用的氢原子光谱-ppt资料讲解

合集下载

18.3 氢原子光谱(45张PPT)

18.3 氢原子光谱(45张PPT)

分布。
C 在研究太阳光谱时发现太阳光谱中有许多暗线, 这说明了太阳内部缺少对应的元素。
D 在研究太阳光谱时发现太阳光谱中有许多暗线, 这些暗线与某些元素的特征谱线相对应,这说明 了太阳大气层内存在对应的元素。
随堂练习
1. 对原子光谱,下列说法正确 的是(ACD).
A.原子光谱是不连续的
B.由于原子都是由原子核 和电子组成的,所以各种原 子的原子光谱是相同的
X射线照射激发荧光, 通过分析荧光判断越王 勾践宝剑的成分.
(5)意义:原子光谱的不连续性反映出原子结构的不 连续性,所以光谱分析也可以用于探索原子的结构。
------光谱分析还为深入原子世界打开了道路。近代原 子物理学正式从原子光谱的研究中开始的。
研究原子结构规律有两条途径:
1.利用高能粒子轰击原子—轰出未知粒子来 研究(高能物理);
σ其它谱系
三、经典理论的困难
三、经典理论的困难
卢瑟福的原子核式模型正确地指出了原子核的存在,很好地解释了α粒子散射实验。
卢瑟福原子核式模型无法解释原子光谱的分立特征
原子核式结构模型与经典电磁理论的矛盾
核外电子绕核运动
辐射电磁波
电子轨道半径连续变小
原子不稳定 辐射电磁波频率连续变化 事实上:原子是稳定的 原子光谱是线状谱,频率不变
《波尔的原子模型》预习问题:
【问题1】什么是轨道量子化?什么是能量量子化? 【问题2】什么是能级?什么是基态?什么是激发态? 【问题3】什么是跃迁?什么是频率条件? 【问题4】画出氢原子n=1、2、3、4的能级图。
谱是线状谱
太阳光谱是吸收光谱,不连续 稀薄的氢气和钠蒸汽产生 的是原子光谱为线状谱
白光通过钠蒸汽产生的光谱是

第4节 氢原子的光谱与能级结构

第4节   氢原子的光谱与能级结构


486.1nm

652.2nm
434.0nm
λ/nm n=1 E1= -13.6ev
四、玻尔理论的局限 1、无法计算光谱的强度。
2、对氢以外的其它元素的原子形成的复杂光谱的理论分析与实 验结果相差很大。
五、玻尔理论的局限的原因 玻尔在推导电子绕原子核运动的轨道半 径时,是根据电子以库仑力为绕运动的向 心力求得的,完全是经典力学的方法。而 假定电子轨道是量子化的,并根据量子化 能量计算光的发射和吸收频率,是一种量 子论的方法。因此,玻尔理论是一种半经 典的量子论。其实电子在原子核外运动并 没有固定的轨道,是以电子云的形式出现 在核外空间,真正适用于微观世界的是理 论是完全脱离了经典物理的量子理论。
第4节 氢原子的光 谱与能级结构
一、光谱
复色光经过色散系统(如棱镜、光栅)分光后,被色散 开的单色光按波长(或频率)大小而依次排列的图案
观察光谱实验
1.实验装置
分光镜
2.原理图
H、Hg、Ne的光谱
人类在19初世纪就观察到了原子光谱,而且还发现不同的原子光 谱具有不同的特征,到19世纪60年代形成了用光谱来分析物质的化 学成分---光谱分析科学,但是一直没有找到产生原子光谱的原因。
1 1 R 2 2 1 n 1
n 2,4, 3,
红 外 区
帕邢(Friedrich Paschen,1865~1947)德国物理学家。 1908年发现了氢原子红外区的谱线遵循的数学觃律。 帕邢线系
1 1 R 2 2 3 n 1
n 4,5,6,
二、氢原子光谱
可见光区
(里德伯常数: R=1.09677581×1 07m-1)
巴尔末(1825-1909)瑞 士数学家。1884年发现 了可光区的谱线遵循的 数学规律。

氢原子光谱ppt课件

氢原子光谱ppt课件

03
氢原子光谱实验观测与分析
氢原子光谱实验装置介绍
光源
氢原子灯或放电管,产生氢原子 光谱。
单色仪
将复合光分解为单色光,并可选 择特定波长的光通过。
光探测器
如光电倍增管或CCD,将光信号 转换为电信号进行记录和分析。
数据采集与处理系统
对实验数据进行采集、处理和分 析,得出实验结果。
氢原子光谱观测方法
氢原子光谱研究挑战与机遇
实验技术挑战
01
尽管精密测量技术取得了显著进展,但进一步提高测量精度仍
面临诸多挑战,如如何消除系统误差、提高信噪比等。
理论模型挑战
02
现有理论模型在描述某些复杂现象时仍存在一定局限性,需要
进一步完善和发展。
交叉学科机遇
03
氢原子光谱研究与粒子物理、宇宙学等领域密切相关,这些领
04
氢原子光谱理论解释与应用
薛定谔方程与波函数概念
薛定谔方程
描述了微观粒子状态随时间变化 的规律,是量子力学的基本方程
之一。
波函数
量子力学中用来描述粒子状态的函 数,其模平方表示粒子在特定位置 被发现的概率。
量子数
描述原子或分子中电子运动状态的 参数,如主量子数、角量子数等。
氢原子光谱理论解释
玻尔模型
玻尔提出的氢原子模型,假设电子在 特定轨道上运动,且能量是量子化的。
能量级与光谱线
选择定则
解释了为何只有特定能级间的跃迁才 会产生光谱线,如偶极跃迁选择定则 等。
氢原子光谱由一系列分立的谱线组成, 对应着电子在不同能级间的跃迁。
氢原子光谱在物理、化学等领域应用
01
02
03
04
原子钟
利用氢原子光谱的稳定性和精 确性,制成高精度原子钟,用

氢原子光谱

氢原子光谱
精细结构特点
在光谱上表现为谱线的分裂和位移,可通过高分辨率光谱仪 进行观测。
氢原子光谱超精细结构探讨
超精细结构成因
在精细结构的基础上,由于原子核自旋与电子总角动量的耦合,导致能级进一步分裂。
超精细结构特点
在光谱上表现为谱线的更细微分裂和位移,需要更高精度的观测手段进行探测。
总结
氢原子光谱是量子力学和原子物理领域的重要研究对象,其性质和特点包括多个线系、精 细结构和超精细结构等。通过对氢原子光谱的深入研究,可以揭示原子内部结构和能级分 布的奥秘,为现代物理学的发展提供重要支撑。
02
氢原子光谱实验方法
氢原子光谱实验装置
光源
提供足够能量的光源,如钨丝 灯或激光器,以激发氢原子。
分光仪
将光源发出的光分成不同波长 的光谱。
探测器
用于检测分光后各波长光的强 度,如光电倍增管或CCD。
数据采集与处理系统
记录并处理实验数据,如计算 机和专用软件。
氢原子光谱实验步骤
1. 准备实验装置
量子力学对氢原子光谱解释
波函数与概率密度
量子力学用波函数描述电子状态,波函数的模平方表示电子在空间 中出现的概率密度。
能级与跃迁
量子力学中的能级概念与玻尔理论相似,但更为精确。电子在不同 能级间跃迁时,同样会发射或吸收光子。
选择定则
量子力学中的选择定则规定了哪些能级间的跃迁是允许的,从而解释 了氢原子光谱的特定结构。
氢原子光谱研究前景展望
• 高精度测量技术的发展:随着实验技术的不断进步,未来有望实现更高精度的氢原子光谱测量,从而更深入地 揭示原子结构和相互作用的奥秘。
• 新理论模型的探索:尽管现有的理论模型能够很好地解释氢原子光谱,但仍存在一些尚未解决的问题,如高阶 效应的处理、相对论和量子电动力学的结合等。未来有望通过发展新的理论模型,更准确地描述氢原子光谱。

第二章,氢原子光谱

第二章,氢原子光谱

Back
Next
第五节:玻尔理论的推广
玻尔—索末非模型 碱金属的光谱 Back
第五节:玻尔理论的推广
玻尔—索末非模型
碱金属的光谱
Next
第五节:玻尔理论的推广
玻尔—索末非模型
碱金属的光谱
Back
Next
第五节:玻尔理论的推广
原子实是一个球形对称的 结构,它里边的原子核带 有Ze正电荷和(Z-1)e负 电荷,在原子最外层运动 的价电子好象是处在一个 单位正电荷的库仑场中, 当价电子运动到靠近原子 实时,由于价电子的电场 作用,原子实中带正电的 原子核与带负电的电子的 中心会发生微小的偏移, 于是负电的中心不再在原 子核上,形成一个电偶极 子。这就是原子实的极化。
rnn2a 0
c vnn
n1 ,2 ,3 ,K
a0 4m πee0h22 0.53Å 玻尔半径
En
1 2n2
e2 4π0a0
e2 1 精细结构常数 4π0hc 137
1 2n2
m e
2c 2
n 1 E 1 1 3 . 6 e V r 1 a 0 基态(ground state)
n 2 激发态(excited state)
质心系
核系
En
1 2n2
Z 2e2 4π0a0
1 2n2
Z
2
2c 2
rnn Z 2a0
vnZ nc n1 ,2 ,3 ,K
r1n
me rn
n2
Z
4π0h2
mee2
e4
1
RM4π4π02h3c1m e MR
R1 0 7m 1 M 1 .0 9 73 7 3 1
1 1H 1 .0 9 67 7 58 1 2D 1 .0 9 70 7 42 1 3T 1 .0 9 7 1 7 35 4 2H e 1 .0 9 72 2 27 3 7L i2 1 .0 9 72 8 80 9 4H e3 1 .0 9 73 0 70

183氢原子光谱

183氢原子光谱
位于红外区。
发射与吸收光谱
发射光谱
当氢原子从高能级跃迁到低能级时, 会发射出特定波长的光子,形成发射 光谱。这些谱线对应于不同能级间的 跃迁。
吸收光谱
当连续光谱的光通过氢原子气体时, 某些特定波长的光会被吸收,从而在 连续光谱上形成暗线。这些暗线对应 于氢原子的吸收光谱。
02
氢原子光谱实验方法
氢原子放电实验
氢原子的基态(最低能级)是 n=1,激发态则是n>1的能级 。
光谱线系与命名
氢原子光谱线系主要包括巴尔末 系、莱曼系、帕邢系、布拉开系
和普丰特系等。
巴尔末系是最早被发现的氢原子 光谱线系,位于可见光区,由 Hα、Hβ、Hγ、Hδ等谱线组成 。
其他线系如莱曼系位于紫外区, 帕邢系、布拉开系和普丰特系则
应用领域的拓展
随着氢原子光谱研究的深入,未来有望在更多领域实现应用拓展,如利用氢原子光谱进 行精密测量、探索宇宙中的物质组成等。
THANKS
感谢观看
量子力学描述与薛定谔方程
波函数与概率密度
在量子力学中,氢原子的状态用波函数$psi(r,theta,phi)$ 描述,波函数的模平方$|psi|^2$表示电子在空间中出现 的概率密度。
薛定谔方程
氢原子的波函数满足薛定谔方程$hat{H}psi = Epsi$,其 中$hat{H}$是哈密顿算符,$E$是能量本征值。
荧光观测
将激光照射到荧光物质上 ,观测荧光光谱,分析氢 原子能级结构。
其他实验方法
原子束实验
利用原子束技术,将氢原子束射 入磁场或电场中,观测其偏转或 分裂现象,研究氢原子光谱和能
级结构。
光电子能谱实验
利用光电子能谱技术,研究氢原子 在光照条件下的电子能级跃迁和光 谱特性。

高中物理课件第2章 第4节 氢原子光谱与能级结构

高中物理课件第2章 第4节 氢原子光谱与能级结构

[后思考]
被测电阻值越大,流过电流表表头的电流越小,电流的大小与被测电阻的阻
值成反比,这种说法对吗?为什么?
【提示】
电流I=
E Rx+R+Rg+r
,Rx越大,电流越小,但二者不是反比关
系.
[合作探讨]



图2-8-2
如图2-8-2所示,甲、乙、丙分别为欧姆表红黑表笔短接、红黑表笔断开、被
测电阻为Rx所对应的电路图.
[再判断] 1.氢原子光谱是不连续的,是由若干频率的光组成的.( √ ) 2.由于原子都是由原子核和核外电子组成的,所以各种原子的原子光谱是相 同的.( × ) 3.由于不同元素的原子结构不同,所以不同元素的原子光谱也不相同.(√ )
[后思考] 氢原子光谱有什么特征,不同区域的特征光谱满足的规律是否相同? 【提示】 氢原子光谱是分立的线状谱.它在可见光区的谱线满足巴耳末公 式,在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式.
[后思考] 玻尔理论的成功和局限是什么?
【提示】 成功之处在于引入了量子化的观念,局限之处在于保留了经典粒 子的观念,把电子的运动看做是经典力作用下的轨道运动.
[核心点击] 1.成功方面 (1)运用经典理论和量子化观念确定了氢原子的各个定态的能量并由此画出能 级图. (2)处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符 合的很好,由于能级是分立的,辐射光子的波长也是不连续的. (3)不仅成功地解释了氢光谱的巴尔末系,计算出了里德伯常数,而且,玻尔 理论还预言了当时尚未发现的氢原子的其他光谱线系,这些线系后来相继被发 现,也都跟玻尔理论的预言相符.
[先填空]
1.理论推导
按照玻尔原子理论,氢原子的电子从能量较高的能级跃迁到n=2的能级上

第三节氢原子光谱

第三节氢原子光谱


R(
1 22

1 n2
)
n=3,4,5,6……
其中R称为里德伯常量
R 1.097 10 m 对于氢原子
7
-1
注意表达的顺序,因为不同
的原子,该常数也不同.
氢原子光谱的实验规律
H
H H H
H
656.3n m 486.1n m 434.1nm 410.2nm 364.6nm
n=3
n=4
不同的m对应不同的谱系;当m一定时,每 T (n)

式中
T
(m)

R m2

T
(n)

R n2
称为光谱项
6、原子光谱
氢原子光谱只是众多原子光谱中最简单的一种,下图列出 了钠、氦和汞等原子的光谱。
科学家观察了大量的 原子光谱,发现每种原子都有 自己特定的原子光谱。不同的原子,其原子光谱均不相同, 因而,原子光谱被称为原子的“指纹”。我们可以通过对 光谱的分析鉴别不同的原子,确定物体的化学组成并发现 新元素。


1 R( 42

1 n2
)
n=5,6,7,8……
普丰德系(红外区)1 R( 1 1 ) n=6,7,8,9……

52
n2
简称为莱巴帕布普. 请标出课本图3-3-4中帕邢系的4.5.6.7;强调n越小,波长越大
3、广义巴尔末公式
1


1 R( m2

1 n2 )
式中 m与n都是正整数,且 n > m.
莱区 用曼发一系现个(了简紫氢单原的外子公区的式)其表他示1线。系,R这(些11线2 系也n和12巴)耳n末=系2,一3样,可4,以5,…
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稀薄气体或金属的蒸气的发射光谱
线状谱由游离状态的原子发射也叫原子光谱。 每种原子只能发出具有本身特征的某些波长的 光,因此线状谱的谱线也叫原子的特征谱线。
(3)吸收光谱
物体发出的白光通过物质时,某些波长的光 被物质吸收后产生的光谱,叫做吸收光谱。 各原子的吸收光谱中每一条暗线都跟该种原 子的原子的发射光谱中的一条明线相对应。 这表明,低温气体原子吸收的光,恰好就是 这种原子在高温时发出的光。 因此吸收光谱中的暗谱线,也是原子的特征 谱线。太阳的光谱是吸收光谱。
各种光谱的特点及成因:
{ 发

定义:由发光体直接产生的光谱 产生条件:炽热的固体、液体和高压气体发
光 连续光谱 光形成的

光谱的形式:连续分布,一切波长的光都有
光 谱Байду номын сангаас
{ 线状光谱 产生条件:稀薄气体发光形成的光谱
(原子光谱) 光谱形式:一些不连续的明线组成,不同 元素的明线光谱不同(又叫特征光谱)
平面MN上分别会聚成不同颜色的像(谱线)。
通过望远镜B的目镜L3,就看到了放大的光谱像。
(1)连续光谱
连续分布的包含有从红光到紫光各种 色光的光谱叫做连续光谱。
炽热的固体、液体和高压气体的发射 光谱是连续光谱。例如白炽灯丝发出 的光、烛焰、炽热的钢水发出的光都 形成连续光谱。
(2)线状谱
只含不连续的亮线的光谱叫做线状谱。 线状谱中的亮线叫谱线,各条谱线对应不同波 长的光。
3、光谱分析的优点:非常灵敏而且迅速。
4、光谱分析的应用:发现新元素和研究天 体的化学组成。
氢原子光谱
氢原子是最简单的原子,其光谱也最简单。
1R(212n12) n3,4,5,...
巴 耳 末 公 式R=1.10107m1 里 德 伯 常 量
其他谱系
自 制 分 光 镜
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
定义:连续光谱中某些波长的光被物质吸收后产生的 吸 光谱 收 光 产生条件:炽热的白光通过温度较白光低的气体后, 谱 再色散形成的
光谱形式:用分光镜观察时,见到连续光谱背景上 出现一些暗线(与特征谱线相对应)
光谱分析:
1、光谱分析:由于每一种元素都有自己的特征 谱线,因此可以根据光谱来鉴别物质和确定它的 化学组成。这种方法叫做光谱分析。 2、光谱分析的的原理:利用发射光谱和吸收光 谱。
用的氢原子光谱-ppt
原子中,电子轨道是怎样的?
研究途径:光谱
分光镜的构造原理:
P A
BM
S
L1
L2 N L3
分光镜由平行光管A、三棱镜P和望远镜筒B组
成。平行光管A的前方有一个宽度可以调节的狭
缝S。从狭缝射入的光线经透镜L1折射后,变成
平行光线射到三棱镜P上。不同频率的光经过三
棱镜沿不同的折射方向射出,并在透镜L2后方的
相关文档
最新文档