双闭环系统仿真深入设计
双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真一转速、电流双闭环控制系统一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。
这种理想的起动过程如图1所示。
nnt图1 转速调节系统理想起动过程为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。
根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。
因此很自然地想到要采用电流负反馈控制过程。
这里实际提到了两个控制阶段。
起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。
如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。
如图2所示。
图2 双闭环直流调速控制系统原理图参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。
如图3所示。
图3 双闭环直流调速系统动态结构图在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。
因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。
滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。
所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。
由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。
二双闭环控制系统起动过程分析前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。
双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。
由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。
双闭环直流调速系统的设计与仿真分析

双闭环直流调速系统的设计与仿真分析摘要:本文简要介绍了双闭环直流调速系统的组成与基本工作原理,并对双闭环转速、直流调速系统设计展开分析论述,阐明了双闭环直流调速系统的模型仿真。
关键词:双闭环;直流调速系统;仿真直流电动机因易于控制,起、制动、运行方便等特征在生活中的应用范围较广。
近年来,经济的增长推动了该调速系统在我国经济市场中的进一步发展,很多高性能高调速设备均需使用该系统(包括直流电力推进、海洋钻机、金属切割机床、纺织、造纸、轧钢、高层电梯、矿山采掘等),设备运行时,对调速系统的性能要求均较高,需弄清双闭环直流调速系统的基本工作原理,并对其进行仿真分析,使其更好为现代经济的发展服务。
1.双闭环直流调速系统组成与工作原理双闭环直流调速系统中有两个调节器,即电流ACR调节器与转速ASR调节器,两种调节器可对系统的电流与设备转速造成影响,若二者串联,且均带输出限幅电路,限幅值依次可为Usim与Ucm。
因调速系统的关键性被控量为转速,因而需将转速负反馈组成的环视作外环,这可让电动机转速无误的跟随给定电压,再将电流负反馈生成的环视作内环,以让设备在最大电流节约下,使得整个转速过渡过程得到最佳控制。
整个双闭环直流调速系统工作原理图如下所示:图1双闭环直流调速系统工作原理从上图中双闭环直流调速系统工作原理图可知,电动机的转速与给定电压之间的关系紧密,且受给定电压影响,调速系统的速度调节器ASR的输入偏差电压即△usr=usn-ufn,ASR的输出电压usi可视作整个调节系统的给定信号,电流调节器的输入偏差电压计算公式即为△ucr=-usi+ufi,ACR的输出电压Uc可视作直流调速系统的控制电压。
在系统运行过程中,若控制电压Uc改变,就可直接影响触发器控制角α与系统运行时的输出电压Udo,进而改变和控制电动机的转速,可自由调节、改变其运行速度[1]。
2.双闭环转速、直流调速系统设计在调速系统中,若要保证转速与电流负反馈均各自发挥相应作用,就应在系统的正确位置处安装两个调节器,用以快速调节转速与电流,并将二者串联。
最新双闭环直流调速系统的设计与仿真设计

双闭环直流调速系统的设计与仿真设计本科毕业设计(论文)题目:双闭环直流调速系统的设计与仿真研究Graduation Design (Thesis)Design and Simulation of Double Loop DC Motor Control SystemByWu JieSupervised byAssociate Prof. Zhang zhenyanDepartment of Automation EngineeringNanjing Institute of TechnologyMay, 2014摘要为了提高运动控制系统在实际工程中的应用效率,本文介绍了直流调速系统的工程设计方法[1],利用 MATLAB软件,对直流调速系统进行数学建模和系统仿真的研究。
所给出的仿真方法,可以灵活地调节系统的参数,从而获得理想的设计结果,并对设计出的系统进行分析。
建立调节器工程设计方法所遵循的原则是:1)概念清楚、易懂。
2)计算公式简明、好记。
3)不仅给出参数计算公式,而且指明参数调节方向。
4)能考虑饱和非线性控制的情况,同时给出简单的计算公式。
5)适合于各种可以简化成典型系统的反馈控制系统[2]。
由于这个课题相对简单,我在里面加入了相关性的内容以丰富本课题的广度和深度。
在本设计中,我加入了三种简单的单闭环直流调速系统,并且通过对它们进行仿真分析,比较找出了它们的不足之处,从而更明显地体现了双闭环直流调速系统的优越性。
并且通过对两种典型的双闭环直流调速系统进行仿真分析,从而更好地理解和运用双闭环直流调速系统[3]。
关键词:直流电动机;双闭环调速;MATLAB;仿真;直流调速系统;直流脉宽调制;工程设计方法ABSTRACTIn order to raise application efficiency of the motion control system in actualproject ,this article discussed the engineering design methods of the speed-governing system of DC motor. The mathematical modeling and system simulation of direct current governor system are researched by means of MATLAB platform . The simulation method can adjust the system controller parameters flexibly, so as to achieve the ideal design results, and the design of the system are analyzed.A controller design method is the principles of:(1)The concept of clear, easy to understand.(2)Simple formula, easy to remember.(3)Not only gives the parameter calculation formula, and indicates the parameter adjustment direction.(4)Can consider the saturation nonlinear control, and gives a simple formula.(5)Suitable for all kinds of feedback control systems can be simplified into a typical system.Because this subject is relatively simple, I joined the correlation content inside to enrich the breadth and depth of the subject. In this design, I added three simple single loop DC speed regulation system, and then analyze them, compared to find their deficiencies, and thus more clearly showed the superiority of double closed loop DC speed regulating system. And through the simulation analysis of two kinds of typical double loop DC speed control system, so as to better understand and use the double loop DC speed control system.Keywords: DC motor, double closed loop,MATLAB,Simulation,V-M,PWM-M,The engineering design method目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 课题研究背景 (1)1.2 直流调速系统国内外研究现状 (1)1.3 研究双闭环直流调速系统的意义 (2)1.4 论文的主要研究内容 (2)第二章仿真软件以及相关硬件简介 (3)2.1 MATLAB/Simulink仿真平台 (3)2.2 仿真的数值算法 (3)2.3 工程设计法 (4)2.4 直流电动机 (4)第三章简单闭环调速系统的设计与仿真 (5)3.1 单闭环有静差转速负反馈调速系统的设计与仿真 (5)3.2 单闭环无静差转速负反馈调速系统的设计与仿真 (11)3.3 带电流截止负反馈的转速反馈系统的设计与仿真 (13)3.4 简单闭环调速系统的优缺点比较 (15)第四章转速、电流双闭环直流调速系统的设计与仿真 (17)4.1 转速、电流双闭环调速系统的设计与仿真 (17)4.2 V-M直流调速系统的设计与仿真 (19)4.3 PWM-M直流调速系统的设计与仿真 (26)第五章总结与展望 (34)致谢 (35)参考文献 (36)第一章绪论1.1 课题研究背景在现代化的工业生产过程中,许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的稳态、动态性能[4]。
基于MATLAB的直流电机双闭环调速系统的设计与仿真

基于MATLAB的直流电机双闭环调速系统的设计与仿真直流电机双闭环调速系统是一种常见的控制系统,常用于工业生产中对电机速度的精确控制。
本文将基于MATLAB软件进行直流电机双闭环调速系统的设计与仿真,包括系统设计、参数设置、控制策略选择、系统仿真以及性能分析等方面。
文章将以1200字以上的篇幅进行详细阐述。
一、系统设计直流电机双闭环调速系统由速度环和电流环构成。
速度环控制系统的输入为速度设定值和电机实际速度,输出为电机期望电压;电流环控制系统的输入为速度环输出的电压和电机实际电流,输出为电机实际电压。
通过控制电机的期望电压和实际电压,达到对电机速度的调控。
二、参数设置在进行系统仿真之前,需要确定系统中各个参数的值。
包括电机的额定转矩、额定电压、电感、电阻等参数,以及控制环节的比例增益、积分增益、微分增益等参数。
这些参数的选择会影响系统的稳定性和动态性能,需要根据实际情况进行调整。
三、控制策略选择常见的控制策略包括PID控制、PI控制、PD控制等。
在直流电机双闭环调速系统中,可以选择PID控制策略。
PID控制器由比例环节、积分环节和微分环节组成,可以提高系统的稳定性和响应速度。
四、系统仿真在MATLAB中进行直流电机双闭环调速系统的仿真,可以使用Simulink模块进行搭建。
根据系统设计和参数设置,搭建速度环和电流环的控制器,连接电机实际速度和电机实际电流的反馈信号,输入速度设定值和电机期望电流,输出电机期望电压。
通过仿真可以得到系统的动态响应曲线,评估系统的性能。
五、性能分析在仿真结果中,可以分析系统的静态误差、超调量、调整时间等指标,评估系统的控制性能。
通过参数调整和控制策略更改等方式,可以优化系统的控制性能,使系统达到更好的调速效果。
总结:本文基于MATLAB软件对直流电机双闭环调速系统进行了设计与仿真。
通过系统设计、参数设置、控制策略选择、系统仿真以及性能分析等步骤,可以得到直流电机双闭环调速系统的动态响应曲线,并通过参数调整和控制策略更改等方式,优化系统的控制性能。
MATLAB双闭环直流调速系统的工程设计与仿真

MATLAB双闭环直流调速系统的工程设计与仿真双闭环直流调速系统是一种常见的控制系统,在工业中被广泛应用于电机的调速。
本文将针对MATLAB中的双闭环直流调速系统进行工程设计与仿真。
1.系统架构设计双闭环直流调速系统主要由速度环和电流环组成。
速度环主要负责控制电机的速度,通过比较给定速度和实际速度,产生速度偏差。
电流环主要控制电机的电流,通过比较给定电流和实际电流,产生电流偏差。
速度环和电流环形成了一个闭环控制系统,可以使得电机在速度和电流方面达到我们所要求的目标。
2.系统建模在MATLAB中,可以使用Simulink进行系统建模。
首先,需要建立电机的数学模型,包括机械模型、电磁模型和电气模型。
电机的机械模型可以使用转矩方程来描述,电磁模型可以使用电压方程来描述,电气模型可以使用网路方程来描述。
然后,将这些模型通过各个子系统进行连接,并进行参数设置。
最后,通过连接速度环和电流环的闭环控制系统,完成整个系统的建模。
3.控制器设计在MATLAB中,可以使用PID控制器进行控制器的设计。
首先,通过调节PID控制器的参数,使得系统的过渡过程满足我们对速度和电流的要求。
然后,使用增量PID算法对控制器进行改进,减小控制误差。
最后,通过将速度控制器与电流控制器进行串联,完成双闭环控制系统的设计。
4.系统仿真在MATLAB中,可以使用Simulink进行系统的仿真。
首先,设置仿真时间和步长,并进行仿真参数设置。
然后,通过给定输入信号,例如阶跃信号,观察系统的输出响应。
通过调整控制器的参数,观察系统的响应特性,包括超调量、稳定时间和稳态误差等。
最后,通过对仿真数据的分析,检验系统是否满足我们的设计要求。
总结:MATLAB提供了丰富的工具和函数,可以帮助我们进行双闭环直流调速系统的工程设计与仿真。
通过建立系统模型、设计控制器并进行仿真分析,可以快速有效地完成系统设计。
同时,可以通过调整参数和算法对系统进行优化,使得系统的性能更加稳定和可靠。
直流双闭环调速系统的设计与仿真

1 绪论当今社会电机是非常重要的。
因为它与人们日常发电和用电是密切相关的,它实现了机械能与电能之间的相互转换,国内各方面都不可缺少的重要设备。
通过研究电机转速控制方面的技术,不但能满足工业生产需要、而且可以提升能源的利用率,对国家的经济发展有着很大的作用。
1.1 电机调速系统控制及其分类电机可以分为两大类:直流电机和交流电机。
直流电机在电机的运行和控制方面的优势比较突出,所以直流调速系统在很多方面一直有着无可代替的位置。
特别是高性能的调速系统在很多工业领域都占据着重要的位置。
而且直流调速系统也是其他调速系统的基础,想要开发新的调速系统必须先发展直流调速系统。
如现在的智能调速系统,也是先以直流调速系统为基础来进行研究的。
直流调速系统的应用是相当广泛的,特别是在数字采集与计算机的控制方面的应用是无可厚非的,因为其控制算法对于控制系统起着非常重要的作用。
虽然直流电机在调速方面是比较优秀的,但是它也是存有弊端的,那就是换向器的存在。
因为这样会使直流电机的使用时间减少,而且需要经常的去维护电机,这样造成的麻烦也是相当多的,所以这也是直流调速系统的不足之处。
而交流电机其构造比较紧凑,而且安装与维护都是比较简单的,没有直流电机那么繁琐,所以正因为具有这些优点,所以这些年来许多大型企业都开始向交流电机调速系统方面研究。
在当今社会竞争是相当激烈的,所以只有质量可靠才能得到消费者的信赖。
所以由于消费者的需求不断提升,随之给工业的生产也带来了很大的困扰。
因为生产的过程在不断的复杂化,所以生产系统也不可避免的会遇到非线性情况。
虽然在很多时候我们都可以用线性代替非线性,这样的话只需研究线性模型就比较简单了。
然而在很多情况下线性模型是不能够代替非线性模型的,人们需要系统的真实非线性模型,所以我们需要去建立和研究非线性模型,当然这比线性模型会繁琐很多。
1.1.1 调速控制系统的发展现状及其应用由于直流调速系统自身的特点,即调速的性能优越、起动时的转矩比较大。
双闭环不可逆直流调速系统课程设计心得(matlab仿真设计)【模版】

双闭环晶闸管不可逆直流调速系统设计(matlab simulink 仿真)前言许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求具有良好的稳态、动态性能。
而直流调速系统调速范围广、静差率小、稳定性好以及具有良好的动态性能,在高性能的拖动技术领域中,相当长时期内几乎都采用直流电力拖动系统。
双闭环直流调速系统是直流调速控制系统中发展得最为成熟,应用非常广泛的电力传动系统。
它具有动态响应快、抗干扰能力强等优点。
我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。
采用转速负反馈和PI调节器的单闭环的调速系统可以再保证系统稳定的条件下实现转速无静差。
但如果对系统的动态性能要求较高,例如要求起制动、突加负载动态速降小等等,单闭环系统就难以满足要求。
这主要是因为在单闭环系统中不能完全按照需要来控制动态过程的电流或转矩。
在单闭环系统中,只有电流截止至负反馈环节是专门用来控制电流的。
但它只是在超过临界电流值以后,强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。
在实际工作中,我们希望在电机最大电流限制的条件下,充分利用电机的允许过载能力,最好是在过度过程中始终保持电流(转矩)为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。
这时,启动电流成方波形,而转速是线性增长的。
这是在最大电流转矩的条件下调速系统所能得到的最快的启动过程。
随着社会化大生产的不断发展,电力传动装置在现代化工业生产中的得到广泛应用,对其生产工艺、产品质量的要求不断提高,这就需要越来越多的生产机械能够实现制动调速,因此我们就要对这样的自动调速系统作一些深入的了解和研究。
本次设计的课题是双闭环晶闸管不可逆直流调速系统,包括主电路和控制回路。
主电路由晶闸管构成,控制回路主要由检测电路,驱动电路构成,检测电路又包括转速检测和电流检测等部分。
双闭环直流调速系统仿真设计(1)

本科毕业设计说明书(题目:双闭环直流调速系统仿真摘要直流电动机具有良好的起制动性能,易于在广泛范围内平滑调速,在需要高性能可控电力拖动的领域中得到了广泛的应用。
本文介绍了双闭环直流调速系统的原理,并通过试验的方法获得双闭环直流调速系统的各项参数,采用的直流双闭环调速系统的设计是从内环到外环,即先设计好电流环后将其等效成速度环中的一个环节,再对速度环进行设计。
采用工程设计方法对双闭环直流调速系统进行辅助设计,选择调节器结构,进行参数计算和近似校验。
在MATLAB中建立仿真模型,最后采用MATLAB中的Power System工具箱对所设计的系统进行仿真,得到了比较理想的运行曲线。
分析转速和电流的仿真波形,并进行调试,使双闭环直流调速系统趋于完善、合理。
关键词:调节器;双闭环直流调速系统;Matlab仿真AbstractThe direct current electric motor has the good braking quality, easy in widespread scope smooth velocity modulation, in needed in the domain which the high performance controllable electric power drove to obtain the widespread application.This paper introduces the Double Closed-loop DC SR System’s Principle. And passing the test method Access the Double Closed-loop DC SR System Parameters. Design from the inner to outer loop First design of the Central Current loop will be equivalent to the speed loop of a ring link, design Central to further speed loop. engineering design method for dual closed loop speed control system for DC-aided design, choice of device structure, parameter calibration and approximate calculation. it uses the Power System toolbox in the MATLAB to the system which designs to carry on the simulation,and obtain the satisfactory operation curve. Analysis of the speed and current waveform simulation, and debugging, so that the Double Closed-loop DC SR System perfect, reasonable.Keywords:Regulator; Double Closed-loop DC SR System; Matlab simulation目录引言 .......................................................................................................... - 1 - 第一章调速系统与MATLAB概述.............................................................. - 2 -1.1 运动控制系统概述 ........................................................................ - 2 -1.2 直流调速控制技术发展概况.......................................................... - 2 -1.3 控制系统的计算机仿真................................................................. - 3 -1.4 MATLAB简介 .............................................................................. - 4 -1.4.1 MATLAB的优势与特点 ...................................................... - 4 -1.4.2 MATLAB的Simulink简介.................................................. - 4 -1.5 本设计主要内容............................................................................ - 5 - 第二章双闭环直流调速系统原理及参数的测定.......................................... - 6 -2.1双闭环直流调速系统的组成和工作原理........................................... - 6 -2.1.1双闭环直流调速系统工作原理及原理图................................. - 6 -2.1.2双闭环直流调速系统动态结构图 ........................................... - 7 -2.2双闭环直流调速系统参数的测定 ..................................................... - 7 -2.2.1参数测定试验的系统组成和工作原理 .................................... - 7 - 第三章电流环与转速环的设计................................................................. - 15 -3.1电流环的设计................................................................................ - 15 -3.1.1电流环的动态结构图 ........................................................... - 15 -3.2转速调节器的设计......................................................................... - 17 -第四章双闭环直流调速系统MATLAB仿真 ............................................. - 21 -4.1双闭环直流调速系统的建模 .......................................................... - 21 -4.1.1双闭环直流调速系统的仿真模型 ......................................... - 21 -4.1.2双闭环直流调速系统仿真模型中的参数设置........................ - 21 -4.2系统的仿真、仿真结果的输出....................................................... - 25 -4.3仿真结果分析................................................................................ - 26 - 结论 ...................................................................................................... - 27 - 参考文献................................................................................................... - 28 - 谢辞 ...................................................................................................... - 29 -引言本文采用的直流双闭环调速系统的设计是从内环到外环,即先设计好电流环后将其等效成速度环中的一个环节,再对速度环进行设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H a r b i n I n s t i t u t e o f T e c h n o l o g y控制系统数字仿真与C A D实验报告院系:电气工程与自动化班级:0106512设计者:王宏佳/张卫杰学号:**********哈尔滨工业大学电气工程系2005年8月摘要本实验报告的第一部分详细阐述了直流电动机双闭环调速系统的CAD设计过程,主要采用了MATLAB/Simulink工具箱。
一般情况下,KZ-D系统均设计成转速、电流双闭环形式。
双闭环直流调速系统着重解决了如下两方面的问题:启动的快速性问题和提高系统抗扰性能。
双闭环KZ-D系统中的ASR和ACR一般均采用PI调节器。
为了获得较好的跟随性能,电流环按照典型Ⅰ型系统设计,为了获得较好的抗扰性能,转速环按照典型Ⅱ型系统设计。
按照先内环,后外环的设计思想设计。
实验报告的第二部分着重讨论了基于MATLAB/SimPowerSystem工具箱的双闭环直流调速系统仿真分析。
第一部分直流电动机双闭环调速系统设计与分析自70年代以来,国内外在电气传动领域里,大量地采用了“晶闸管整流电动机调速”技术(简称KZ-D调速系统)。
尽管当今功率半导体变流技术已有了突飞猛进的发展,但在工业生产中KZ-D系统的应用还是占有相当比重的。
一般情况下,KZ-D系统均设计成转速、电流双闭环形式;“双闭环控制”是经典控制理论在实践中的重要运用,在许多实际生产实践中大量存在。
无论是直流调速系统、龙门吊车系统还是一阶倒立摆的控制,都可以通过双闭环控制技术,来实现对控制对象的控制。
因此理解双闭环控制技术的原理,掌握双闭环控制的设计方法,是工业控制领域技术人员的一项基本要求。
然而,由于双闭环控制技术所依赖的经典控制理论只能解决线性定常系统设计问题,而实际系统往往是非线性的;所以,设计时要进行线性化等近似处理,由此而引起的模型不准确问题将会影响到设计参数的选取(这种影响有时会导致3~5倍的误差),这给实际系统的调试带来不便。
因此,如果能在计算机上对建立了精确数学模型的控制对象进行设计、数字仿真与CAD,将对控制系统的设计和参数的选取带来方便。
1.1 控制对象的建模为了对系统进行稳定性、动态品质等动态性能的分析,必须首先建立起系统的微分方程式,即描述系统物理规律的动态数学模型。
1.1.1 额定励磁下的直流电动机的动态数学模型图1给出了额定励磁下他励直流电机的等效电路,其中电枢回路电阻R和电感L包含整流装置内阻和平波电抗器电阻与电感在内,规定的正方向如图所示。
图1-1 直流电动机等效电路由图1-1可列出微分方程如下:0dd d dI U RI LE dt=++(主电路,假定电流连续) e E C n =(额定励磁下的感应电动势)2375e L GD dnT T dt-=⋅(牛顿动力学定律,忽略粘性摩擦)e m d T C I =(额定励磁下的电磁转矩)式中,L T ——包括电机空载转矩在内的负载转矩单位为Nm ;2GD ——电力拖动系统运动部分折算到电机轴上的飞轮惯量,单位为Nm 2;30m e C C π=——电动机额定励磁下的转矩电流比,单位为Nm/A ;定义下列时间常数:l LT R=——电枢回路电磁时间常数,单位为s ;2375m e mGD RT C C =——电力拖动系统机电时间常数,单位为s ; 代入微分方程,并整理后得:0()dd d ldI U E R I T dt -=+ m d dLT dEI I R dt-=⋅ 式中,/dL L m I T C =——负载电流。
在零初始条件下,取等式两侧得拉氏变换,得电压与电流间的传递函数0()1/()()1d d l I s RU s E s T s =-+ (1—1)电流与电动势间的传递函数为()()()d dL m E s RI s I s T s=- (1—2)式(1—1)和(1—2)的结构图分别画在图1-2a 和b 中。
将它们合并在一起,并考虑到/e n E C =,即得到额定励磁下直流电动机的动态结构图,如图1-2c 。
d Ua) b)Uc)图1-2 额定励磁下直流电动机的动态结构图 a) 式(1—1)的结构图 b)式(1—2)的结构图c)整个直流电动机的动态结构图1.1.2 晶闸管触发和整流装置的动态数学模型要控制晶闸管整流装置总离不开触发电路,因此在分析系统时往往把它们当作一个环节来看待。
这一环节的输入量是触发电路的控制电压U ct ,输出量是理想空载整流电压U d0。
如果把它们之间的放大系数K s 看成常数,则晶闸管触发与整流装置可以看成是一个具有纯滞后的放大环节,其滞后作用是由晶闸管装置的时刻时间引起的。
下面列出不同整流电路的平均失控时间:用单位阶跃函数来表示滞后,则晶闸管触发和整流装置的输入输出关系为01()d s ct s U K U t T =⋅-按拉式变换的位移定理,则传递函数为0()()s T s d s ct U s K e U s -= (1—3) 由于式(1—3)中含有指数函数s T s e -,它使系统成为“非最小相位系统”,这使得系统分析和设计都比较麻烦。
为了简化,先将s T s e -按台劳级数展开,则式(1—3)变成02233()11()12!3!s s T s d s ss T s ct s s s U s K K K e U s e T s T s T s -===++++考虑到T s 很小,忽略其高次项,则晶闸管触发和整流装置的传递函数可近似成一阶惯性环节0()()1d sct s U s K U s T s ≈+ (1—4)其结构图如图1-3所示。
a)b)图1-3 晶闸管触发和整流装置的动态结构图a) 准确的 b)近似的1.1.3 比例放大器、测速发电机和电流互感器的动态数学模型比例放大器、测速发电机和电流互感器的响应都可以认为是瞬时的,因此它们的放大系数也就是它们的传递函数,即()()ct p n U s K U s =∆ (1—5)()()n U s n s α= (1—6) ()()i d U s I s β= (1—7)1.1.4 双闭环控制系统的动态数学模型根据以上分析,可得双闭环控制系统的动态结构图如下图1-4 双闭环控制系统的动态结构图1.2 双闭环控制系统的设计上节讨论了双闭环系统控制对象的动态数学模型的建立,现在来具体设计双闭环系统的两个调节器。
设计多环控制系统的一般原则是:从内环开始,一环一环地逐步向外扩展。
在这里是:先从电流环入手,首先设计好电流调节器,然后把整个电流环看作师转速调节系统中的一个环节,在设计转速调节器。
双闭环控制系统的动态结构图绘于图1-5,它与图1-4不同之处在于增加了滤波环节,包括电流滤波、转速滤波和两个给定滤波环节。
由于电流检测信号中常含有交流分量,须加低通滤波,其滤波时间常数T oi按需要选定。
滤波环节可以抑制反馈信号中的交流分量,但同时也给反馈信号带来延滞。
为了平衡这一延滞作用,在给定信号通道中加一个相同时间常数的惯性环节,称为给定滤波环节。
其意义是:让给定信号和反馈信号经过同样的延滞,使二者在时间上得到恰当的配合,从而带来设计上的方便。
图1-5 双闭环控制系统的动态结构图T—电流反馈滤波时间常数T on—转速反馈滤波时间常数oi由测速发电机得到的转速反馈电压含有电机的换向纹波因此也需要滤波,滤波时间常数用T on表示。
根据和电流环一样的道理,在转速给定通道中也配上时间常数为T on的给定滤波环节。
1.2.1双闭环KZ-D系统的目的双闭环直流调速系统着重解决了如下两方面的问题:(一)启动的快速性问题借助于PI调节器的饱和非线性特性,使得系统在电动机允许的过载能力下尽可能地快速启动。
(二)提高系统抗扰性能通过调节器的适当设计可使系统转速对于电网电压及负载转矩的波动或突变等扰动予以迅速抑制,在恢复时间上达到最佳。
1.2.2积分调节器的饱和非线性问题双闭环KZ-D系统中的ASR和ACR一般均采用PI调节器,其中有积分作用(I调节)。
系统简要结构如下:图1-6 具有积分控制作用的系统结构从系统结构图中我们可以清楚地知道:(1)只要偏差e(t)存在,调节器的输出控制电压U就会不断地无限制地增加。
因此,必须在PI调节器输出端加限幅装置。
(2)当e(t)=0时,U=常数。
若要使U下降,必须使e(t)<0。
因此,在调速系统中若要使ASR退出饱和输出控制状态,就必然会产生超调。
(3)若控制系统中(前向通道上)存在有几分作用的环节(调节器,对象),则在给定作用下,系统输出一定会出现超调。
1.2.3 两个调节器的作用转速调节器和电流调节器在双闭环调速系统中的作用可以归纳如下:1.转速调节器的作用(1)使转速n跟随给定电压U*m变化,稳态无静差;(2)对负载变化起抗扰作用;(3)其输出限幅值决定允许的最大电流。
2.电流调节器的作用(1)对电网电压波动起及时抗扰作用; (2)起动时保证获得允许的最大电流;(3)在转速调节过程中,使电流跟随其给定电压U *i 变化;(4)当电机过载甚至堵转时,限制电枢电流的最大值,从而起到快速的安全保护作用。
如果故障消失,系统能够自动恢复正常。
1.2.3 电流调节器的设计首先决定要把电流环校正成哪一类典型系统。
电流环的一项重要作用就是保持电枢电流在动态过程中不超过允许值,因而在突加控制作用时不希望有超调,或者超调量越小越好。
从这个观点出发,应该把电流环校正成典型Ⅰ型系统。
可是电流环还有另一个对电网电压波动及时调节的作用,为了提高其抗扰性能,又希望把电流环校正成典型Ⅱ型系统。
究竟应该如何选择,要根据实际系统的具体要求来决定取舍。
在一般情况下,当控制对象的两个时间常数之比Tl/T∑i≤10时,典型Ⅰ型系统的抗扰恢复时间还是可以接受的,因此一般多按典型Ⅰ型系统来设计电流环,下面就考虑这种情况。
要校正成典型Ⅰ型系统,显然应该采用PI 调节器,其传递函数可以写成1()i ACR ii s W s K sττ+= (1—8)式中 Ki —电流调节器的比例系数;i τ—电流调节器的超前时间常数。
为了让调节器零点对消掉控制对象的大时间常数极点,选择i l T τ= (1—9)在一般情况下,希望超调量σ%≤5%时,可取阻尼比ξ=0.707,0.5I i K T ∑=,因此12I iK T ∑=,(i s oi T T T ∑=+) (1—10) 又因为 i s I i K K K Rβτ=(1—11)得到 0.52i l l i Is s i s i R T R T R K K K K T K T τβββ∑∑⎛⎫=== ⎪⎝⎭(1—12)1.2.4 转速调节器的设计转速环应该校正成典型Ⅱ型系统是比较明确的,这首先是基于静态无静差的要求。