全站仪在市政工程施工测量中的应用
高精度全站仪在城市建筑基坑变形监测中的应用

高精度全站仪在城市建筑基坑变形监测中的应用摘要:随着我国城市化进程的推进,各种新型、大型建筑物不断涌现,建筑基坑开挖的深度越来越大,规模越来越复杂。
为了确保支护结构和相邻建筑的安全,在施工过程中要对基坑的变形情况进行监测,从而保证施工过程中支护结构及相邻建筑物的安全、稳定。
基坑变形监测主要包括水平位移监测和竖向位移监测。
基坑水平位移监测包括测定特定方向上的水平位移,常用方法有视准线活动觇牌法、视准线测小角法、激光准直法等。
这些方法的特点是使用经纬仪即可进行观测,以基坑附近有稳定的基准点为基础,并保证在监测点通视的条件下才能实施。
同时,不同边在水平位移观测时需分别设站,观测时间较长,对于复杂的监测环境不太适用。
基坑竖向位移监测的传统方法主要以几何水准测量为主,其测量精度高,数据可靠,能够有效反应基坑的竖向变形。
其缺点在于高程传递受地形环境影响因素较大,监测耗时较长,在某些特殊基坑或基坑较深时无法有效实施。
关键词:高精度全站仪;城市建筑;基坑变形监测;应用;引言近年来,随着国民经济的迅猛增长,全国各省市的城市建设也随之增加,为保证城市建设的安全,根据相关要求,必须对其进行安全监测。
深基坑中监测一般包括:水平位移监测、沉降监测、水位监测、支护结构深层水平位移监测、支撑轴力等监测项目。
各项监测项目中技术难度较高的是水平位移监测。
传统的基坑位移监测方法有视准线法、小角法、极坐标法、前方交会法、后方交会法等。
1做好深基坑监测的要求及意义首先从技术体系的应用意义来讲,在深基坑开挖的过程中,由于土方卸载导致周围的围护体系性能下降,周边的土体结构会逐渐向中间进行位移。
这不仅会对施工过程造成较大的隐患,也会直接影响后期地下室结构的综合质量,因此,做好深基坑监测,可以及时的把握深基坑施工期间的动态性因素。
做好深基坑监测,也可以了解整体的施工过程是否会对周边环境产生影响,并且制定调解方案,这能够进一步提升地下室施工的有效性,在确保安全的同时,增强整体工程的经济效益和社会价值。
全站仪在测绘中的应用与操作要点

全站仪在测绘中的应用与操作要点测绘技术在日常生活和各行各业中扮演着重要的角色。
全站仪作为一种现代测量仪器,广泛应用于土地测量、建筑工程、道路规划等领域。
本文将探讨全站仪在测绘中的应用以及操作要点。
一、全站仪的应用1. 土地测量:全站仪在土地测量中发挥了重要的作用。
它能够准确地测量地面的高程、水平和方位角,为土地开发和规划提供重要的数据支持。
此外,全站仪也可以用于测量土地的边界,帮助确定土地的界线。
2. 建筑工程:在建筑工程中,全站仪用于测量和布置建筑物的各种参数,如地壳变形、建筑物的高程和水平等。
通过使用全站仪,建筑师和工程师可以准确地确定建筑物的位置和方向,确保建筑物的稳固性和安全性。
3. 道路规划:全站仪在道路规划中具有广泛的应用。
它可以精确地测量地面的高度和坡度,帮助道路设计师确定最佳的道路线路和施工方案。
此外,全站仪还可以用于测量道路的宽度和曲率,确保道路的安全和舒适性。
4. 矿产勘探:在矿产勘探中,全站仪被用来测量矿石的数量和位置。
通过使用全站仪,勘探人员可以准确地确定矿石的走向和倾角,帮助他们确定最佳的矿区开发计划。
二、全站仪的操作要点1. 校准:在使用全站仪之前,必须将其校准以确保测量的准确性。
校准包括水平校准、垂直校准和方位校准。
水平校准是通过调整水平仪和平台来确保全站仪的水平度。
垂直校准是通过调整垂直仪和井筒来确保全站仪的垂直度。
方位校准是通过调整望远镜和测距仪的角度来确保全站仪的方位准确。
2. 数据采集:在使用全站仪进行测量时,需要准确地采集测量数据。
一般来说,全站仪可以通过内置存储器或外部存储设备记录数据。
在采集数据时,需要保持仪器的稳定,并使用准确的测量棚来遮挡干扰。
通过使用测量棚,可以减少光线干扰,提高数据的准确性。
3. 数据处理:在采集完测量数据后,需要进行数据处理以获得准确的测量结果。
数据处理包括数据计算和数据分析两个步骤。
数据计算是将采集的测量数据输入到计算机软件中进行计算,得出所需的测量结果。
浅谈全站仪在工程施工测量中的应用

如 图 3 示 ,首 先 在系 统 中选 择 坐标 放样 模 式 。0 所
为站 点 , HS为 后视 点 , N为 指北 方 向。 当输 入 站 点坐 标
和后 视点 坐 标 瞄准后 视 点并确 认 后 , 位 角 已寄存 于 方 。 仪器 中 , 当输 入放 样 点 A 的坐 标 并 确 认后 , 器将 直 接 仪 显示 X 。XX ” X X ,X ,即水平 角差 ( 由方 位 角 与 。 其
工作原理
应用
近 年来 , 随着 科 学技 术 的 进步 与 发展 , 人类 劳动 不 仅
在 深度 和广度 上拓展 很快 , 且也 更加 简捷而 高效 。光 电 而
2 全站仪工作原理
全 站仪工作 原理框 图见 图 1 。
测 距仪 的出现使 测量 范 围和测量 速度 大大提 高 ; 电子 经 纬 仪 的 出现不仅使 测 角精度有 所提 高 , 可视化也 给测 量 工 其 作 带来 了极大便 利 。所谓全 站仪 , 是指 能完成 一个测 站上 全 部测量工 作的仪器 。 站仪实 际上是一 种将红外 测距仪 全 和电子经 纬仪合 为一 体 的仪 器 , 并在 内部 装有微 型 电子处
点 的坐标 和高 程 。 工程 放样 是将 设计 的点位 施放 到 实 而
际地面上 , 它同样包括点 的坐标和高程 。确定点 的坐标
B
E
△y
二 = X [A
图 2 全 站仪 导线 测 量 示意 图
和高 程 是通 过 点位 的三个 基本 要 素—— 距 离 、 角度 和 高
差—— 来 实现 的 。
任 务的工作 ,全站仪 ” 传统测量 仪器 ” “ 比“ 可节 省 23 / 时间 ,
人力 可节省 1 。 1 2
全站仪的应用及测量在施工中的放样

全站仪的应用及测量在施工中的放样前言全站仪是一种使用广泛的精密测量仪器,它可以测量多种参数,如距离、高度、角度等。
在建筑施工中,全站仪被广泛应用于土建和装配工程的放样,对于保证工程质量和工期进度具有重要的意义。
本文将介绍全站仪的基本原理和应用,并探讨在施工中使用全站仪进行放样的方法和技巧。
全站仪的基本原理和应用全站仪的测量原理是三角测量法。
在测量时,全站仪的望远镜对准目标点和定位点,并测量目标点和定位点之间的距离和角度。
根据三角形的定理可以计算出目标点的坐标。
在土建和装配工程中,全站仪主要应用于地下管道、基础和结构的放样、机械装配和试验、立柱、板和墙面的定位等领域。
全站仪具有高精度的测量功能,可以达到亚毫米级别的测量精度。
同时,全站仪可以存储和传输测量数据,远距离传输数据和获取数据处理结果。
全站仪的放样方法和技巧放样是土建施工中非常常见的操作,它是确保建筑质量和工期进度的重要环节。
在放样中,全站仪是非常重要的测量工具。
下面将介绍一些全站仪在放样中的应用方法和技巧。
地下管道的放样地下管道的放样是一个复杂的过程,需要考虑地面上的障碍物和地下管道的深度。
全站仪可以通过瞄准地面上的目标点来确定管道的方向和水平位置,然后可以根据地下管道的深度来计算出管道的坐标。
在进行地下管道的放样时,应该先给地面打好放样点,然后瞄准放样点,并原地打标记,确定位置后才能在管道上进行标识。
基础和结构的放样在建筑结构的放样中,全站仪可以帮助工人确定建筑的尺寸、重心和轮廓。
在放样时,需要确定好基础标高和地面高程,选定基准点。
然后使用全站仪对极点和定位点进行测量,测量完之后应该将收到的数据进行处理和核对。
机械装配和试验在机械制造和装配中,全站仪可以用来进行机械零件的布置、重心计算和安装位置的确定。
在进行机械装配时,应该先熟悉机械图纸,确定好机器的结构和尺寸,然后使用全站仪测量机械零件,确定其位置和尺寸。
全站仪是土建施工中不可缺少的工具,它可以通过高精度的测量,保证建筑的质量和工期进度。
全站仪在建筑施工与监测中的应用案例分析

全站仪在建筑施工与监测中的应用案例分析随着科技的不断进步,现代建筑施工与监测中使用的工具也在不断升级。
其中,全站仪作为一种高精度的测量仪器,被广泛应用于建筑施工与监测中。
本文将通过一些实际案例,探讨全站仪在建筑施工与监测中的应用。
在建筑施工中,全站仪可用于定位基坑的开挖。
以某大型商业综合体项目为例,施工团队通过全站仪的使用,精确测量了基坑的边界和深度,确保了土方开挖的准确性。
通过全站仪进行定位测量后,还可生成测量报告,方便施工团队进行后续的工作。
此外,全站仪在施工中还可用于检测场地的平整度和地表高差,确保施工的稳定性和质量。
除了基坑的开挖,全站仪还可以在建筑施工过程中进行垂直度的测量。
在一座高层建筑的施工中,施工团队使用全站仪对建筑物的竖直度进行测量,确保建筑物的垂直度符合设计要求。
通过全站仪的高精度测量,可以及时发现并调整建筑物的倾斜情况,避免可能的安全隐患。
全站仪在建筑监测中也发挥了重要的作用。
以一座桥梁的监测为例,施工团队使用全站仪对桥梁结构进行定位测量,检测桥墩和桥面的变化情况。
通过不同时间段的测量数据对比,可以及时发现桥梁的位移或形变情况,判断桥梁的稳定性。
全站仪还可用于监测桥梁的振动情况,保证桥梁在使用过程中的安全性。
在建筑施工与监测中,全站仪还可进行建筑物的立面测量。
例如,在一座历史遗迹的修复工程中,施工团队使用全站仪对建筑物的立面进行高精度测量。
通过将测量数据与设计图纸进行对比,可以及时发现建筑物的破损或位移情况,指导修复工作的进行。
全站仪还可生成三维模型,为修复工作提供更直观的参考。
此外,全站仪还可以在建筑精细化施工中进行定位测量。
以某高科技企业的办公楼为例,施工团队使用全站仪对办公楼的门窗、内墙和装饰材料进行精准定位。
通过全站仪的测量,可以确保建筑物内的各项设施精准安装,提高建筑质量。
综上所述,全站仪在建筑施工与监测中发挥了重要作用。
通过一些实际案例的分析,我们可以看到全站仪在建筑施工中的多种应用:定位基坑开挖、测量垂直度、监测桥梁变形、建筑立面测量和精细化施工定位等。
全站仪测量技术在道路施工中的应用

全站仪测量技术在道路施工中的应用随着城市建设的不断推进,道路建设成为城市发展的重要组成部分。
道路的规划和设计是道路施工的前提和基础,而全站仪测量技术的应用,则成为道路施工中不可或缺的一个环节。
本文将重点探讨全站仪测量技术在道路施工中的应用,从而为道路建设提供更加精确的测量数据,提高道路的质量和安全性。
全站仪是一种高精度的测量设备,它利用电子器件和激光技术来进行测量。
全站仪可以实现测量位置和测量角度的功能,同时还具备数据处理和存储的能力。
在道路施工中,全站仪主要用于道路轮廓的测量、地面标高的测量以及线路的测量等方面。
首先,全站仪在道路轮廓的测量中发挥着重要的作用。
道路的轮廓是道路设计的重要依据,也是道路施工的关键环节。
传统的测量方法需要人工进行,不仅效率低下,而且容易出现误差。
而全站仪的应用可以实现自动化的测量,仅需一名操作员即可完成测量工作。
全站仪可以通过激光技术测量道路的水平高程,同时还可以通过激光测距仪测量道路的宽度和曲率等参数。
这种高精度的测量方法不仅可以提高道路的施工质量,还可以减少人力和时间成本,提高施工效率。
其次,全站仪在地面标高的测量中也起到了关键作用。
道路的标高是道路施工的重要指标,不仅决定了道路的坡度和平整度,也关系到道路的排水和交通安全等因素。
传统的高程测量方法需要使用水准仪等测量工具,需要多名工作人员进行配合操作,且容易受到人为因素的影响。
而全站仪的应用可以实现自动化的高程测量,减少了人为影响的可能性。
全站仪可以通过激光技术测量地面的高程,同时还可以实现对多个标志点的测量,从而提供更加精确的高程数据。
这种高精度的测量方法可以有效地提高道路的施工质量和安全性。
此外,全站仪在道路线路的测量中也具备独特的优势。
道路线路的测量是道路施工的前提和基础,它直接影响道路的布线和施工进度。
传统的线路测量方法需要使用经纬仪等测量工具,需要多名工作人员进行配合操作。
而全站仪的应用可以实现自动化的线路测量,仅需一名操作员即可完成测量工作。
测绘技术全站仪应用案例

测绘技术全站仪应用案例随着科技的不断进步,测绘技术在各个领域得到了广泛的应用。
全站仪作为一种高精度、高效率的测量工具,被广泛应用于建筑、道路、地质勘探等行业。
本文将通过几个实际案例,介绍全站仪在不同领域中的应用。
案例一:建筑测量全站仪在建筑测量中起到了至关重要的作用。
通过全站仪可以快速、准确地获取建筑物的尺寸、位置等信息。
在建筑物修建之前,需要进行地形测量和勘察,确定建筑物的位置和地形特征,以便设计师能够合理地进行规划和设计。
全站仪可以通过测量水平、垂直和距离等参数,提供精确的测量数据,使得建筑设计人员能够准确把握建筑物的布局和位置。
案例二:道路工程道路的设计和规划需要准确测量道路的长度、宽度以及高度等参数。
全站仪通过其高精度的测量能力,可以为道路工程提供准确的测量数据,帮助工程师进行规划和设计。
同时,在道路施工过程中,全站仪可以通过实时监测施工过程中的各个参数,保证道路的施工质量和安全性。
案例三:地质勘探地质勘探是指对矿产资源进行探测和调查,确定矿产资源的分布和储量。
全站仪在地质勘探中扮演着重要的角色。
通过全站仪的测量,可以对地质构造、地貌特征、地下岩层等进行精确测量和分析,为地质勘探人员提供准确的数据支持。
全站仪还可以与GPS定位系统结合使用,提供更加精确的地理定位信息。
案例四:环境监测全站仪也可以应用于环境监测领域。
例如,在城市污水处理厂的建设过程中,需要对污水厂的各个设施进行精确的位置测量,以确保设施的布局合理。
全站仪可以通过其高精度的测量能力,提供准确的位置数据。
此外,全站仪还可以用于测量雨量、水位等环境参数,为环境监测提供准确的数据支持。
总结:以上案例只是全站仪在各个领域中的应用之一,全站仪还有许多其他的应用领域。
无论是在建筑、道路、地质勘探还是环境监测等领域,全站仪都起到了不可替代的作用。
全站仪的应用使得测量工作更加高效、精确和自动化,并提高了测量数据的可靠性。
通过继续研究和创新,全站仪的应用领域将会更加广泛,为各个行业带来更多的便利和效益。
工程测量监理中的全站仪测量技术和应用

工程测量监理中的全站仪测量技术和应用工程测量监理是现代建设工程中不可或缺的一个环节。
通过对建设项目的测量监测,可以确保工程质量的稳定和施工进度的控制。
其中,全站仪作为一种高精度的测量仪器,在工程测量监理中扮演着重要的角色。
本文将介绍全站仪的测量原理、技术特点以及在工程测量监理中的应用。
一、全站仪的测量原理和技术特点全站仪是一种集光学、机械、电子和计算机等技术于一体的高精度测量设备。
它通过发射激光束,利用接收器接收反射光信号,并通过内部的计算机系统进行数据处理,从而实现对地面点的测量和定位。
全站仪具有以下几个技术特点:1.高精度测量:全站仪采用高精度的激光测量技术,能够实现毫米级的测量精度。
这使得在工程测量监理中可以获取准确的测量数据,从而提高工程质量。
2.自动化操作:全站仪内置了计算机系统,具备自动跟踪、自动记录和自动计算等功能。
操作简便,且减少了人为误差,提高了工作效率。
3.多功能测量:除了传统的水平角和垂直角的测量,全站仪还可以测量距离、高程、坐标等多个参数。
这使得它可以适用于不同类型的工程测量监理任务。
二、全站仪在工程测量监理中的应用1.地形测量:全站仪可以测量地形的高程、坐标和形状等信息,为工程施工提供准确的地形数据。
例如,在道路建设中,全站仪可以帮助测量工程地形的起伏、坡度等参数,以确定合适的路基设计和施工工艺。
2.建筑测量:在建筑工程中,全站仪可以帮助监测建筑物的垂直度、水平度和平面形状等参数。
通过全站仪的测量,可以确保建筑物的结构稳定性和准确性。
3.桥梁测量:在桥梁建设中,全站仪可以用于测量桥梁的线形、标高和倾斜度等参数。
这些数据对于保证桥梁的安全性和承载能力至关重要。
4.隧道测量:在隧道施工过程中,全站仪可以用于测量隧道的倾角、坍塌量和偏位等参数。
这些数据可以帮助工程监理人员了解隧道的施工情况,并采取相应的措施保证施工质量。
5.工程变形监测:全站仪可以用于监测基坑、土质边坡、挖方填方工程等在施工过程中的变形情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全站仪在市政工程施工测量中的应用摘要在市政市政工程施工过程中,常常涉及到高程测量,传统的方法是使用水准仪进行水准测量,这是一种直接测高法。
它的特点是精度高、速度快。
但水谁测量受地形起伏限制,而且当前、后视距离差较大时,也影响测量精度,再者,水准测量前后视距也不能太大,一般应在100米以内。
否则读数困难,也影响精度。
因此在大比例尺地形图测绘、市政工程(管网)工程施工测量中,特别是当地形起伏较大时,常常也使用三角高程法。
但传统的三角高程测量,必须每站量取仪器高(i)及觇标高(v),又麻烦又增加了误差来源,且普通经纬仪进行视距测量的误差也比较大,因此很少使用。
随着全站型经纬仪的广泛应用,使用全站仪配合跟踪杆进行三角高程测量,较之传统的三角高程测量,速度快、精度高、效果好。
一、传统的三角高程测量
如图所示:
设A点的高程H A为已知,则
B点的高程H B=H A+S*sinα+i-v
S:A、B两点间的斜距
i:仪器高(仪器中心至A点的垂直高度)
v:觇标高(视准点C至B点的垂直高度)
α:前视点C相对于仪器中心的倾角,仰角为正,俯角为负。
这一方法,由于在没有全站仪时斜长S往往用经纬仪视距或用钢尺丈量,而且必须量取仪器高和觇标高,既麻烦又精度低,所以很少使用,在地形起伏不太大时,宁可多转几站,也采用水准测量方法测量未知点高程,但有了全站仪,情况就大不相同了。
二、使用全站仪配合跟踪杆测量未知点高程
随着科技的进步,全站仪的应用越来越广泛,普遍因为全站仪可以在一个测站点上同时测出前视点的斜距、水平角和倾角,并可以通过微电脑直接算出高程、座标等数据,十分方便,将这些特点用于三角高程测量中,可以取得很好的效果。
如图所示:
仍然设A点高程H A为已知,欲测算B点的高程H B,将仪器置于A、B之外的任意一点C,则:
H A=H C+S A*sinαA+ i -v A (1)
H B=H C+S B*sinαB+ i-v B (2)
S A、S B分别为C至A、B两点的观测斜长
令S A*sinαA=⊿h A S B*sinαB=⊿h B
由(1)、(2)可得:
H B=H A-⊿h A +⊿h B +V A-V B
因为V A、V B在实际施测过程中为跟踪杆棱镜中心距测点(B)上平面的垂直高度,使用同一跟踪杆或同一规格的跟踪杆,在忽略瞄准误差的情况下,V A=V B
所以有:H B = H A -⊿h A+⊿h B
使用全站仪进行测量时,只要将起始高程H A置入微电脑,仪器便会自动显示出⊿h A、⊿h B和待测点(B)的高程,非常方便。
三、精度估算
由⊿h =S*sinα,根据误差理论不难推出,单向高差中误差的表达式为:
M h2=(S*COSα*Mα/ρ)2+(M S*sinα)2
Mα:测角中误差, M S:测边中误差
由于全站仪一般为2"级仪器,而且测边精度很高,如2+2PPmD或5+PPmD等,因此,当倾角小于60°、测边精度为2+2PPmD时,不难估算出每百米高差中误差不超过±3mm。
这一精度大大高于普通三角高程测量的精度,因此完全可以满足市政工程(管网)施工对高程的精度要求。
综上所述,利用全站仪配合跟踪杆进行三角高程测量,较之传统的三角高程测量大大提高了精度,又减化了操作过程,较之水准测量又克服了受地形限制的缺点,应用在市政(管网)工程施工或小范围地形测量中,不失为一种很好的新方法。
作者:陈创新。