踪与反跟踪
C题无线通信中的快时变信道建模
D题人体营养健康角度的中国果蔬发展战略研究
E题乘用车物流运输计划问题
第十二届2015年题目
A题水面舰艇编队防空和信息化战争评估模型
B题数据的多流形结构分析
C题移动通信中的无线信道“指纹”特征建模
D题面向节能的单/多列车优化决策问题
E题数控加工刀具运动的优化控制
F题旅游路线规划问题
第十三届2016年题目
A题多无人机协同任务规划
B题具有遗传性疾病和性状的遗传位点分析
C题基于无线通信基站的室内三维定位问题
D题军事行动避空侦察的时机和路线选择
E题粮食最低收购价政策问题研究
数据来源:/6/list.htm
/home/html/category/cpmcm。