数列极限中的典型例题

合集下载

证明数列极限的题目及答案

证明数列极限的题目及答案

证明数列极限的题目及答案题目:证明数列$a_n =\frac{n}{n + 1}$的极限为 1证明:首先,我们需要明确数列极限的定义。

对于数列$\{a_n\}$,如果对于任意给定的正数$\epsilon$,总存在正整数$N$,使得当$n > N$ 时,都有$|a_n L| <\epsilon$ 成立,那么就称数列$\{a_n\}$的极限为$L$。

接下来,我们来证明数列$a_n =\frac{n}{n + 1}$的极限为 1。

对于任意给定的正数$\epsilon$,要使$|a_n 1| <\epsilon$,即\\begin{align}\left|\frac{n}{n + 1} 1\right|&<\epsilon\\\left|\frac{n}{n + 1} \frac{n + 1}{n + 1}\right|&<\epsilon\\\left|\frac{-1}{n + 1}\right|&<\epsilon\\\frac{1}{n + 1}&<\epsilon\\n + 1 &>\frac{1}{\epsilon}\\n &>\frac{1}{\epsilon} 1\end{align}\所以,取$N =\left\frac{1}{\epsilon} 1\right$(这里$\cdot$ 表示取整),当$n > N$ 时,就有$|a_n 1| <\epsilon$。

因此,根据数列极限的定义,数列$a_n =\frac{n}{n + 1}$的极限为 1。

题目:证明数列$b_n =\frac{1}{n}$收敛于 0证明:给定任意正数$\epsilon$,要使$|b_n 0| <\epsilon$,即\\begin{align}\left|\frac{1}{n} 0\right|&<\epsilon\\\frac{1}{n}&<\epsilon\\n &>\frac{1}{\epsilon}\end{align}\所以,取$N =\left\frac{1}{\epsilon}\right$,当$n >N$ 时,就有$|b_n 0| <\epsilon$。

高数数列极限经典例题

高数数列极限经典例题

高数数列极限经典例题高数数列是数学中重要的概念,它定义了一个数列中每一项的表达式,以及每一项和前面项之间的关系。

极限是描述数列无限接近某个值的重要概念,也是高数中最重要的内容之一,比较经典的例题是必须要掌握的。

首先,让我们来看一个经典的极限例题:求函数y=x3-3x2+3的极限,当x趋近于1的时候。

这道题的步骤是,先求x接近1时,函数值的上限和下限,然后利用极限的定义求解极限。

根据函数定义,当x取值接近1时,函数值的上限是x3-3x2+3+Δx,下限是x3-3x2+3-Δx,Δx表示x变化量,这里可以看出上下限的差值为2Δx。

接下来,我们可以利用极限的定义,得出结论:当x变化量趋于0时,上下限的差值也是趋于0,也就是说,当x趋于1时,函数值的极限就是x3-3x2+3。

通过这个例题,我们不仅学会了求函数极限的方法,还学会了求解其他类似例题的步骤。

再来看一道比较典型的极限例题:求函数y=2x2-2x+1的极限,当x趋近于0的时候。

这道题的步骤也是先求函数值的上限和下限,然后利用极限的定义求解极限。

根据函数定义,当x取值接近0时,函数值的上限是2x2-2x+1+Δx,下限是2x2-2x+1-Δx,Δx表示x变化量,这里可以看出上下限的差值为2Δx。

再利用极限的定义,得出结论:当x变化量趋于0时,上下限的差值也是趋于0,也就是说,当x趋于0时,函数值的极限就是2x2-2x+1。

可以看出,这两道极限例题,在步骤上有些类似,只是数值上的差别。

解决时只要注意函数的表达式,分析x趋于某个值时,函数值的上下限,从而利用极限定义求解极限。

当然,极限例题远不止上面两道,在解决这类例题的时候要更加熟悉解决的技巧,多练习解出一些类似的经典例题,以便应对考试中可能出现的问题。

以上就是关于高数数列极限经典例题的几个介绍,以帮助大家更好地理解极限和掌握求解极限的技巧。

当然,要想真正掌握极限知识,不能只依靠死记硬背,而要形成自己独立思考和解决问题的能力。

数列极限中的典型例题

数列极限中的典型例题

于是有
作业
种子最后是果实;努力最后是成功;放弃最后是失败。 己欲立而立人,己欲达而达人。——《论语·雍也》 诚无悔,恕无怨,和无仇,忍无辱。——宋《省心录》 越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 如果你相信自己,你可以做任何事。 一棵小草,也许永远不能成为参天大树,但它可能做最绿最坚强的小草;一滴水,也许永远不能像长江大河一样奔腾,但它可以成为所有水中的最纯的那一滴 当你对自己诚实的时候,世界上没有人能够欺骗得了你。 心如镜,虽外景不断变化,镜面却不会转动,这就是一颗平常心,能够景转而心不转。 谁若想在困厄时得到援助,就应在平日待人以宽。——萨迪 书不仅是生活,而且是现在过去和未来文化生活的源泉。——库法耶夫 缺乏明确的目标,一生将庸庸碌碌。 宁可失败在你喜欢的事情上,也不要成功在你所憎恶的事情上。
斯铎兹定理(Stolz)(离散情形) 一滴水,也许永远不能像长江大河一样奔腾,但它可以成为所有水中的最纯的那一滴 一棵小草,也许永远不能成为参天大树,但它可能做最绿最坚强的小草;
于是
所以
于是
二. 利用递推关系求极限
因为
三. 利用数列的构造和性质求极限
例7 证明:从每个收敛的序列中,都可以选出一个子列,使得其 各项为一个绝对收敛级数的部分和序列。
斯铎兹定理(Stolz)(离散情形) 越是无能的人,越喜欢挑剔别人的错儿。 越是无能的人,越喜欢挑剔别人的错儿。 诚无悔,恕无怨,和无仇,忍无辱。 谁若想在困厄时得到援助,就应在平日待人以宽。 方法:罗比塔法则(L’Hospital)(连续情形)
斯铎兹定理(Stolz)(离散情形) 方法:罗比塔法则(L’Hospital)(连续情形)
数列极限中典型例 题
方法:罗比塔法则(L’Hospital)(连续情形) 斯铎兹定理(Stolz)(离散情形)

数列极限典型例题

数列极限典型例题

数列极限典型例题字数限制为2500字的文章极为冗长,因此我会尝试为您写一篇约500字的短文,探讨数列中的极限典型例题。

数列是数学中非常重要的概念,它在各个数学分支中都有广泛的应用。

而数列的极限是数列中最为重要的概念之一。

本文将介绍数列极限的基本定义以及探讨一些典型的数列极限例题。

首先,什么是数列的极限呢?简单来说,数列的极限表示数列中的值在趋于无限接近某个确定的值,这个确定的值就被称为数列的极限。

我们用符号“lim”来表示数列的极限。

现在我们来看一个例题:求数列an = 2n的极限。

要求这个数列的极限,我们可以分别计算当n趋于正无穷和负无穷时这个数列的值,然后比较它们的值是否一致。

当n趋于正无穷时,数列的值变得越来越大,接近无穷大。

当n趋于负无穷时,数列的值变得越来越小,接近负无穷大。

根据这个分析,我们可以得出结论:数列an = 2n的极限不存在。

接下来我们看另一个例题:求数列bn = (-1)n的极限。

同样,我们可以计算当n趋于正无穷和负无穷时这个数列的值。

当n趋于正无穷时,数列的值交替变为1和-1,没有趋于特定的值。

同样地,当n趋于负无穷时,数列的值也交替变为1和-1,没有趋于特定的值。

所以数列bn = (-1)n的极限也不存在。

最后我们来看一个有界数列的极限例题:求数列cn = (-1)n/n的极限。

对于这个数列,我们同样可以计算当n趋于正无穷和负无穷时的值。

当n趋于正无穷时,数列的值交替变为-1/n和1/n,但是无论n取多大,这个数列的绝对值都小于1/n。

同样地,当n趋于负无穷时,数列的值也交替变为-1/n和1/n,但是无论n取多小,这个数列的绝对值都小于1/n。

综上所述,我们可以得出结论:数列cn = (-1)n/n的极限为0。

以上就是数列极限的基本定义以及一些典型例题的探讨。

通过这些例题的分析,我们可以更好地理解数列极限的概念,并学会如何计算数列的极限。

数列极限作为数学中的基础知识,在各个数学分支中有重要的应用,希望本文对您有所帮助。

数列极限例题

数列极限例题

数列极限例题数列极限是数学中一个非常重要的概念,它在微积分、数学分析等领域有着广泛的应用。

理解数列极限的概念对于深入学习数学是至关重要的。

在本文中,我们将通过例题来详细介绍数列极限的概念和计算方法。

首先,让我们来看一个简单的数列极限例题:求极限lim(n→∞)(1/n)。

这个数列是一个常见的数列,数列的通项公式为1/n。

我们要求这个数列当n趋向于无穷大时的极限。

根据数列极限的定义,当n趋向于无穷大时,1/n趋近于0。

因此,极限lim(n→∞)(1/n)= 0。

接着,我们来看一个稍复杂一点的数列极限例题:求极限lim(n→∞)(n²+3n)/n²。

这个数列的通项公式为(n²+3n)/n²。

我们要求这个数列当n趋向于无穷大时的极限。

可以将数列中的n²扩展开来,得到(n²/n² + 3n/n²)。

简化得到1 + 3/n。

当n趋向于无穷大时,3/n趋近于0,因此极限lim(n→∞)(n²+3n)/n² = 1。

最后,我们来看一个更具挑战性的数列极限例题:求极限lim(n→∞)(n²+3n²+5n²+...+(2n-1)n²)/n²。

这个数列的通项公式可以写成(n² + 3n² + 5n² + ... + (2n-1)n²)/n²。

将分子中的各项合并得到n²(1 + 3 + 5 + ... + 2n-1)/n²。

数列1 + 3 + 5+ ... + 2n-1可以看作是n²的等差数列的和,公式为n²(n²-1)/2。

因此,极限lim(n→∞)(n²+3n²+5n²+...+(2n-1)n²)/n² = (n²)²(n²-1)/2n²² = (n²-1)/2。

数列_极限在物理中的应用举例_耿道永

数列_极限在物理中的应用举例_耿道永

数列、极限在物理中的应用举例江苏省邳州市宿羊山高级中学(221354) 耿道永 王 凯 随着课程改革的深入进行和“3+x ”考试方案的推广,数学在综合科尤其在物理中的应用问题越来越受到关注.由于数学和物理在其发展史上就交织在一起,相互促进,因此数学在物理上有广泛的应用.数列是高中数学的重要部分,其在物理中的应用具有一定的代表性,下面分类举例说明.一、在力学中的应用图1例1 如图1,斜面的倾角为30°,在斜面底端有一弹簧(其长度可忽略不计).若一小球从斜面50cm 高处自由滚下,与弹簧碰撞,再反弹后所能达到的高度是原来的45.求小球从开始到终止所通过的总路程.解析 第1次滚下的路程s 1=50sin30°=100cm ,第2次滚下的路程s 2=45s 1,第3次滚下的路程s 3=45s 2,…,第n 次滚下的路程s n =45s n -1,…,即小球每次滚下的路程组成一个以s 1=100c m 为首项,以45为公比的无穷等比数列,则小球从开始到终止所通过的总路程为s =s 1+2s 2+2s 3+…+2s n +…=2(s 1+s 2+s 3+…+s n +…)-s 1=2·1001-45-100=1000-100=900(cm )=9(m ).二、在电学中的应用(上接19页)老王每3个月应付款额为3×1901.40=5704.20元,共需付20次款.设老王第n 次付款折算成现值是a n ,则a 1[1+1.98%4×(1-20%)] =a 1×1.00396=5704.20,a 2[1+1.98%4×(1-20%)]2 =a 2×1.003962=5704.20,a 20[1+1.98%4×(1-20%)]20 =a 20×1.0039620=5704.20,∴ 老王各次付款折算成现值后的总额A 是:A =a 1+a 2+…+a 20=5704.20×(11.00396+11.003962+…+11.0039620)=109475(元).在这里分期付款方式相当于老王现在手上只要有109475元,就可以将这109475元钱存入银行,用“整存零取”的方式支付全部房款.因此,与一次性付清10万元房款相比,老王选择分期付款方式仅仅多付了109475-100000=9475元钱(考虑到问题已修改,实际结果要略大一些,但不会超过9908元,这个结果留给读者自己推导).显然,新的计算结果要大大少于原来的结果14084元.通过刚才的计算我们可以知道,与传统的一次性付款方式相比,采用分期付款方式多支付的钱比人们想象的要少得多.我们还可以设想,如果老王采用比银行收益更高的投资理财方式,那么老王现在手上的109475元除了支付全部房款外,还会有所节余.从刚才的研究中我们还可以认识到,分期付款这种新的消费方式确实利大于弊,它既有利于企业推销产品,及时回笼资金,促进再生产,也有利于个人尽快改善生活,当然更有利于国家加快经济发展的步伐. ◆(责审 张思明)20中学生数学 2003年2月上 例2 使一个原来带电的导体小球与一个带电量为Q 的导体大球接触,分开后小球获得电量q .今使小球与大球反复接触,在每次分开后,都给大球补充电荷,使其带电量恢复为Q ,求小球能获得的最大电量.解析 小球与大球接触后,两球所带电量之比决定于两者的形状,是一个恒量.设q 1、q 2、…、q n 和Q 1、Q 2、…、Q n 分别为第1、2、…、n 次接触后小球与大球的带电量,则有q 1=q ,Q 1=Q -q ,k =qQ -q,第n 次接触后,q n Q n =q Q -q ,Q n =Q +q n -1-q n ,所以q n =Q n ·q Q -q =(Q +q n -1-q n )·q Q -q ,化简得 q n =qQ ·q n -1+q ,应用公式得 q n =q n ·1-(q Q )n1-q Q.∵ q Q<1, ∴ 当n ※∞时,q n ※q max ,即 q m ax =lim n ※∞q n =QqQ -q .三、在光学中的应用图2例3 从A 点出发的一条光线在直线A D 与CD 之间反射了n 次后,垂直地射到B点(该点可能在A D 上,也可能在C D 上),然后按原路返回点A ,如图2是n =4时的光路图.若∠C DA =8°,则n 的最大值是( ).(A )9 (B )10 (C )11 (D )12图3解析 如图3,设∠1=α,则∠2=α,∠3=∠4=α+8°,同样的,∠5=∠4+8°=∠3+8°.一般的,∠(2n +1)=∠(2n -1)+8°.∴ ∠(2n -1)是以α为首项,8°为公差的等差数列的通项.∠2n -1=α+(n -1)8°,当∠2n -1=90°时,n 最大,即α+(n -1)8°=90° n =90°-α8°+1≤90°8°+1.∴ n 的最大值为12,故选(D ).四、在热学上的应用例4 用真空泵抽出某容器中的空气,若某容器的容积为V ,真空泵一次抽出空气的体积为V 0,设抽气时气体温度不变,容器里原来的空气压强为p ,求抽出n 次空气后容器中空气的压强是多少?解析 设第1次抽气后容器内的压强为p 1,以整个气体为研究对象,因为抽气时气体温度不变,则由玻意耳定律得pV =p 1(V +V 0), ∴ P 1=VV +V 0p .以第1次抽气后容器内剩余气体为研究对象,设第2次抽气后容器内剩余气体压强为p 2,由玻意耳定律得p 1V =p 2(V +V 0),∴ p 2=V V +V 0p 1=(V V +V 0)2p .以第n -1次抽气后容器内剩余气体为研究对象,设第n 次抽气后容器内剩余气体压强为p n ,由玻意耳定律得p n -1V =p n (V +V 0),∴ p n =V V +V 0p n -1=(V V +V 0)np .故抽出n 次空气后容器中剩余空气的压强为(V V +V 0)np .当然,除了数列以外,数学其它知识在物理中也有广泛的应用.平常注重数学、物理综合问题的训练,一方面可以提高同学们综合分析、解决问题的能力,另一方面可以培养我们浓厚的学习兴趣. ◆(责审 余炯沛)212003年2月上 中学生数学 。

数列极限证明例题

数列极限证明例题

这里就有几个这样做法的例题,均为采用加1 的做法。

就只想弄懂一定:到底有没有必要“+1”?• 26 •例1证明数列的极限是1.亠n为了使上-“I 小于任总给定的正数£(设£<1),只要 丄<e或”〉丄.n e所以,W E >0 .取N= [ + ] •则当>/>N 时•就有即1屛4(一门"—.不等式|匸・tl|<E 必定成立•所以•取N= --1,则当 矶已知•"倍•证砲列G 的扱限是。

・(-!)•5"厂° Vc>0 (ift Y1)■只枣或”洱・1证lx (n + i)}<VTT->N 时就有(-D" n /(7ny° 5|叫([爲=().. • 26 •*…仆十I)-*3-根据数列极限的定义证明:(2)(3) Hrn /2±Z =1ITY >n ⑷亞0. 999^=1.证 ⑴ 因为要使|+一0|=+<@,只要几>卡,所以办>0,取N=[打 则当n>N 时,就有怜一0 <e» ffllim^=0.⑵因为IlSbi •卜总师<羔要使|鶉-引0只要 即"〉右所以Ve>0,取N=[打则当 QN 时.就有|1|<€, 注 本题中所采用的证明方法是:先将比一川等价变形,然后适当放大•使N 容 易由放大后的世小于€的不等式中求出•这竝定义证明极限的问题中是经常采用的.要使 血吾| <c ■只要磊即”〉場.所以Ve>0,取N=[熾]则 当”〉N 时,就有 血王疋_1 <€,即lim 坐土艺=1. n LOO n即lim JT 3并+1 2刀+1 3 2* (3)因为I n 2n 2(4)因为|0. 999^9-l|=y~,要使|0・ 999^?-l|<e,只要^<e.即n>lg-,所以Ve>0(不妨设€<1),取N=)g丄],则当n>N时,就有C L. €」。

极限经典例题集

极限经典例题集

之阿布丰王创作时间:二O二一年七月二十九日例题1.在数列{a n}中,a1=1,当n≥2时,a n,S n,成等比数列.(1)求a2,a3,a4;(2)猜想a n的表达式并用数学归纳法证明;(3)求;(4)(思考题)不使用猜想a n的表达式并用数学归纳法证明的方法直接求a n.1..解析:∵a n,S n,成等比数列,∴(n≥2)(*)(1)把a1=1,S2=a1+a2=1+a2代入(*)式得:把a1=1,,代入(*)得:.同理可得:由此可以推出(2)(i)当n=1,2,3,4时,由(*)知猜想成立.(ii)假设n=k(k≥2)时,成立.故∴或(舍去)由得即n=k+1时,命题也成立.由(i)(ii)可知,对一切n∈N成立.(3)由(2)得数列前n项的和,所有项和(4)对{a n}的通项还可以这样来求:∵, ∴,故是以为首项,为公差的等差数列故,注:对含有a n,S n的关系式中,常将a n用S n-S n-1(n≥2)代(或S n+1-S n用a n+1代),化成S n,S n+1(或a n,a n+1)的递归关系式.例 1.数列{a n}满足下列条件,求其通项公式a n.(1)a1=1,(2)a1=2,(3)a1=2,{a n}的前n项和S n满足解:(1)……将以上各式叠加,得∴又n=1时,(2)……将以上各式叠乘,得∴a n=n(n+1)(n≥2)当n=1时,1×(1+1)=2 = a1∴a n=n(n+1)(n∈N*)(3)∴2S n-1S n=S n-1-S n(n≥2)在上式两边同除以S n S n-1,得∴数列为首项,公差为2的等差数列.例2、在等差数列{a n}中(1)若a p=q,a q=p(p、q∈N*且q≠p),求a p+q;(2){a n}共有n项,其前四项之和为124,其最后四项之和为156,其所有项之和为210,求项数n;(3)若{a n}前n项和记为S n,且有,求S m+n的范围解:(1)∵a q=a p+(q-p)d∴a p+q=a p+(q+p-p)d=q+q×(-1)=0(2)∵a1+a2+a3+a4=124a n+a n-1+a n-2+a n-3=156∴(a1+a n)+(a2+a n-1)+(a3+a n-2)+(a4+a n-3)=280∴4(a1+a n)=280∴a1+a n=70∴n=6(3)设前n项和将以上两式相减得:两边同除以m-n,得例3、在数列{a n}中,S n是其前n项和,a1=1,S n+1=4a n+2(n∈N*)(1)设b n=a n+1-2a n,求证数列{b n}为等比数列并求其通项公式;(2)设 ,求证数列{C n}是等差数列并求其通项解:(1)∵S n+1=4a n+2∴S n+2=4a n+1+2 将以上两式相减,得a n+2=4a n+1-4a n∴a n+2-2a n+1=2(a n+1-2a n)又s2=4a1+2=a1+a2∴a2=5 ∴数列{b n}是以b1=a2-2a1=5-2=3为首项,q=2为公比的等比数列.∴b n=3×2n-1(2)数列{C n}是以为首项,为公差的等差数列.例4、在等差数列{a n}中,公差d≠0,a2是a1与a4的等比中项,已知数列成等比数列,求数列{k n}的通项k n解:∵a2是a1与a4的等比中项∵d≠0∴a1=d ∵是等差数列中的第k n项,是等比数列中的第n+2项且 =a1+(k n-1)d=d+(k n-1)d=k n d ∴∴ 2.数列的极限应用恒等变换和极限的四项运算法则,将数列的极限转化为三个基本极限来求解.3.数学归纳法数学归纳法有两个基本步伐:第一步,验证n=n0时,命题成立;第二步,假设n=k时,命题成立,然后利用归纳假设证明n=k+1时成立.用数学归纳法证明命题时特别要求证明的逻辑严密性.数学归纳法通经常使用来证明有关等式,不等式,整除,几何命题等.例 5.数列{a n}满足 ,a1=2(1)求数列{a n}的通项;(2)令 ,求出n∈(1,10000)内使b1b2b3…b n为整数的n的所有值的和. 解:(1)由a1=2得:由a2=3得:由a3=4得:猜想:a n=n+1(n∈N*) 下用数学归纳法证明该猜想1°当n=1时,a1=1+1=2,命题成立2°假设n=k(k∈N*)时,命题成立,即有a k=k+1,则=(k+1)+1 即n=k+1时,命题也成立.综合1°,2°知,a n=n+1(n∈N*)(2)∵将a n=n+1代入得=log2(n+2)欲使b1b2b3…b n为整数,须使n+2为2的整数幂∵n∈(1,10000) ∴n+2可是以22,23,24,213∴所求和为(22-2)+(23-2)+(24-2)++(213-2)=22+23+24+…+213-24=214-28=16356例6.无穷数列{a n}的前n项和为b n,无穷数列{b n}的前n项和C n,对n∈N*,恒有b n+c n=n,(1)证明:数列{1-b n}是等比数列;(2)求(3)比力的年夜小关系解:(1)首先b1+C1=1而C1=b1,得由已知:b n+C n=n,有b n+1+C n+1=n+1将两式相减,有b n+1-b n+b n+1=1∴数列{1-b n}是以的等比数列.(2)由(1)知:(3)n=1时,n≥2时,综上,当n=1或2时,显然有当n≥3时,这时例7.设 ,不论α、β为何实数,恒有f(cosα)≤0,f(2-sinβ)≥0,正数数列{a n}的前n项和S n=f(a n),n∈N*(1)求b值;(2)求{a n}的通项公式;(3)令 ,{c n}的前n项和为T n,比力T n与的年夜小.解:(1)当cosα=1时,有f(1)≤0当sinβ=1时,有f(2-sinβ)=f(1)≥0∴f(1)=0(2)令n=1,有解得a1=3或a1=-1(舍)将以上两式相减,∵{a n}为正数数列,∴a n,a n-1>0,∴a n+a n-1>0∴a n-a n-1=2(n≥2)∴{a n}是以a1=3为首项,公差为2的等差数列∴a n=3+(n-1)×2=2n+1(3)∴T n=C1+C2+…+C n[课后练习]1.数列{a n}的通项公式是a n=n2-kn,若数列{a n}是递增的,则实数k的取值范围是()(A)k<3(B)k≤3(C)k<2(D)k≤22.数列{a n}的通项公式是 ,当a n取最年夜值时,n即是()(A)4(B)5(C)6(D)73.数列{a n}满足a1=0, ,则a20即是( )(A)0(B)(C)(D)4.等比数列{a n}中,a n>0,a5a6=16,则log4a1+log4a2+…+log4a10=_____5.在等比数列{a n}中,a5,a9是方程7x2-18x+7=0的两个根,则6.数列{a n}的前n项和S n满足a n+2S n S n-1=0(n≥2),(1)求证:是等差数列;(2)求a n;(3)若b n=2(1-n)a n(n≥2),求证:7.已知数列{a n}的首项a1=5,前n项和为S n,且S n+1=2S n+n+5(n∈N*)(1)证明数列{a n+1}是等比数列;(2)令f(x)=a1x+a2x2++a n x n,求函数f(x)在点x=1处的导数f′(1)[参考谜底]1.选 A∵a n+1-a n=(n+1)2-k(n+1)-(n2-kn)=2n+1-k>0(n∈N*)∴k<2n+1对任意n∈N*成立而2n+1最小值为3,∴k<32.选 A∴a n图象可看作是函数个单元,再上移个单元而获得(a n图象是一些孤立点)画草图可知,a4最年夜3.选 B∴可知{a n}的各项数值以3为周期重复呈现4.5.又a5,a7,a9符号相同,∴a7=16.(1)由a n+2S n S n-1=0 (n≥2)∴S n-S n-1+2S n S n-1=0 (n≥2)为首项,公差为2的等差数列.(2)(3)7.(1)∵S n+1=2S n+n+5∴S n=2S n-1+(n-1)+5(n≥2)∴S n+1-S n=2(S n-S n-1)+1(n≥2)即a n+1=2a n+1(n≥2)∴a n+1+1=2(a n+1)(n≥2)∴{a n+1}从第2项起,是公比为2的等比数列又a1=5,由S n+1=2S n+n+5令n=1有S2=2S1+6∴a1+a2=2a1+6∴a2=11∴{a n+1}是以a1+1=6为首项,公比为2的等比数列(2)∵f′(x)=a1+2a2x+3a3x2+…+na n x n-1∴f′(1)=a1+2a2+3a3+…+na n 由(1)知a n+1=6×2n-1∴a n=6×2n-1-1令T n=6×20+2×6×21+3×6×22+…+n×6×2n-1∴2T n=6×21+2×6×22+3×6×23+…+n×6×2n∴-T n=6×20+6×21+6×22+…+6×2n-1-n×6×2n∴T n=(n-1)×6×2n+6时间:二O二一年七月二十九日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列极限中的典型例题
2014.4.30
精品课件
方法:罗比塔法则(L’Hospital)(连续情形)源自斯铎兹定理(Stolz)(离散情形)
精品课件
精品课件
精品课件
于是
精品课件
所以
精品课件
精品课件
于是
精品课件
二. 利用递推关系求极限
精品课件
因为
精品课件
精品课件
精品课件
三. 利用数列的构造和性质求极限
例7 证明:从每个收敛的序列中,都可以选出一个子列,使 得其各项为一个绝对收敛级数的部分和序列。
精品课件
精品课件
于是有
精品课件
精品课件
作业
精品课件
精品课件
相关文档
最新文档