第一讲--数列的极限典型例题

合集下载

证明数列极限的题目及答案

证明数列极限的题目及答案

证明数列极限的题目及答案题目:证明数列$a_n =\frac{n}{n + 1}$的极限为 1证明:首先,我们需要明确数列极限的定义。

对于数列$\{a_n\}$,如果对于任意给定的正数$\epsilon$,总存在正整数$N$,使得当$n > N$ 时,都有$|a_n L| <\epsilon$ 成立,那么就称数列$\{a_n\}$的极限为$L$。

接下来,我们来证明数列$a_n =\frac{n}{n + 1}$的极限为 1。

对于任意给定的正数$\epsilon$,要使$|a_n 1| <\epsilon$,即\\begin{align}\left|\frac{n}{n + 1} 1\right|&<\epsilon\\\left|\frac{n}{n + 1} \frac{n + 1}{n + 1}\right|&<\epsilon\\\left|\frac{-1}{n + 1}\right|&<\epsilon\\\frac{1}{n + 1}&<\epsilon\\n + 1 &>\frac{1}{\epsilon}\\n &>\frac{1}{\epsilon} 1\end{align}\所以,取$N =\left\frac{1}{\epsilon} 1\right$(这里$\cdot$ 表示取整),当$n > N$ 时,就有$|a_n 1| <\epsilon$。

因此,根据数列极限的定义,数列$a_n =\frac{n}{n + 1}$的极限为 1。

题目:证明数列$b_n =\frac{1}{n}$收敛于 0证明:给定任意正数$\epsilon$,要使$|b_n 0| <\epsilon$,即\\begin{align}\left|\frac{1}{n} 0\right|&<\epsilon\\\frac{1}{n}&<\epsilon\\n &>\frac{1}{\epsilon}\end{align}\所以,取$N =\left\frac{1}{\epsilon}\right$,当$n >N$ 时,就有$|b_n 0| <\epsilon$。

数列的极限-高中数学知识点讲解

数列的极限-高中数学知识点讲解

数列的极限1.数列的极限【知识点的知识】1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0),那么就说数列{a n}以a 为极限,记作푙푖푚a n=a.(注:a 不一定是{a n}中的项)푛→∞2、几个重要极限:3、数列极限的运算法则:4、无穷等比数列的各项和:(1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =푙푖푚S n.푛→∞(2)1/ 3【典型例题分析】典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4푆푛=(푎푛+1)2,其中S n 表示数列{a n}的前n 项푛和.则푙푖푚푎푛=()푛→∞1A.0 B.1 C.2D.2解:∵4S1=4a1=(a1+1)2,∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2,∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数,∴a n﹣a n﹣1=2.数列{a n}是等差数列,∴a n=2n﹣1.푛푛1∴푙푖푚2푛―1=푙푖푚2―1푎푛=푙푖푚푛→∞푛→∞푛→∞푛=12.故选:C.典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式;(2)设 c n =1푛|푃1푃푛|(푛≥2),求푙푖푚(푐2+푐3+⋯+푐푛)的值;푛→∞(3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,∴b n=2a n+1,a1=0,∵等差数列{a n}的公差为 1(n∈N*),∴a n=0+(n﹣1)=n﹣1.b n=2(n﹣1)+1=2n﹣1.(2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,∴|P1P n| =(푎푛―푎1)2+(푏푛―푏1)2=(푛―1)2+4(푛―1)2=5(푛―1)(n≥2).2/ 3∴c n =1푛|푃1푃푛|=15푛⋅(푛―1)=115(푛―1―1푛),∴c2+c3+…+c n =15[(1―112)+(2―113)+⋯+(푛―1―1푛)]=15(1―1푛),∴푙푖푚(푐2+푐3+⋯+푐푛)=푙푖푚푛→∞푛→∞15(1―1푛)=5;5(3)证明:n≥2,d n=2d n﹣1+a n﹣1,=2d n﹣1+n﹣2,∴d n+n=2(d n﹣1+n﹣1),∴数列{d n+n}为等比数列,首项为d1+1=2,公比为 2,∴푑푛+푛=2푛,∴푑푛=2푛―푛.【解题方法点拨】(1)只有无穷数列才可能有极限,有限数列无极限.(2)运用数列极限的运算法则求数列极限应注意法则适应的前提条件.(参与运算的数列都有极限,运算法则适应有限个数列情形)1(3)求数列极限最后往往转化为푛푚(m∈N)或qn(|q|<1)型的极限.(4)求极限的常用方法:①分子、分母同时除以n m 或a n.②求和(或积)的极限一般先求和(或积)再求极限.③利用已知数列极限(如等).④含参数问题应对参数进行分类讨论求极限.∞⑤∞﹣∞,∞,0﹣0,等形式,必须先化简成可求极限的类型再用四则运算求极限.3/ 3。

数列的极限知识点 方法技巧 例题附答案和作业题

数列的极限知识点 方法技巧 例题附答案和作业题

数列的极限一、知识要点1数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即|a n -a |无限地接近于0),那么就说数列}{n a 以a 为极限记作l i m n n a a →∞=.(注:a 不一定是{a n }中的项)2几个重要极限:(1)01lim=∞→nn (2)C C n =∞→lim (C 是常数)(3)()()()⎪⎩⎪⎨⎧-=>=<=∞→1,11,110lim a a a a a nn 或不存在,(4)⎪⎪⎩⎪⎪⎨⎧<=>=++++++++----∞→)()()(0lim 011101110t s t s b a t s b n b n b n b a n a n a n a s s s s t t t t n 不存在3.数列极限的运算法则:如果,lim ,lim B b A a n n n n ==∞→∞→那么B A b a n n n +=+∞→)(lim B A b a n n n -=-∞→)(limB A b a n n n .).(lim =∞→0(lim≠=∞→B B Ab a nn n4.无穷等比数列的各项和⑴公比的绝对值小于1的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做lim n n S S →∞=⑵1lim ,(0||1)1n n a S S q q→∞==<<- 二、方法与技巧⑴只有无穷数列才可能有极限,有限数列无极限.⑵运用数列极限的运算法则求数列极限应注意法则适应的前提条件.(参与运算的数列都有极限,运算法则适应有限个数列情形) ⑶求数列极限最后往往转化为()N m nm ∈1或()1<q q n型的极限.⑷求极限的常用方法: ①分子、分母同时除以m n 或n a .②求和(或积)的极限一般先求和(或积)再求极限. ③利用已知数列极限(如() 01lim,10lim =<=∞→∞→nq q n n n 等). ④含参数问题应对参数进行分类讨论求极限.⑤∞-∞,∞∞,0-0,0等形式,必须先化简成可求极限的类型再用四则运算求极限 题型讲解例1 求下列式子的极限: ①nnn )1(lim-∞→; ②∞→n lim 112322+++n n n ; ③∞→n lim 1122++n n ; ④∞→n lim 757222+++n n n ; (2)∞→n lim (n n +2-n );(3)∞→n lim (22n +24n +…+22n n ) 例2()B A b a B b A a n n n n n n n +=+==∞→∞→∞→lim lim ,lim 是的( )A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件例3 数列{a n }和{b n }都是公差不为0的等差数列,且nn n b a ∞→lim =3,求n nn nb a a a 221lim +++∞→ 的值为例4 求nn nn n a a a a --∞→+-lim (a >0);例5 已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值;例6 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求a 1的取值范围例7 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim 1122+-+-n n n n a a 的值.数列极限课后检测1下列极限正确的个数是( )①∞→n lim αn 1=0(α>0) ②∞→n lim q n =0 ③∞→n lim n n n n 3232+-=-1 ④∞→n lim C =C (C 为常数) A 2 B 3 C 4D 都不正确 3下列四个命题中正确的是( )A 若∞→n lim a n 2=A 2,则∞→n lim a n =AB 若a n >0,∞→n lim a n =A ,则A >0C 若∞→n lim a n =A ,则∞→n lim a n 2=A 2D 若∞→n lim (a n -b )=0,则∞→n lim a n =∞→n lim b n5若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n =1,2,…,则∞→n lim (a 1+a 2+…+a n )等于( ) A 11 B 17 C 19 D 256数列{a n }中,n a 的极限存在,a 1=51,a n +a n +1=156+n ,n ∈N *,则∞→n lim (a 1+a 2+…+a n )等于( )A 52B 72C 41D 254 7.∞→n lim n n ++++ 212=__________∞→n lim 32222-+n nn =____________∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]= 8已知a 、b 、c 是实常数,且∞→n lim c bn c an ++=2,∞→n lim b cn c bn --22=3,则∞→n lim acn c an ++22的值是( )9 {a n }中a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则∞→n lim2)1(+n a n =_____________10等比数列{a n }公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n -1)=38,则a 1=_____________11已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *)(1)求{b n }的通项公式;(2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值 12已知{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n limn n b a =21, 求极限∞→n lim (111b a +221b a +…+nn b a 1)的值例题解析答案例1n的分子有界,分可以无限增大,因此极限为0;②112322+++n n n 的分子次数等于分母次数,极限为两首项(最高项)系数之比; ③∞→n lim1122++n n 的分子次数小于于分母次数,极限为0解:①0nn =; ②2222213321lim lim 3111n n n n n n n n→∞→∞++++==++; ③∞→n lim 2222121lim lim 0111n n n n n n n→∞→∞++==++ 点评:分子次数高于分母次数,极限不存在;分析:(4)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(5)因n n +2与n 都没有极限,可先分子有理化再求极限;(6)因为极限的运算法则只适用于有限个数列,需先求和再求极限解:(1)∞→n lim 757222+++n n n =∞→n lim 2275712nn n +++52 (2)∞→n lim (n n +2-n )=∞→n limnn n n ++2=∞→n lim1111++n21(3)原式=∞→n lim22642n n ++++ =∞→n lim 2)1(n n n +=∞→n lim (1+n1)=1 点评:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim(2n 2+n +7),∞→n lim (5n 2+7)不存在,∴原式无极限对于(2)要避免出现下面两种错误:①∞→n lim (n n +2-n )=∞→n limn n +2-∞→n lim n =∞-∞=0;②原式=∞→n limn n +2-∞→n lim n =∞-∞不存在对于(3)要避免出现原式=∞→n lim 22n +∞→n lim 24n +…+∞→n lim22n n =0+0+…+0=0这样的错误 例2 B例3 数列{a n }和{b n }都是公差不为0的等差数列,且nn n b a ∞→lim =3,求n nn nb a a a 221lim +++∞→ 的值为解:由nnn b a ∞→lim=3⇒d 1=3d 2,∴n n n nb a a a 221lim +++∞→ =2121114])12([2)1(limd d d n b n d n n na n =-+-+∞→43 点评:化归思想 例4 求nn nn n a a a a --∞→+-lim (a >0);解:nnnn n a a a a --∞→+-lim =⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧<<-=+-=>=+-∞→∞→).10(111lim ),1(0),1(11111lim 2222a a a a a a a n nn n n n 点评:注意分类讨论例5 已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值; 解:11)()1(lim 2++-+--∞→n b n b a n a n =1,∴⎩⎨⎧=+-=-1)(01b a a ⇒a=1,b=─1例6已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求a 1的取值范围 解:∞→n lim (q a +11-q n )=21, ∴∞→n lim q n 一定存在∴0<|q |<1或q =1当q =1时,21a -1=21,∴a 1=3 当0<|q |<1时,由∞→n lim (q a +11-q n )=21得q a +11=21,∴2a 1-1=q ∴0<|2a 1-1|<1∴0<a 1<1且a 121 综上,得0<a 1<1且a 1≠21或a 1=3 例7 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim1122+-+-n n n n a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c cc c n n 且(2)∞→n lim1122+-+-n nn n a a =∞→n lim n n n n c 3211--- ①当c =2时,原式=-41; ②当c>2时,原式=∞→n lim c cc n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim 11)2(32)2(31--⋅+-n n c c c 21点评:求数列极限时要注意分类讨论思想的应用 试卷解析 1 答案:B3解析:排除法,取a n =(-1)n ,排除A ;取a n =n1,排除B;取a n =b n =n ,排除D .答案:C 5 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n nn nnn n n n 即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n n n∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…)∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419答案:C6 解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n 56]+a n ∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n ) ∵a n +a n +1=156+n ,∴∞→n lim a n +∞→n lim a n +1=0∴∞→n lim a n =0答案:C7解析:原式=∞→n lim2)1(2++n n n =∞→n lim 221212nnn ++=0∞→n lim 32222-+n n n =∞→n lim 23221nn -+21 解析:∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]=∞→n lim [n ×32×43×54×…×21++n n ]=∞→n lim 22+n n=2 答案:C 8解析:答案:D 由∞→n lim cbn can ++=2,得a =2b由∞→n lim b cn c bn --22=3,得b =3c ,∴c =31b ∴c a =6∴∞→n lim a cn c an ++22=∞→n lim 22na c n ca ++=ca =69析:由题意得n a -1-n a =3 (n ≥2)∴{n a }是公差为3的等差数列,1a∴n a =3+(n -1)·3=3n ∴a n =3n 2∴∞→n lim 2)1(+n a n=∞→n lim 12322++n n n =∞→n lim21213nn ++=3 10析:∵q =-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a 38∴a 1=2 11 解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1n =2时,a 2=6代入得a 3=15同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2要证b n =2n 2,只需证a n =2n 2-n①当n =1时,a 1=2×12-1=1成立②假设当n =k 时,a k =2k 2-k 成立那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=11-+k k (a k -1) =11-+k k (2k 2-k -1)=11-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1) ∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2(2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim [311⨯+421⨯+…+)1)(1(1+-n n ] =41∞→n lim [1-31+21-41+…+11-n -11+n ]=41∞→n lim [1+21-n 1-11+n ]8312 解:{a n }、{b n }的公差分别为d 1、d 2∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1),∴2d 2-3d 1=2又∞→n limn n b a =∞→n lim 21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1, ∴d 1=2,d 2=4∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2∴n n b a 1=)24()12(1-⋅+n n =41(121-n -121+n )∴原式=∞→n lim 41(1-121+n )=41。

数列极限定义及部分习题

数列极限定义及部分习题

注1. 定义中的是预先给定的, 任意小的正数, 其任意性保证了yn可无限接近于A, 另外, 又是确定的, 它不是变量.
若 >0, 正整数N, 使得当n>N 时, 都有|ynA|<, 则记 lim yn A.
n
注2. 一般说来, N随给定的变化而变化, 给 不同的 确定的N也不同,另外, 对同一 个来说, N不是唯一的(若存在一个N, 则N+1, N+2, …, 均可作为定义中的N.)
因此要说明当n越来越大时越来越接近于1就只须说明当n越来越大时越来越接近于0则只须说明当n充分大时能够小于任意给定的无论多么小的正数就行了也就是说无论你给一个多么小的正数当n充分大时会越来越接近于0
§2.1
数列极限
§2.1
数列极限
一、 数列的概念 二、 数列极限的定义
一、 数列的概念 1.数列的定义
1 以后各项都有 | y n 1 | 10000
1 一般地, 任给 >0, 不论多么小, 要使 | yn 1 | n
只须 n . 因此, 从第
1
1 1 项开始,
以后各项都有
| yn 1 |
因为是任意的, 这就说明了当n越来越大时, yn会越来越接近于1.
设yn=f (n)是一个以自然数集为定义域的函 数,将其函数值按自变量大小顺序排成一列,y1, y2,…yn, …, 称为一个数列. yn称为数列的第n 项,也称为通项,数列也可表示为{yn}或yn=f (n)
1 例. 1. y n 1 , n
n
3 4 n1 2, , , , 2 3 n
5 4 4 3 3 2
y1 2
x
从直观上看,这个数列当n越来越大时, 对 应的项yn会越来越接近于1,或者说“当n趋向于 无穷大时, 数列xn趋近于1”.如何用精确的, 量 化的数学语言来刻划这一事实?

高数数列极限经典例题

高数数列极限经典例题

高数数列极限经典例题高数数列是数学中重要的概念,它定义了一个数列中每一项的表达式,以及每一项和前面项之间的关系。

极限是描述数列无限接近某个值的重要概念,也是高数中最重要的内容之一,比较经典的例题是必须要掌握的。

首先,让我们来看一个经典的极限例题:求函数y=x3-3x2+3的极限,当x趋近于1的时候。

这道题的步骤是,先求x接近1时,函数值的上限和下限,然后利用极限的定义求解极限。

根据函数定义,当x取值接近1时,函数值的上限是x3-3x2+3+Δx,下限是x3-3x2+3-Δx,Δx表示x变化量,这里可以看出上下限的差值为2Δx。

接下来,我们可以利用极限的定义,得出结论:当x变化量趋于0时,上下限的差值也是趋于0,也就是说,当x趋于1时,函数值的极限就是x3-3x2+3。

通过这个例题,我们不仅学会了求函数极限的方法,还学会了求解其他类似例题的步骤。

再来看一道比较典型的极限例题:求函数y=2x2-2x+1的极限,当x趋近于0的时候。

这道题的步骤也是先求函数值的上限和下限,然后利用极限的定义求解极限。

根据函数定义,当x取值接近0时,函数值的上限是2x2-2x+1+Δx,下限是2x2-2x+1-Δx,Δx表示x变化量,这里可以看出上下限的差值为2Δx。

再利用极限的定义,得出结论:当x变化量趋于0时,上下限的差值也是趋于0,也就是说,当x趋于0时,函数值的极限就是2x2-2x+1。

可以看出,这两道极限例题,在步骤上有些类似,只是数值上的差别。

解决时只要注意函数的表达式,分析x趋于某个值时,函数值的上下限,从而利用极限定义求解极限。

当然,极限例题远不止上面两道,在解决这类例题的时候要更加熟悉解决的技巧,多练习解出一些类似的经典例题,以便应对考试中可能出现的问题。

以上就是关于高数数列极限经典例题的几个介绍,以帮助大家更好地理解极限和掌握求解极限的技巧。

当然,要想真正掌握极限知识,不能只依靠死记硬背,而要形成自己独立思考和解决问题的能力。

(整理)数列的极限知识点 方法技巧 例题附答案和作业题

(整理)数列的极限知识点 方法技巧 例题附答案和作业题

数列的极限一、知识要点1数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即|a n -a |无限地接近于0),那么就说数列}{n a 以a 为极限记作l i m n n a a →∞=.(注:a 不一定是{a n }中的项) 2几个重要极限:(1)01lim=∞→n n (2)C C n =∞→lim (C 是常数) (3)()()()⎪⎩⎪⎨⎧-=>=<=∞→1,11,110lim a a a a a n n 或不存在,(4)⎪⎪⎩⎪⎪⎨⎧<=>=++++++++----∞→)()()(0lim 011101110t s t s b a t s b n b n b n b a n a n a n a s s s s t t t t n 不存在3. 数列极限的运算法则:如果,lim ,lim B b A a n n n n ==∞→∞→那么B A b a n n n +=+∞→)(lim B A b a n n n -=-∞→)(limB A b a n n n .).(lim =∞→ )0(lim≠=∞→B B Ab a nn n 4.无穷等比数列的各项和⑴公比的绝对值小于1的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做lim n n S S →∞=⑵1lim ,(0||1)1n n a S S q q→∞==<<- 二、方法与技巧⑴只有无穷数列才可能有极限,有限数列无极限.⑵运用数列极限的运算法则求数列极限应注意法则适应的前提条件.(参与运算的数列都有极限,运算法则适应有限个数列情形) ⑶求数列极限最后往往转化为()N m nm ∈1或()1<q q n型的极限.⑷求极限的常用方法: ①分子、分母同时除以m n 或n a .②求和(或积)的极限一般先求和(或积)再求极限. ③利用已知数列极限(如() 01lim,10lim =<=∞→∞→nq q n n n 等). ④含参数问题应对参数进行分类讨论求极限.⑤∞-∞,∞∞,0-0,00等形式,必须先化简成可求极限的类型再用四则运算求极限题型讲解例1 求下列式子的极限: ①nnn )1(lim-∞→; ②∞→n lim 112322+++n n n ; ③∞→n lim 1122++n n ; ④∞→n lim 757222+++n n n ; (2) ∞→n lim (n n +2-n );(3)∞→n lim (22n +24n + (22)n) 例2 ()B A b a B b A a n n n n n n n +=+==∞→∞→∞→lim lim ,lim 是的( )A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件例3 数列{a n }和{b n }都是公差不为0的等差数列,且nn n b a ∞→lim =3,求n nn nb a a a 221lim +++∞→ 的值为例4 求nn nn n a a a a --∞→+-lim (a >0);例5 已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值;例6 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求a 1的取值范围例7 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim 1122+-+-n n n n a a 的值.数列极限课后检测1下列极限正确的个数是( )①∞→n lim αn 1=0(α>0) ②∞→n lim q n =0 ③∞→n lim n n n n 3232+-=-1 ④∞→n lim C =C (C 为常数) A 2 B 3 C 4 D 都不正确 3下列四个命题中正确的是( )A 若∞→n lim a n 2=A 2,则∞→n lim a n =AB 若a n >0,∞→n lim a n =A ,则A >0C 若∞→n lim a n =A ,则∞→n lim a n 2=A 2D 若∞→n lim (a n -b )=0,则∞→n lim a n =∞→n lim b n5若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n =1,2,…,则∞→n lim (a 1+a 2+…+a n )等于( ) A 2411 B 2417 C 2419 D 24256数列{a n }中,n a 的极限存在,a 1=51,a n +a n +1=156+n ,n ∈N *,则∞→n lim (a 1+a 2+…+a n )等于( )A 52B 72C 41D 254 7.∞→n lim n n ++++ 212=__________ ∞→n lim 32222-+n nn =____________∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]= 8已知a 、b 、c 是实常数,且∞→n lim c bn can ++=2, ∞→n lim b cn c bn --22=3,则∞→n lim acn c an ++22的值是( )9 {a n }中a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则∞→n lim2)1(+n a n =_____________10等比数列{a n }公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n -1)=38,则a 1=_____________11已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *)(1)求{b n }的通项公式;(2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值 12已知{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n limn n b a =21, 求极限∞→n lim (111b a +221b a +…+nn b a 1)的值例题解析答案例1n的分子有界,分可以无限增大,因此极限为0;②112322+++n n n 的分子次数等于分母次数,极限为两首项(最高项)系数之比; ③∞→n lim1122++n n 的分子次数小于于分母次数,极限为0解:①0nn =; ②2222213321lim lim 3111n n n n n n n n→∞→∞++++==++; ③∞→n lim 2222121lim lim 0111n n n n n n n→∞→∞++==++点评:分子次数高于分母次数,极限不存在;分析:(4)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(5)因n n +2与n 都没有极限,可先分子有理化再求极限;(6)因为极限的运算法则只适用于有限个数列,需先求和再求极限解:(1)∞→n lim 757222+++n n n =∞→n lim 2275712nn n +++52(2)∞→n lim (n n +2-n )= ∞→n limnn n n ++2=∞→n lim1111++n21(3)原式=∞→n lim22642n n ++++ =∞→n lim 2)1(nn n +=∞→n lim (1+n 1)=1 点评:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim (2n2+n +7), ∞→n lim (5n 2+7)不存在,∴原式无极限对于(2)要避免出现下面两种错误:①∞→n lim (n n +2-n )= ∞→n limn n +2-∞→n lim n =∞-∞=0;②原式=∞→n limn n +2-∞→n lim n =∞-∞不存在对于(3)要避免出现原式=∞→n lim 22n +∞→n lim 24n +…+∞→n lim22n n =0+0+…+0=0这样的错误 例2 B例3 数列{a n }和{b n }都是公差不为0的等差数列,且nn n b a ∞→lim =3,求n nn nb a a a 221lim +++∞→ 的值为解:由nnn b a ∞→lim=3⇒d 1=3d 2 ,∴n n n nb a a a 221lim +++∞→ =2121114])12([2)1(lim d d d n b n d n n na n =-+-+∞→43 点评:化归思想 例4 求nn nn n a a a a --∞→+-lim (a >0);解:nnnn n a a a a --∞→+-lim =⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧<<-=+-=>=+-∞→∞→).10(111lim ),1(0),1(11111lim 2222a a a a a a a n nn n n n 点评:注意分类讨论例5 已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值; 解:11)()1(lim 2++-+--∞→n b n b a n a n =1,∴ ⎩⎨⎧=+-=-1)(01b a a ⇒a=1,b=─1例6 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求a 1的取值范围 解: ∞→n lim (q a +11-q n )=21, ∴∞→n lim q n 一定存在∴0<|q |<1或q =1当q =1时,21a -1=21,∴a 1=3当0<|q |<1时,由∞→n lim (q a +11-q n )=21得q a +11=21,∴2a 1-1=q ∴0<|2a 1-1|<1∴0<a 1<1且a 121 综上,得0<a 1<1且a 1≠21或a 1=3 例7 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim1122+-+-n n n n a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c cc c n n 且(2) ∞→n lim1122+-+-n nn n a a =∞→n lim n n n n cc 323211+--- ①当c =2时,原式=-41; ②当c>2时,原式=∞→n lim ccc n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim 11)2(32)2(31--⋅+-n n c c c 21点评:求数列极限时要注意分类讨论思想的应用 试卷解析 1 答案:B3解析:排除法,取a n =(-1)n ,排除A ;取a n =n1,排除B;取a n =b n =n ,排除D .答案:C 5 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n nn nn n n n n 即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n n n∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…)∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419答案:C6 解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n 56]+a n ∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n )∵a n +a n +1=156+n ,∴∞→n lim a n +∞→n lim a n +1=0∴∞→n lim a n =0 答案:C7 解析:原式=∞→n lim2)1(2++n n n =∞→n lim 221212nn n ++=0∞→n lim 32222-+n n n =∞→n lim 23221nn -+21 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]=∞→n lim [n ×32×43×54×…×21++n n ]=∞→n lim 22+n n=2 答案:C 8解析: 答案:D 由∞→n lim cbn can ++=2,得a =2b由∞→n lim b cn c bn --22=3,得b =3c ,∴c =31b ∴ca =6∴∞→n lim a cn c an ++22=∞→n lim 22na c n ca ++=c a =69析:由题意得n a -1-n a =3 (n ≥2)∴{n a }是公差为3的等差数列,1a∴n a =3+(n -1)·3=3n ∴a n =3n 2∴∞→n lim 2)1(+n a n=∞→n lim 12322++n n n =∞→n lim 21213nn ++=3 10析:∵q =-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a =38∴a 1=211 解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1n =2时,a 2=6代入得a 3=15同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2要证b n =2n 2,只需证a n =2n 2-n①当n =1时,a 1=2×12-1=1成立②假设当n =k 时,a k =2k 2-k 成立那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=11-+k k (a k -1)=11-+k k (2k 2-k -1)=11-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1) ∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2(2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim [311⨯+421⨯+…+)1)(1(1+-n n ] =41∞→n lim [1-31+21-41+…+11-n -11+n ]=41∞→n lim [1+21-n 1-11+n ]=8312 解:{a n }、{b n }的公差分别为d 1、d 2∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1),∴2d 2-3d 1=2又∞→n limn n b a =∞→n lim 21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1, ∴d 1=2,d 2=4∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2∴n n b a 1=)24()12(1-⋅+n n =41(121-n -121+n )∴原式=∞→n lim 41(1-121+n )=41。

求数列极限的方法总结及例题

求数列极限的方法总结及例题

求数列极限的方法总结及例题关于数列极限的几个有关问题: 1、定义在数学中,数列极限是指对数列的各项,分别取某个确定的量x(一般是正数或0)时,对数列的极限。

数列的极限是很重要的概念,也是整个数学的一个非常重要的概念。

2、怎样求n个数?分成两种情况:第一种情况,已知数列的前n项和为c,求其极限n(n是自然数)就是一项一项去求;第二种情况,对数列的每一项取自然数a,则该数列的极限就是这个数列与取极限的那个自然数a之差的绝对值。

如果是已知前n项的和,且满足条件1, 2, 3,…, n,则一次可以把它们写成几个递减的数列的和。

对数列求极限,实际上是对数列中未知数的求导数,用高中阶段所学的求导方法即可。

3、能不能用分类讨论法来证明数列?可以的。

但需要你对数列有比较全面的了解。

如果只是熟悉数列,想通过直接求极限来证明,显然行不通。

但是如果是通过给数列分类,利用分类求和公式证明也是可以的。

如果数列中出现了极限,则说明数列发生了变化。

数列的极限就是该数列与取极限的那个自然数a之差的绝对值。

所以我们可以先将数列进行分类,再分别求出每一类的极限,利用它们之间的关系进行推理证明。

当然还可以借助等比数列的前n项和公式求出数列的极限。

4、数列中的项,怎样才可以取到最大或最小值呢?我们认为,对于任意给定的数列,数列的极限都不会出现两个,并且最大或最小的数都是唯一的,而不是任意取的。

因此,如果数列中存在两个极限,则只能从这两个极限中选取一个。

也就是说,取极限时,我们可以根据极限的性质进行取舍。

5、数列中的某些数据怎样才可以取到最大或最小值呢?我们认为,数列极限都是取到极限中的某一个数,而不是在极限中取最大或最小值。

数列中的数据最大或最小值就是极限值的两倍。

也就是说,对于数列最大或最小值,我们可以用两个不同的数据取它的最大或最小值,从而取到两个不同的极限值。

例如,如果数列中存在两个极限,且两个极限都是1,则数列极限只能取1,但是对于数列的某些数据,如果数据是2, 4, 8,…,则我们完全可以用数据是2取它的极限值。

高中数列极限练习题

高中数列极限练习题

高中数列极限练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN数列极限1.极限概念:一般地,当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数A (即n a A -无限地接近于0),那么就说数列{}n a 以A 为极限,或者说A 是数列{}n a 的极限。

(由于要“无限趋近于”,所以只有无穷数列才有极限)。

记法:lim n n a A →+∞=;读作:“当n 趋向于无穷大时,n a 的极限等于A ”; 注意:(1)}{n a 是无穷数列;(2)数值变化趋势:递减的、递增的、摆动的; (3)不是所有数列都存在极限;如:21,n a n n N *=-∈;2.极限第二定义:对于无穷数列{}n a ,若存在一个常数A ,对于任意小的正数ε,总存在自然数m N *∈,使得当n m >时,n a A ε-<恒成立,则称A 是数列{}n a 的极限。

说明:lim n n a A →+∞=的几何意义:从几何上看,数列{}n a 的极限为A ,是指以A 为中心的区间(,)A A εε-+,必然从某项1m a +起,后面的所有项都落在区间(,)A A εε-+之中。

换句话说,数列{}n a 至多有m 项123,,,...,m a a a a 落在区间(,)A A εε-+之外。

例1.求下列无穷数列极限:(1)数列 ,21,,161,81,41,21n ;(2)数列 ,1,,43,32,21+n n; (3)数列 ,)1(,,31,21,1nn---; 例2.判断下列数列是否有极限,若有,写出极限;若没有,说明理由(1)1111,,,...,,...23n;(2)2,2,2,...,2,...----; (3)0.1,0.1,0.1,...,(0.1),...n ---; (4)11,2,4,8,16,...,2,...n -; (5)1,1,1,...,(1),...n ---;(6)3,........20102,.......20102010n n a n N n n n *≤⎧⎪=∈⎨>⎪-⎩解:(1)10limn n →∞=;(2)(2)2lim n →∞-=-; (3)(0.1)0lim n n →∞-=n )1.0(-=0;(4)不存在;(5)数列{(1)}n -无极限;(6)lim 2n n a →+∞=;归纳:(1)0,lim n aa n→∞=为常数;(2)(1,1)0,lim n n q q →∞∈-=;1,lim n n q q →∞=-不存在;,1lim n n q q →∞==(3),0lim n an b ac cn dc →∞+=≠+;2,0,lim n an b a c cnd →∞+≠+不存在;2,0,0limn an ba c cn d→∞+≠=+; 3.极限的运算法则:(i)设lim ,lim ,,,,n n n n a A b B m n N k C *→+∞→+∞==∈为常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 数列的极限一、内容提要 1.数列极限的定义N n N a x n n >∀N ∈∃>∀⇔=∞→,,0lim ε,有ε<-a x n .注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-⇔ε另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度.注2 若n n x ∞→lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是唯一的,若N 满足定义中的要求,则取Λ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >∃N ∈∀>∃⇔≠∞→00,,0lim ε,有00ε≥-a x n .2. 子列的定义在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{}k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥.注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >∀N ∈∃>∀⇔=∞→,,0lim ε,有ε<-a x k n .注4 ⇔=∞→a x n n lim {}n x 的任一子列{}k n x 收敛于a . 3.数列有界对数列{}n x ,若0>∃M ,使得对N n >∀,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量对数列{}n x ,如果0>∀G ,N n N >∀N ∈∃,,有G x n >,则称{}n x 为无穷大量,记作∞=∞→n n x lim .注1 ∞只是一个记号,不是确切的数.当{}n x 为无穷大量时,数列{}n x 是发散的,即nn x ∞→lim 不存在.注2 若∞=∞→n n x lim ,则{}n x 无界,反之不真.注3 设{}n x 与{}n y 为同号无穷大量,则{}n n y x +为无穷大量. 注4 设{}n x 为无穷大量,{}n y 有界,则{}n n y x ±为无穷大量.注5 设{}n x 为无穷大量,对数列{}n y ,若0>∃δ,,N ∈∃N 使得对N n >∀,有δ≥n y ,则{}n n y x 为无穷大量.特别的,若0≠→a y n ,则{}n n y x 为无穷大量. 5.无穷小量若0lim =∞→n n x ,则称{}n x 为无穷小量.注1 若0lim =∞→n n x ,{}n y 有界,则0lim =∞→n n n y x .注2 若∞=∞→n n x lim ,则01lim=∞→nn x ;若0lim =∞→n n x ,且,N ∈∃N 使得对N n >∀,0≠n x ,则∞=∞→nn x 1lim.6.收敛数列的性质(1)若{}n x 收敛,则{}n x 必有界,反之不真. (2)若{}n x 收敛,则极限必唯一.(3)若a x n n =∞→lim ,b y n n =∞→lim ,且b a >,则N ∈∃N ,使得当N n >时,有n n y x >.注 这条性质称为“保号性”,在理论分析论证中应用极普遍.(4)若a x n n =∞→lim ,b y n n =∞→lim ,且N ∈∃N ,使得当N n >时,有n n y x >,则b a ≥.注 这条性质在一些参考书中称为“保不等号(式)性”.(5)若数列{}n x 、{}n y 皆收敛,则它们和、差、积、商所构成的数列{}n n y x +,{}n n y x -,{}n n y x ,⎭⎬⎫⎩⎨⎧n n y x (0lim ≠∞→nn y )也收敛,且有()=±∞→n n n y x lim ±∞→n n x lim n n y ∞→lim ,=⋅∞→n n n y x lim ⋅∞→n n x lim n n y ∞→lim ,=∞→nnn y x lim n n nn y x ∞→∞→lim lim (0lim ≠∞→n n y ).7. 迫敛性(夹逼定理)若N ∈∃N ,使得当N n >时,有n n n z x y ≤≤,且n n y ∞→lim a z n n ==∞→lim ,则a x n n =∞→lim .8. 单调有界定理单调递增有上界数列{}n x 必收敛,单调递减有下界数列{}n x 必收敛. 9. Cauchy 收敛准则数列{}n x 收敛的充要条件是:N m n N >∀N ∈∃>∀,,,0ε,有ε<-m n x x .注 Cauchy 收敛准则是判断数列敛散性的重要理论依据.尽管没有提供计算极限的方法,但它的长处也在于此――在论证极限问题时不需要事先知道极限值. 10.Bolzano Weierstrass 定理 有界数列必有收敛子列.11. Λ7182818284.211lim ==⎪⎭⎫⎝⎛+∞→e n nn12.几个重要不等式(1) ,222ab b a ≥+ .1 sin ≤x . sin x x ≤ (2) 算术-几何-调和平均不等式:对,,,,21+∈∀R n a a a Λ 记,1)(121∑==+++=ni i n i a n n a a a a M Λ (算术平均值) ,)(1121nni i n n i a a a a a G ⎪⎪⎭⎫⎝⎛==∏=Λ (几何平均值) .1111111)(1121∑∑====+++=ni in i ini a n a n a a a na H Λ (调和平均值)有均值不等式: ),( )( )(i i i a M a G a H ≤≤等号当且仅当n a a a ===Λ21时成立. (3) Bernoulli 不等式: (在中学已用数学归纳法证明过) 对,0x ∀> 由二项展开式 23(1)(1)(2)(1)1,2!3!nn n n n n n x nx x x x ---+=+++++L )1(,1)1(>+>+⇒n nx x n(4)Cauchy -Schwarz 不等式: k k b a ,∀(n k ,,2,1Λ=),有≤⎪⎭⎫⎝⎛∑=21n k k k b a ≤⎪⎭⎫ ⎝⎛∑=21n k k k b a ∑=n k k a 12∑=nk kb12(5)N n ∈∀,nn n 1)11ln(11<+<+ 13. O. Stolz 公式二、典型例题 1.用“N -ε”“N G -”证明数列的极限.(必须掌握) 例1 用定义证明下列各式:(1)163153lim22=+-++∞→n n n n n ; (2)设0>n x ,a x n n =∞→lim ,则a x n n =∞→lim;(97,北大,10分) (3)0ln lim=∞→αn nn )0(>α证明:(1)0>∀ε,欲使不等式ε<=<-<+--=-+-++nn n n n n n n n n n n n 6636635616315322222成立,只须ε6>n ,于是,0>∀ε,取1]6[+=εN ,当N n >时,有ε<<-+-++n n n n n 616315322 即 163153lim22=+-++∞→n n n n n . (2)由a x n n =∞→lim ,0>n x ,知N n N >∀N ∈∃>∀,,0ε,有εa a x n <-,则<+-=-ax a x a x n n n ε<-aa x n于是,N n N >∀N ∈∃>∀,,0ε,有<-a x n ε<-aa x n ,即 a x n n =∞→lim .(3)已知n n ln >,因为<⎪⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡<=<αααααααn n n n n n 1ln 2ln 2ln 022≤⎪⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡αααn n 122≤⋅αααnn ][2222244αααααn n n =⋅,所以,0>∀ε,欲使不等式=-0ln αn n ≤αnnln εαα<24n 成立,只须ααε24⎪⎭⎫ ⎝⎛>n .于是,0>∀ε,取=N 142+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛ααε,当N n >时,有=-0ln αn n ≤αn nln εαα<24n ,即 0ln lim =∞→αn nn .评注1 本例中,我们均将a x n -做了适当的变形,使得ε<≤-)(n g a x n ,从而从解不等式ε<)(n g 中求出定义中的N .将a x n -放大时要注意两点:①)(n g 应满足当∞→n 时,0)(→n g .这是因为要使ε<)(n g ,)(n g 必须能够任意小;②不等式ε<)(n g 容易求解.评注2 用定义证明a x n →)(∞→n ,对0>∀ε,只要找到一个自然数)(εN ,使得当)(εN n >时,有ε<-a x n 即可.关键证明N ∈)(εN 的存在性.评注3 在第二小题中,用到了数列极限定义的等价命题,即: (1)N n N >∀N ∈∃>∀,,0ε,有εM a x n <-(M 为任一正常数). (2)N n N >∀N ∈∃>∀,,0ε,有k n a x ε<-)(N k ∈.例2 用定义证明下列各式: (1)1lim=∞→n n n ;(92,南开,10分) (2)0lim =∞→n kn an ),1(N k a ∈>证明:(1)(方法一)由于1>n n (1>n ),可令λ+=1n n (0>λ),则()>++-++=+==n n nnn n n n n λλλλΛ22)1(1)1(22)1(λ-n n (2>n ) 当2>n 时,21nn >-,有 >n >-22)1(λn n 2222)1(44-=nn n n λ即 nn n210<-<.0>∀ε,欲使不等式=-1n n ε<<-nn n 21成立,只须24ε>n .于是,0>∀ε,取⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡=2,14max 2εN ,当N n >时,有 1-nn ε<<n 2,即 1lim =∞→nn n .(方法二)因为n n n n n n n n n n n n n212211)111(112+<-+=++++≤⋅⋅⋅⋅⋅=≤-Λ48476Λ个, 所以1-nn n2<,0>∀ε,欲使不等式=-1n n ε<<-nn n 21成立,只须24ε>n .于是,0>∀ε,取142+⎥⎦⎤⎢⎣⎡=εN ,当N n >时,有1-nn ε<<n2,即 1lim=∞→nn n .(2)当1=k 时,由于1>a ,可记λ+=1a (0>λ),则>++-++=+=n n n n n n a λλλλΛ22)1(1)1(22)1(λ-n n (2>n ) 当2>n 时,21nn >-,于是有 <<n an 02242)1(λλn n n n <-.0>∀ε,欲使不等式0-n a n <<n a n ελ<24n 成立,只须24ελ>n .对0>∀ε,取⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡=2,14max 2ελN ,当N n >时,有0-n a n <<n an ελ<24n . 当1>k 时,11>k a (1>a ),而=n ka n kn k a n ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)(1.则由以上证明知N n N >∀N ∈∃>∀,,0ε,有ε<<nka n )(01,即kn k a n ε<<0,故 0lim =∞→n kn an .评注1 在本例中,0>∀ε,要从不等式ε<-a x n 中解得N 非常困难.根据n x 的特征,利用二项式定理展开较容易.要注意,在这两个小题中,一个λ是变量,一个λ是定值. 评注2 从第一小题的方法二可看出算术-几何平均不等式的妙处. 评注3 第二小题的证明用了从特殊到一般的证法.例 用定义证明:0!lim =∞→n a nn (0>a )(山东大学)证明:当10≤<a 时,结论显然成立.当1>a 时,欲使[][][][]ε<⋅<⋅⋅+⋅⋅⋅⋅=-n a a a n a a a a a a a n a a n !1210!ΛΛ成立, 只须>n [][]ε!1a a a +.于是0>∀ε,取=N [][]1!1+⎥⎦⎤⎢⎣⎡+εa a a ,当N n >时,有[][]ε<⋅<-n aa a n a a n !0!即 0!lim =∞→n a nn . 例 设1<α,用“N -ε”语言,证明:0])1[(lim =-+∞→ααn n n .证明:当0≤α时,结论恒成立. 当10<<α时,0>∀ε,欲使<-+=--+]1)11[(0)1(ααααn n n n εαα<=-+-11)111(nn n只须>n αε-111.于是0>∀ε,取=N 1111+⎥⎥⎦⎤⎢⎢⎣⎡-αε,当N n >时,有 <--+0)1(ααn n εα<-11n即 0])1[(lim =-+∞→ααn n n .2.迫敛性(夹逼定理)n 项和问题可用夹逼定理、定积分、级数来做,通项有递增或递减趋势时考虑夹逼定理.n n n z x y ≤≤,b y n →,c z n →}{n x ⇒有界,但不能说明n x 有极限.使用夹逼定理时,要求n n z y ,趋于同一个数.例 求证:0!lim =∞→n a nn (a 为常数).分析:na m a m a a a a n a n ⋅⋅+⋅⋅⋅⋅⋅=ΛΛ1321!,因a 为固定常数,必存在正整数m ,使1+<≤m a m ,因此,自1+m a 开始,11<+m a ,12<+m a ,1,<n aΛ ,且∞→n 时,0→na. 证明:对于固定的a ,必存在正整数m ,使1+<m a ,当1+≥m n 时,有≤⋅⋅+⋅⋅⋅⋅⋅=≤n a m a m a a a a n anΛΛ1321!0n am am⋅!, 由于∞→n lim0!=⋅na m am,由夹逼定理得0!lim=∞→n ann ,即 0!lim =∞→n a nn . 评注 当极限不易直接求出时,可将求极限的变量作适当的放大或缩小,使放大、缩小所得的新变量易于求极限,且二者极限值相同,直接由夹逼定理得出结果.例 若}{n a 是正数数列,且02lim21=+++∞→nna a a nn Λ,则0lim1=⋅⋅⋅∞→n n n a a n Λ. 证明:由()()()n n na a a ⋅⋅⋅Λ2121nna a a n+++≤Λ212,知n n na a a n ⋅⋅⋅⋅Λ21!nna a a n+++≤Λ212即 n n a a a ⋅⋅⋅Λ21n n n n na a a !1221⋅+++≤Λ.于是,n n a a a n ⋅⋅⋅<Λ210nnn nna a a !1221⋅+++≤Λ,而由已知02lim21=+++∞→nna a a nn Λ及∞→n lim0!1=nn故 ∞→n lim0!1221=⋅+++nnn nna a a Λ由夹逼定理得 0lim1=⋅⋅⋅∞→n n n a a n Λ.评注1 极限四则运算性质普遍被应用,值得注意的是这些性质成立的条件,即参加运算各变量的极限存在,且在商的运算中,分母极限不为0. 评注2 对一些基本结果能够熟练和灵活应用.例如: (1)0lim =∞→nn q (1<q ) (2)01lim=∞→an n (0>a )(3)1lim=∞→nn a (0>a ) (4)1lim =∞→n n n(5)0!lim =∞→n a n n (0>a ) (6)∞→n lim 0!1=n n 例 证明:若a x n n =∞→lim (a 有限或∞±),则a nx x x nn =+++∞→Λ21lim(a 有限或∞±).证明:(1)设a 为有限,因为a x n n =∞→lim ,则11,,0N n N >∀N ∈∃>∀ε,有2ε<-a x n .于是=-+++a n x x x nΛ21()()()na x a x a x n -++-+-Λ21 +-++-+-≤nax a x a x N 121Λnax a x n N -++-+Λ1121εε+<-+<n A n N n n A . 其中a x a x a x A N -++-+-=121Λ为非负数.因为0lim=∞→nAn ,故对上述的22,,0N n N >∀N ∈∃>ε,有2ε<n A .取},m ax {21N N N =当N n >时,有εεε=+<-+++2221a n x x x n Λ即 a nx x x nn =+++∞→Λ21lim.(2)设+∞=a ,因为+∞=∞→n n x lim ,则11,,0N n N G >∀N ∈∃>∀,有G x n 2>,且0121>+++N x x x Λ.于是=+++nx x x nΛ21 ++++n x x x N 121Λ n x x n N +++Λ11G nN G n N n G nx x nN 11122)(21-=->++>+Λ取12N N =,当N n >时,G G nN <12,于是 G G G nx x x n=->+++221Λ.即 +∞=+++∞→nx x x nn Λ21lim(3)-∞=a 时证法与(2)类似.评注1 这一结论也称Cauchy 第一定理,是一个有用的结果,应用它可计算一些极限,例如:(1)01211lim=+++∞→nn n Λ(已知01lim =∞→n n );(2)1321lim 3=++++∞→nnn n Λ(已知1lim =∞→n n n ).评注2 此结论是充分的,而非必要的,但若条件加强为“}{n x 为单调数列”,则由a nx x x nn =+++∞→Λ21lim可推出a x n n =∞→lim .评注3 证明一个变量能够任意小,将它放大后,分成有限项,然后证明它的每一项都能任意小,这种“拆分方法”是证明某些极限问题的一个常用方法,例如:若10<<λ,a a n n =∞→lim (a 为有限数),证明:λλλλ-=++++--∞→1)(lim 0221aa a a a n n n n n Λ. 分析:令0221a a a a x nn n n n λλλ++++=--Λ,则01101221)()()()1(a a a a a a a a x n n n n n n n n +-----++-+-+=-λλλλλΛ.只须证 0)()()(101221→-++-+----a a a a a a nn n n n λλλΛ(∞→n )由于a a n n =∞→lim ,故N n N >∀N ∈∃,,有ε<--1n n a a .于是)()()(101221a a a a a a n n n n n -++-+----λλλΛ101111221a a a a a a a a a a n N n N n N N n N n N n n n n -++-+-++-+-≤---+-+----λλλλλΛΛ再利用0lim =∞→n n λ(10<<λ)即得.例 求下列各式的极限: (1))2211(lim 222nn n nn n n n n +++++++++∞→Λ(2)n n n1211lim +++∞→Λ (3)nn nn 2642)12(531lim ⋅⋅⋅⋅-⋅⋅⋅⋅∞→ΛΛ解:(1)≤+++++++++≤+++++n n n n n n n n n n n n 2222221121ΛΛ1212+++++n n nΛ∵∞→n lim n n n n +++++221Λ∞→=n lim 212)1(2=+++n n n n n , ∞→n lim 1212+++++n n n Λ∞→=n lim 2112)1(2=+++n n n n , 由夹逼定理, ∴21)2211(lim 222=+++++++++∞→nn n n n n n n n Λ (2)n n n n n=+++≤+++≤11112111ΛΛ ∵1lim=∞→nn n ,由夹逼定理,∴11211lim =+++∞→n n nΛ. (3)∵121243212642)12(531212212452321<-⋅⋅⋅=⋅⋅⋅⋅-⋅⋅⋅⋅=⋅--⋅⋅⋅≤nn n n n n n n ΛΛΛΛ, ∴12642)12(53121<⋅⋅⋅⋅-⋅⋅⋅⋅≤⋅n n nn n nΛΛ.∵∞→n lim121=⋅nnn,由夹逼定理,∴12642)12(531lim=⋅⋅⋅⋅-⋅⋅⋅⋅∞→nn nn ΛΛ.评注nn 212-的极限是1,用此法体现了“1”的好处,可以放前,也可放后.若极限不是1,则不能用此法,例如:)12(53)1(32+⋅⋅⋅+⋅⋅⋅=n n x n ΛΛ,求n n x ∞→lim .解:∵0>n x ,{}n x 单调递减,{}n x 单调递减有下界,故其极限存在. 令a x n n =∞→lim ,∵3221++⋅=+n n x x n n ∴=+∞→1lim n n x n n x ∞→lim ∞→n lim322++n n , a a 21=, ∴0=a ,即 0lim =∞→n n x .)2112111(lim nn +++++++∞→ΛΛ(中科院) 评注 拆项:分母是两项的积,111)1(1+-=+n n n n插项:分子、分母相差一个常数时总可以插项.1111111+-=+-+=+n n n n n 3单调有界必有极限 常用方法:①n n x x -+1;②nn x x 1+;③归纳法;④导数法. )(1n n x f x =+ 0)(>'x f )(x f 单调递增12x x > )()(12x f x f > 23x x > 12x x < )()(12x f x f < 23x x <0)(<'x f )(x f 单调递减 12x x > )()(12x f x f < 23x x <12x x < )()(12x f x f > 23x x >不解决决问题.命题:)(1n n x f x =+,若)(x f 单调递增,且12x x >(12x x <),则{}n x 单调递增(单调递减).例 求下列数列极限:(1)设0>A ,01>x ,)(211nn n x A x x +=+;(98,华中科大,10分) (2)设01>x ,nnn x x x ++=+3331;(04,武大)(3)设a x =0,b x =1,221--+=n n n x x x (Λ,3,2=n ).(2000,浙大) 解:(1)首先注意A x Ax x A x x nn n n n =⋅⋅≥+=+221)(211,所以{}n x 为有下界数列. 另一方面,因为0)(21)(211≤-=-+=-+n nn n n n n x x Ax x A x x x .(或()121)1(21221=+≤+=+A Ax A x x nn n )故{}n x 为单调递减数列.因而n n x ∞→lim 存在,且记为a . 由极限的四则运算,在)(211nn n x Ax x +=+两端同时取极限∞→n ,得)(21aAa a +=.并注意到0>≥A x n ,解得A a =.(2)注意到33)1(333301<++=++=<+nn n n n x x x x x ,于是{}n x 为有界数列.另一方面,由)24)(3()3(2333333333333311211121121-------+++-=++-⎪⎪⎭⎫⎝⎛++-=+-=-++=-n n n n n n n n n n n n n n x x x x x x x x x x x x x x )2)(3(31121---++-=n n n x x x 知=---+11n n n n x x x x 02133)2)(3(311211121>+=+-++-------n n n n n n x x x x x x . 即n n x x -+1与1--n n x x 保持同号,因此{}n x 为单调数列,所以n n x ∞→lim 存在(记为a ).由极限的四则运算,在n n n x x x ++=+3331两端同时取极限∞→n ,得aaa ++=333.并注意到30<<n x ,解得3=a .(3)由于nn n n n n n n n n a b x x x x x x x x x x x )2()2()2(2201112111--=--=--==--=-+=----+Λ, 又=+-=∑-=+0101)(x x x x n m m m n a a b a a b x nn m mn +-----=+--=∑-=)21(1)21(1)()2(1)(10,所以 n n x ∞→lim 323)(2)21(1)21(1lim)(a b a a b a a b nn +=+-=+-----=∞→. 评注1 求递归数列的极限,主要利用单调有界必有极限的原理,用归纳法或已知的一些基本结果说明数列的单调、有界性.在说明递归数列单调性时,可用函数的单调性.下面给出一个重要的结论:设)(1n n x f x =+(Λ,2,1=n )I x n ∈,若)(x f 在区间I 上单调递增,且12x x >(或12x x <),则数列{}n x 单调递增(或单调递减).评注2 第三小题的方法较为典型,根据所给的11,,-+n n n x x x 之间的关系,得到n n x x -+1与1--n n x x 的等式,再利用错位相减的思想,将数列通项n x 写成级数的表达式.例 设11,b a 为任意正数,且11b a ≤,设11112----+=n n n n n b a b a a ,11--=n n n b a b (Λ,3,2=n ),则{}n a ,{}n b 收敛,且极限相同. 证明:由≤+=----11112n n n n n b a b a a 111122----n n n n b a b a n n n b b a ==--11,知≤=--11n n n b a b 111---=n n n b b b .则10b b n ≤<,即{}n b 为单调有界数列.又10b b a n n ≤≤<,且=-+=-------1111112n n n n n n n a b a b a a a =+---------111121112n n n n n n n b a b a a b a 0)(11111≥+------n n n n n b a a b a , 所以{}n a 亦为单调有界数列.由单调有界必有极限定理,n n a ∞→lim 与n n b ∞→lim 存在,且分别记为a 与b .在11112----+=n n n n n b a b a a 与11--=n n n b a b 两端同时取极限∞→n ,得ba ab a +=2与ab b =.考虑到11,b a 为任意正数且110b b a a n n ≤≤≤<. 即得0≠=b a .例 (1)设21=x ,nn x x 121+=+,求n n x ∞→lim ;(2)设01=x ,22=x ,且02311=---+n n n x x x (Λ,3,2=n ),求n n x ∞→lim .解:(1)假设n n x ∞→lim 存在且等于a ,由极限的四则运算,在nn x x 121+=+两端同时取极限∞→n ,得aa 12+=,即21±=a . 又2>n x ,故21+=a .下面只须验证数列{}a x n -趋于零(∞→n ).由于Λ<-<-=⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=-<+a x a x a x a x a x n n n n n 41121201a x n-⎪⎭⎫ ⎝⎛<141, 而∞→n lim 0411=-⎪⎭⎫⎝⎛a x n,由夹逼定理得=∞→n n x lim 21+=a . (2)由02311=---+n n n x x x ,知=++n n x x 231=+-123n n x x Λ=+--2123n n x x 62312=+=x x , 则 2321+-=+n n x x . 假设n n x ∞→lim 存在且等于a ,由极限的四则运算,得56=a . 下面只须验证数列⎭⎬⎫⎩⎨⎧-56n x 趋于零(∞→n ).由于 =-+-=--56232561n n x x Λ=⎪⎭⎫ ⎝⎛---56321n x 56325632111⋅⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=--n n x . 显然∞→n lim 056321=⋅⎪⎭⎫⎝⎛-n ,由夹逼定理得56lim =∞→n n x .评注1 两例题中均采用了“先求出结果后验证”的方法,当我们不能直接用单调有界必有极限定理时,可以先假设a x n n =∞→lim ,由递归方程求出a ,然后设法证明数列{}a x n -趋于零.评注2 对数列{}n x ,若满足a x k a x n n -≤--1(Λ,3,2=n ),其中10<<k ,则必有a x n n =∞→lim .这一结论在验证极限存在或求解递归数列的极限时非常有用.评注3 本例的第二小题还可用Cauchy 收敛原理验证它们极限的存在性.设1a >0,1+n a =n a +n a 1,证明n 1(04,上海交大)证 (1)要证n =1 ,只要证2lim 12nn a n →∞=,即只要证221lim 1(22)2n nn a a n n+→∞-=+-,即证221lim()2n n n a a +→∞-= (2)因1+n a =n a +n a 1,故110n n n a a a +-=>,1211n n na a a +=+ 2211112211()()112n n n n n n n n n n na a a a a a a a a a a +++++-=-+==++=+ 因此只要证21lim0n na →∞=,即只要证lim n n a →∞=∞(3)由110n n na a a +-=>知,{}n a 单调增加,假如{}n a 有上界,则{}n a 必有极限a ,由1+n a =n a +n a 1知,a =a +1a ,因此10a=,矛盾. 这表明{}n a 单调增加、没有上界,因此lim n n a →∞=∞. (证完)4 利用序列的Cauchy 收敛准则例 (1)设21xx =(10≤≤x ),2221--=n n x x x ,求n n x ∞→lim ;(2)设111==y x ,n n n y x x 21+=+,n n n y x y +=+1,求nnn y x ∞→lim ; 解:(1)由21x x =(10≤≤x ),得211≤x .假设21≤k x ,则412≤k x .有=-=+2221k k x x x 21212≤-k x x由归纳法可得 21≤n x . 于是 ⎪⎪⎭⎫ ⎝⎛---=---++22222121n p n n pn x x x x x x111111212--+--+--+-≤-+=n p n n p n n p n x x x x x x 021211111→≤-≤≤-+-n p n x x Λ(∞→n ). 由Cauchy 收敛准则知:n n x ∞→lim 存在并记为a ,由极限的四则运算,在2221--=nn x x x 两端同时取极限∞→n ,得022=-+x a a .注意到21≤n x ,故x a x n n ++-==∞→11lim .(2)设nnn y x a =,显然1>n a . 由于nn n n n n n n a y x y x y x a ++=++==+++1112111,则 111111+++-+=-n n n n a a a a ()()<++-=--1111n n n n a a a a <<--Λ141n n a a 12141a a n --. 于是=-+n p n a a n n p n p n p n p n a a a a a a -++-+-+-+-+-++1211Λ n n p n p n p n p n a a a a a a -++-+-≤+-+-+-++1211Λ12124141a a n p n -⎪⎭⎫⎝⎛++<---Λ12141141141a a p n ---⋅=- 03141121→-⋅<-a a n (∞→n ). 由Cauchy 收敛准则知:n n x ∞→lim 存在并记为a . 由极限的四则运算,在nn a a ++=+1111两端同时取极限∞→n ,得22=a . 注意到1>n a ,故=∞→n nn y x lim2lim =∞→n n a . 评注1 Cauchy 收敛准则之所以重要就在于它不需要借助数列以外的任何数,只须根据数列各项之间的相互关系就能判断该数列的敛散性. 本例两小题都运用了Cauchy 收敛准则,但细节上稍有不同.其实第一小题可用第二小题的方法,只是在第一小题中数列{}n x 有界,因此有11111≤+≤-++x x x x p p .保证了定义中的N 仅与ε有关.评注2 “对N p ∈∀有()0lim =-+∞→n p n n x x ”这种说法与Cauchy 收敛准则并不一致.这里要求对每个固定的p ,可找到既与ε又与p 的关的N,当N n >,有ε<-+n p n x x .而Cauchy 收敛准则要求所找到的N只能与任意的ε有关.5 利用Stolz 定理计算数列极限例 求下列极限(1)⎪⎪⎭⎫⎝⎛-+++∞→421lim 3333n n n n Λ(2)假设1222...lim ,lim 2n n n n a a na aa a n →∞→∞+++==证明:(00,大连理工,10)(04,上海交大)证明:Stolz 公式121211222212...(2...(1))(2...)limlim(1)(1)lim 212n n n n n n n n a a na a a na n a a a na n n n n a a n +→∞→∞+→∞++++++++++++=+-+==+(3)nn n ln 1211lim +++∞→Λ (4)n n n n 1232lim++++∞→Λ (5)n n an 2lim ∞→(1>a )6 关于否定命题的证明 (书上一些典型例题需背)a x n n ≠∞→lim{}n x 发散例 证明:nx n 131211++++=Λ发散.例 设0≠n a (Λ,2,1=n ),且0lim =∞→n n a ,若存在极限l a a nn n =+∞→1lim,则1≤l .(北大,20)7杂例(1))1(1321211lim+++⋅+⋅∞→nnnΛ(2)(04,武大)2212lim(...),(1)11()1lim()11(1)1nnnnnnaa a an aaa a aa→∞→∞+++>-=-=---(3) )1()1)(1(lim22nnxxx+++∞→Λ(1<x);(4)设31=a,nnnaaa+=+21(Λ,2,1=n),求:⎪⎪⎭⎫⎝⎛++++++=∞→nn aaal111111lim21Λ.。

相关文档
最新文档