数值分析分解法

合集下载

数值分析课程课件 直接三角分解方法

数值分析课程课件  直接三角分解方法


u22
u11
u2n



l n1 l n2
1

unn


a11 a12 a 21 a22
a1n
a2n


u11 l21u11
u12 l21u12 u22
u1n

l21u1n

u2n


a n1 a n2
ann
ln1u 11
由(5.3.1)- (5.3.4)求得L和U后,解方程组Ax=b 化为求解LUx=b,若记Ux=y,则有Ly=b。于是可分两部解 方程组LUx=b,只要逐次向前代入的方法即可求得y。第
二步求解Ux=y,只要逐次用向后回代的方法即可求得x。 设 x=(x1 ,x2, ···xn) T, y=(y1, y2, ···yn) T,
n

i1
lniuin

unn

第四章方程组的直接解法
由A的第1行和第1列可计算出U的第1行和L的第1列,即
u1 j a1 j , j 1, 2, , n,
(5.3.1)
lk1

ak1 u11
,k

2, 3,
, n.
(5.3.2)
如果U的第1至k-1列和L的第1至k-1列已经算出,则由
解 设 A=LU,即
l11 a11 1, l21 a21 2, l31 a31 0
u12

a12 l11
2, u13

a13 l11
1,

l22 a22 l21u12 3, l32 a32 l31u12 1

数值分析(06)矩阵分解法

数值分析(06)矩阵分解法
(k ) a ik m ik (k ) ( k 1) a ij a ij
(1) a11
( i k 1, , n) ( i k 1, , n;
(1) a12 ( 2) a 22 (1) a13 ( 2) a 23 ( 3) a 33
数值分析
LU分解的MATLAB程序 function A=lud(A) i k 1, , n %功能:对方阵A作三角分解A=LU,其中, (k ) (k ) % L为单位下三角阵, (1)m / akk U为上三角阵, ik aik %输入:方阵 A 。 (k 1) (k ) (k ) ( 2)aij aij mik akj ,j k 1, % 输出:紧凑存储 A=[L\U]. [n,n]=size(A); % 确定A的维数 for k=1:n-1 if A(k,k) ==0 break; end for i=k+1:n A(i,k) =A(i,k)/ A(k,k); A(i,k+1:n)= A(i,k+1:n)- A(i,k) *A(k,k+1:n); end end
1
(1) (1) a a 11 12 0 a ( 2) 22 0 a ( 2) n2 1 (1) a1, n ( 2) a2, n ( 3) a3,n A( 3) mi 2 ( 3) an ,n
(2)
... ... ...
其中分别是单位下上三角阵是对角定理矩阵分解定理数值分析数值分析非奇异知均非奇异而左边是单位下三角阵同时右边是对角阵故只能是单位阵而左边是下三角阵同时右边是单位上三角阵故只能是单位阵数值分析数值分析为对称正定阵则可唯一地分定理其中称正定分解三角阵

数值分析(07)矩阵的正交分解

数值分析(07)矩阵的正交分解
令单位阵I (1) R( k 1)( k 1),I ( 2) R( n k 1)( n k 1) , ( 对x ( 2)构造一个( n k 1)阶的初等阵H k2) , 使
H
(2) k
x
(2)
e
(k ) k 1
( 其中e1k ) (1, 0, , 0)T R n k 1 , 用前面介绍的方法 (2) 构造H k 。
U x y x i ei ( x1 , , xi i , , xn )T ,
有Hx y i ei
1 sign( x i ) 1
xi 0 xi 0
构造初等反射阵 UU T 1 T H I 2WW I 2 I UU T 2 U
解 : 3 sign( x3 ) x
2
4 0 4 1 3,因x3 2 0,
故取K 3 3 于是y 3e3 Ke3 (0, 0, 3, 0)T ,
U x y (2, 0, 5,1) , 3 ( 3 x3 ) 3(3 2) 15
数值分析
数值分析
function [H,y]=holder1(x) n=length(x); if x(1)<0 M=max(abs(x)); s=-s; if M==0, end; disp('M=0'); x(1)=s+x(1); return; p=s*x(1); else u=x; x=x/M; H=eye(n,n)-p\u*u'; end; y=zeros(n,1); s=norm(x); y(1)=-M*s;
1 T 1 2 2 其中 U U ( x1 ... ( xi i )2 xn ) 2 2 1 (2 xi i 2 i 2 ) i ( xi i ) 2

数值分析高斯顺序消去法、列主元消去法LU分解法

数值分析高斯顺序消去法、列主元消去法LU分解法

数值分析实验报告(1)学院:信息学院班级:计算机0903班姓名:***学号:********课题一A.问题提出给定下列几个不同类型的线性方程组,请用适当的方法求解线性方程组1、设线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------------------1368243810041202913726422123417911101610352431205362177586832337616244911315120130123122400105635680000121324⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-2119381346323125 x *= ( 1, -1, 0, 1, 2, 0, 3, 1, -1, 2 )T2、设对称正定阵系数阵线方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------------19243360021411035204111443343104221812334161206538114140231212200420424⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡87654321x x x x x x x x = ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---4515229232060 x * = ( 1, -1, 0, 2, 1, -1, 0, 2 )T3、三对角形线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------------4100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410000000014⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x = ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----5541412621357 x *= ( 2, 1, -3, 0, 1, -2, 3, 0, 1, -1 )TB.(1)对上述三个方程组分别用Gauss 顺序消去法与Gauss 列主元消去法;平方根 与改进平方根法;追赶法求解(选择其一) (2)编写算法通用程序(3)在应用Gauss 消去时,尽可能利用相应程序输出系数矩阵的三角分解式C.(1)通过该课题的程序编制,掌握模块化结构程序设计方法 (2)掌握求解各类线性方程组的直接方法,了解各种方法的特点 (3)体会高斯消去法选主元的必要性 实验步骤:(高斯消去法,列主元,LU )1顺序高斯消去法2.LU 分解法3.列主元高斯消去法(如下图)(1)高斯消去法运行结果如下(2)对方程的系数矩阵进行LU分解并求出方程组的解(3)列主元高斯消去法实验体会总结:利用gauss消去法解线性方程组的时候,如果没有经过选主元,可能会出现数值不稳定的现象,使得方程组的解偏离精确解。

数值分析实验报告

数值分析实验报告
end
%消元过程
fori=k+1:n
m=A(i,k)/A(k,k);
forj=k+1:n
A(i,j)=A(i,j)-m*A(k,j);
end
b(i)=b(i)-m*b(k);
end
det=det*A(k,k);
end
det=det*A(n,n);
%回代过程
ifabs(A(n,n))<1e-10
flag='failure';return;
*x=(x0,x1….,xn),插值节点
*y=(y0,y1,…,yn);被插函数f(x)在插值节点处的函数值
*t求插值函数Pn(x)在t处的函数值
*返回值 插值函数Pn(x)在t处的函数值
*/
procedureNewton
forj=0to n
d1jyj;
endfor
forj=1to n
fori=j to n
[n,m]=size(A);nb=length(b)
%当方程组行与列的维数不相等时,停止计算,并输出出错信息
ifn~=m
error('The row and columns of matrix A must beepual!');
return;
end
%当方程组与右端项的维数不匹配时,停止计算,并输出错误信息
clear
fprintf('gauss-seidel迭代法')
x1_(1)=0;
x2_(1)=0;
x3_(1)=0;
fori=1:9
x1_(i+1)=7.2+0.1*x2_(i)+0.2*x3_(i);

数值分析5LU分解法

数值分析5LU分解法

数值分析5LU分解法LU分解法是一种常用的数值分析方法,用于解线性方程组。

本文将详细介绍LU分解法的原理、算法步骤、优缺点以及应用领域,以期能够全面地掌握这一方法。

一、LU分解法原理LU分解法是将一个方程组的系数矩阵A分解为两个矩阵L和U的乘积的形式,其中L是下三角矩阵,U是上三角矩阵,通过分解可以简化方程组的求解过程。

LU分解法的基本思想是将原始方程组Ax=b分解为Ly=b和Ux=y两个方程组,其中L和U是通过A分解得到的矩阵。

二、算法步骤1.首先,将系数矩阵A分解为两个矩阵L和U。

L是下三角矩阵,主对角线元素均为1,而U是上三角矩阵。

2.然后,将原始方程组Ax=b转化为Ly=b,求解y的值。

3.最后,将解y代入Ux=y,求解x的值,即可得到方程组的解。

三、算法优缺点1.优点:LU分解法将原始方程组的系数矩阵分解为两个形式简单的矩阵,简化了方程组的求解过程。

对于重复使用系数矩阵A的情况,只需要进行一次LU分解,然后根据新的b值求解新方程组,提高了计算效率。

2.缺点:LU分解法需要进行矩阵分解计算,计算量较大,因此对于规模较大的方程组计算效率较低。

此外,当系数矩阵A存在奇异性或病态时,LU分解法可能会失败。

四、应用领域LU分解法在科学计算领域有着广泛的应用,特别是在求解线性方程组方面。

例如,在工程领域中,常需要通过数值方法求解复杂的结构力学问题,此时可以使用LU分解法求解由有限元方法离散得到的大规模线性方程组。

另外,LU分解法还可以用于解非线性方程组、求逆矩阵、计算矩阵的行列式等。

总结:LU分解法是一种常用的数值分析方法,用于求解线性方程组。

通过将系数矩阵A分解为两个矩阵L和U的乘积形式,可以简化方程组的求解过程。

LU分解法的优点是提高了方程组的求解效率,适用于重复使用系数矩阵A的情况。

然而,LU分解法也存在一定的缺点,如计算量较大、对奇异性和病态问题的处理较为困难。

LU分解法在科学计算领域有着广泛的应用,可以用于求解工程问题中的大规模线性方程组,解非线性方程组,求逆矩阵等。

数值分析(计算方法)总结

数值分析(计算方法)总结

第一章 绪论误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差ε(x )=|x −x ∗|是x ∗的绝对误差,e =x ∗−x 是x ∗的误差,ε(x )=|x −x ∗|≤ε,ε为x ∗的绝对误差限(或误差限) e r =ex =x ∗−x x为x ∗ 的相对误差,当|e r |较小时,令 e r =ex ∗=x ∗−x x ∗相对误差绝对值得上限称为相对误差限记为:εr 即:|e r |=|x ∗−x||x ∗|≤ε|x ∗|=εr绝对误差有量纲,而相对误差无量纲若近似值x ∗的绝对误差限为某一位上的半个单位,且该位直到x ∗的第一位非零数字共有n 位,则称近似值 x ∗有n 位有效数字,或说 x ∗精确到该位。

例:设x=π=3.1415926…那么x ∗=3,ε1(x )=0.1415926…≤0.5×100,则x ∗有效数字为1位,即个位上的3,或说 x ∗精确到个位。

科学计数法:记x ∗=±0.a 1a 2⋯a n ×10m (其中a 1≠0),若|x −x ∗|≤0.5×10m−n ,则x ∗有n 位有效数字,精确到10m−n 。

由有效数字求相对误差限:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)有n 位有效数字,则其相对误差限为12a 1×101−n由相对误差限求有效数字:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)的相对误差限为为12(a 1+1)×101−n 则它有n 位有效数字令x ∗、y ∗是x 、y 的近似值,且|x ∗−x|≤η(x )、|y ∗−y|≤η(y)1. x+y 近似值为x ∗+y ∗,且η(x +y )=η(x )+η(y )和的误差(限)等于误差(限)的和2. x-y 近似值为x ∗−y ∗,且η(x +y )=η(x )+η(y )3. xy 近似值为x ∗y ∗,η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)4. η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)|y ∗|21.避免两相近数相减2.避免用绝对值很小的数作除数 3.避免大数吃小数 4.尽量减少计算工作量 第二章 非线性方程求根1.逐步搜索法设f (a ) <0, f (b )> 0,有根区间为 (a , b ),从x 0=a 出发, 按某个预定步长(例如h =(b -a )/N )一步一步向右跨,每跨一步进行一次根的搜索,即判别f (x k )=f (a +kh )的符号,若f (x k )>0(而f (x k -1)<0),则有根区间缩小为[x k -1,x k ] (若f (x k )=0,x k 即为所求根), 然后从x k -1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k -x k -1|< 为止,此时取x *≈(x k +x k -1)/2作为近似根。

数值分析实验报告---高斯消去法 LU分解法

数值分析实验报告---高斯消去法 LU分解法

数值分析实验报告---高斯消去法 LU分解法实验一:高斯消去法一、实验目的1. 掌握高斯消去法的原理2. 用高斯消去法解线性方程组3. 分析误差二、实验原理高斯消去法(又称为高斯-约旦消去法)是一种利用矩阵消元的方法,将线性方程组化为改进的阶梯形式,从而解出线性方程组的解的方法。

具体而言,高斯消去法将线性方程组的系数矩阵化为一个上三角矩阵,再利用回带法求解线性方程组的解。

三、实验内容1.1、用高斯消去法解线性方程组在具体实验中,我们将使用高斯消去法来解决下述的线性方程组。

5x+2y+z=102x+6y+2z=14x-y+10z=25为了使用高斯消去法来解这个方程组,首先需要将系数矩阵A进行变换,消除A矩阵中第一列中的下角元素,如下所示:1, 2/5, 1/50, 28/5, 18/50, 0, 49/28接着使用回代法来计算该方程组的解。

回代法的过程是从下往上进行的,具体步骤如下:第三个方程的解:z=49/28;第二个方程的解: y=(14-2z-2x)/6;第一个方程的解: x=(10-2y-z)/5。

1.2、分析误差在使用高斯消去法求解线性方程组时,一般会出现截断误差,导致得到的解与真实解之间存在一些误差。

截断误差的大小和矩阵的维数有关。

为了估计截断误差,我们使用矩阵B来生成误差,在具体实验中,我们将使用下面的矩阵:我们来计算该矩阵的行列式,如果方程组有唯一解,则行列性不为0。

本例中,行列式的值是 -1,因此方程组有唯一解。

然后我们计算真实解和高斯消去法得到的解之间的误差,具体公式如下所示:误差 = 真实解的范数 - 高斯消去法得到的解的范数其中,范数的定义如下:||x||1=max{|xi|}; ||x||2=sqrt{(|x1|^2 + |x2|^2 + ... + |xn|^2)}四、实验步骤1、将高斯消去法的每一个步骤翻译成代码,并保存为一个独立的函数。

2、将代码上传至 Python 交互式环境,并使用高斯消去法来解线性方程组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3 LU 分解法——Gauss 消去法的变形知识预备:1矩阵的初等行变换、初等矩阵及其逆、乘积2矩阵的乘法3上三角矩阵的乘积、单位下三角矩阵的乘积 4单位下三角矩阵的逆、可逆的上三角矩阵的逆一、Gauss 消去法的矩阵解释Gauss 消去法实质上是将矩阵A 分解为两个三角矩阵相乘。

我们知道,矩阵的初等行变换实质就是左乘初等矩阵。

第一轮消元:相当于对A(1)左乘矩阵L 1,即)2()1(1A A L =其中)1(11)1(11)2()2(2)2(2)2(22)1(1)1(12)1(11)2(131211,,1001011a a l a a a a a a a Al l l L i i nn n n n n =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=第二轮消元:对应于)3()2(2A A L =一般地1,,2,1)1()(-==+n k A A L k k k (1)其中nk k i a a l l l L k kkk ikik nk kk k ,,2,1,,10111)()(1 ++==⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--=+整个消元过程为U A A L L L L n n n 记)(1221=-- ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=nn nnu u u u u u 22211211………(2) 从而U L U L L L L U L L L L A n n n n ⋅===---------1112121111221)(其中L 是单位下三角矩阵,即,1,,1,,3,2,,1111)()(21323121⎪⎪⎭⎫⎝⎛-===⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n j n i l l l l l l L j jj j ija a ij n n …(3) 【注】消元过程等价于A 分解成LU 的过程回代过程是解上三角方程组的过程。

二、矩阵的三角分解1、若将A 分解成L?U ,即A=L?U ,其中L 为单位下三角矩阵,U 为非奇异上三角矩阵,则称之为对A 的Doolittle 分解。

当A 的顺序主子式都不为零时,消元运算可进行,从而A 存在唯一的Doolittle 分解。

证明:若有两种分解,A=L 1U 1,A=L 2U 2,则必有L 1=L 2,U 1=U 2。

因为L 1U 1=L 2U 2,而且L 1,L 2都是单位下三角矩阵,U 1,U 2都是可逆上三角矩阵,所以有112112--=U U L L因此 )(112112单位矩阵I U U L L ==--即L 1=L 2,U 1=U 2、2、若L 是非奇异下三角矩阵,U 是单位上三角矩阵时,A 存在唯一的三角分解,A=LU ,称其为A 的Crout 分解(对应于用列变换实施消元)三、直接分解(LU 分解)算法LU 分解算法公式——按矩阵乘法⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=nn nnn n u u u u u u l l l l l A 22211211213231211111 第一步:利用A 中第一行、第一列元素确定U 的第一行、L 的第一列元素。

由),,2,1()0,,0,,,()0,,0,0,1(1211n j u u u u a jT ij j j j ==⋅=),,3,2()0,,0,()0,,1,,,(111111211n i u l u l l l a i T ii i i i =⋅=⋅=-得 u 1j =a 1j n j ,,2,1( =) l i1=a i1/u 11n i ,,3,2( =)第r 步:利用A 中第r 行、第r 列剩下的元素确定U 的第r 行、L 的第r 列元素(r=2,3,…,n ).由),,1,()0,,0,,,()0,,0,1,,,(1121121n r r j u u l u u u l l l a rjkj r k rk Tjj j j rr r r rj +=+=⋅=∑-=-得U 的第r 行元素为∑-=+=-=11,,1,,r k kj rk rj rj n r r j u l a u由),,2,1()0,,0,,,()0,,0,1,,,(1121121n r r i u l u l u u u l l l a rrir kr r k ik Trr r r ii i i ir ++=+=⋅=∑-=-得),,1,1,,3,2(/)(11n r i n r u u l a l rrkr r k ik ir ir +=-=-=∑-=…………(4)直接分解的紧凑格式:方程组的三角分解算法(LU 分解)对于方程组Ax=b ,设A=LU (Doolittle 分解)。

由于 ⎩⎨⎧==⇔=yUx bLy b Ax1、求解Ly=b :∑-==-==1111),,3,2(,,i k k ik i i n i y l b y b y (5)2、求解Ux=y :)1,2,,2,1(,/)(,/1--=-==∑+=n n i u x uy x u y x ii ni k k iki i nn n n (6)LU 分解算法步1,输入A ,b ;步2,对j=1,2,…,n 求,:111j j j a u u = 对i=2,3,…,n 求;/:11111u a l l i i i = 步3,对r=2,3,…,n 做()-: ()∑-=+=-=11),,,1,(,r k kj rkrj rj n r r j u la u());;,,1(/)(11n r n r i u u la l rrr k kr ikir ir ≠+=-=∑-=步4,∑-=-===1111;:,,,3,2,i k k iki i i y lb y y n i b y 求对步5,ii ni k k iki i i n n u x uy x x n i y x /)(:1,,1,1∑+=-=-==求对步6,输出);,,2,1(n i x i =结束。

⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-713542774322322x x x 解:对系数矩阵A 进行LU 分解6)(,2,2/)(1,3,1,2,3,2,22332133133332222123132322322121223121131211=--===-===-=-=====u l u l a u u u u l a l u u u l a u l l u u u j j j 所以因此⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=613322121121A 先解627,521,3,213121=-+-=-=-===y y y y y y b Ly 则。

再解22/)323(,23/)5(,1,321323=--=-=--===x x x x x x y Ux 解出程序:LU_factorization%Not Select Column LU_factorization clear alln=3;a=[2 2 3;4 7 7;-2 4 5];b=[3;1;-7]; %n=3;a=[1 4 7;2 5 8;3 6 11];b=[1;1;1]; %LU_factorazation for i=2:na(i,1)=a(i,1)/a(1,1); end afor r=2:n for j=r:n s=0.;for k=1:r-1s=s+a(r,k)*a(k,j); enda(r,j)=a(r,j)-s; endfor i=r+1:n s=0.;for k=1:r-1s=s+a(i,k)*a(k,r); enda(i,r)=(a(i,r)-s)/a(r,r); end a end%Extract Lower/Upper Triangular Part l=tril(a); for i=1:n l(i,i)=1; endu=triu(a); l u%Linear Lower Triangular Equation Solution y=l\b%Linear Upper Triangular Equation Solution x=u\y四、列主元LU 分解当用LU 分解法解方程组时,从第r(r=1,2,…,n)步分解计算公式可知 ∑-=+=-=11),,1,(r k kjrkrj rj n r r j u la u),,1(/)(11n r i u u l a l rrkr r k ik ir ir +=-=∑-=当rr u 很小时,可能引起舍入误差的累积、扩大。

因此,可采用与列主元消去法类似方法,将直接三角分解法修改为列主元三角分解法(与列主元消去法在理论上是等价的),它通过交换A 的行实现三角分解PA=LU ,其中P 为置换阵。

设第r-1步分解计算己完成,则有⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡→---r n n r r r r n l l l u u u lu u A,1,,12221111第r 步计算时为了避免用绝对值很小的数作除数,引进中间量:∑-==-=11),,(,r k krik ir i n r i u l a S则有:),,1(,n r i S S l S u r i ir r rr +===(1) 选主元:确定i ni r ir r S S i ≤≤=m ax ,使(2) 交换两行:,时当r i r ≠交换A 的第r 行与第r i 行元素(相当于先交换原始矩阵A 第r 行与第r i 行元素后,再进行分解计算得到的结果,且1≤ir l )(3) 进行分解计算 附:列主元LU 分解a=[2 2 3;4 7 7;-2 4 5];b=[3;1;-7]; [l,u]=lu(a) y=l\b x=u\y%x=inv(u)*inv(v)*b[l,u,p]=lu(a) y=l\(p*b) x=u\y。

相关文档
最新文档