最优捕鱼策略问题一程序
最优捕鱼策略

最优捕鱼策略鯷鱼是海中生长的一种小鱼,自然死亡率d=0.8/年(自然是指无人类的捕捞的自然环境),自然寿命是4年,鯷鱼3年后成熟,产卵在9月初,每千亿尾3龄鱼产卵n3=55450(千亿个),每千亿尾4龄鱼平均产卵n4=2*n3 (千亿个), 卵孵化后到年初时称为1龄鱼,卵孵化成为1龄鱼的成活率b=a/(a+n), 其中a=1.22(千亿),n是3龄和4龄鱼全体产卵的总量(单位千亿). 为了让小鱼生长, 9月份至12月份休渔. 而且在1月份到8月份不捕1龄及2龄鱼. 每千亿尾3龄鱼平均重量是w3=17.86(十万吨), 每千亿尾4龄鱼平均重量是w4=22.99(十万吨). 使用13mm网眼的拉网捕鱼,只能捕到3龄和4龄鱼,捕到3龄与和4龄鱼的比例是0.42:1. 捕捞强度系数(单位1/年)是指每年捕捞某年龄组鱼的条数与该年龄组鱼群数之比. 因此若对4龄鱼的捕捞强度为k,则对三龄鱼的捕捞强度为0.42*k.1.求在无捕捞的自然状态下达到平衡态时各龄鱼群在年初时的数量y1=[y1(1);y1(2);y1(3);y1(4)].2.讨论对给定捕捞强度k,达到平衡态时各龄鱼在年初时的数量y2=[y2(1);y2(2);y2(3);y2(4)]及捕捞鱼的总重量w2(单位十万吨).3.确定k求w3=max w2 及这时年初各龄鱼的数量y3=[y3(1); y3(2);y3(3);y3(4)].4.若把该渔场承包给某公司五年,第一年初各龄鱼的数量是题1的y1,(原题中各龄鱼数量为 1.22, 0.297,0.101,0.0329千亿条)若要求合同期满时第六年初各龄鱼的数量是题3的y3,问该公司应当如何确定各年的捕捞强度[k(1), k(2),k(3),k(4),k(5)],使得五年的鱼的总收获量最大. (原题是要求5年合同期满时鱼场的生产能力不能受到太大破坏)注: 1本题基本上来自1996年中国全国大学生数学建模竞赛的A题(北京师范大学刘来福供题), 但本题作了适当的修改, 使得问题更加明确,数值上除了单位的改动, 使得更有利于数值计算, 对初值也作了更合理的假设)注2:在数学的连续的问题中所说的“率”都是指即时的, 具有单位(1/单位时间),它和通常的离散的年自然死亡率yd(无量纲的量)在时间单位相同时, 关系是d = - ln(1-yd). 由于鱼的数量巨大,生长周期又不长,可以用连续模型来刻画鱼群数量的变化解答:当无捕捞时,设I龄鱼在第1年初的数量是x(I,1), I=1,2,3,4, 在第二年初I龄鱼的数量是x(I,2), 根据无捕捞时的生长规律鱼的数量y服从常微分方程Dy=-d*y,故X(I,2)=X(I,1)*exp(-d); I=1,2,3. X(4,2)=0平衡时X(2,1)=X(1,2), X(3,1)=X(2,2), X(4,1)=X(3,2) 故X(2,1)=X(1,2)=X(1,1)*exp(-d); X(3,1)=X(2,2)=X(2,1)*exp(-*d)=X(1,1)*exp(-2*d); X(4,1)=X(3,2)=X(3,1)*exp(-d)=X91,1)*exp(-3*d); 再计算3龄鱼和四龄鱼的产卵量n, 记捕捞期T=2/3; 假设在T=2/3年时一次产卵,则n=n3*X(3,1)*exp(-d*T)+2*n3*X(4,1)*exp(-d*T)=n3*X(1,1)*exp(-(2+T)*d)*(1+2*exp(-d)); 则第二年新的一龄鱼数量是a*n/(a+n),由平衡关系X(1,1)= a*n/(a+n);解出 X(1,1)=a*(1-1/(n3*exp(-(2+T)*d)*(1+2*exp(-d))))=1.21990;从而X(2,1)= 0.548137; X(3,1)= 0.246294; X(4,1)= 0.110667;即各龄鱼年初条数为:y0=[1.2199, 0.548137, 0.246294, 0.110667];求对3、4龄鱼捕捞时的平衡态,X(1,2)=X(1,1)*exp(-d);X(2,2)=X(2,1)*exp(-d);X(3,2)= X(3,1) *exp(-(d+p*T)); p=0.42*k;平衡时X(4,1)=X(3,2)= X(3,1) *exp(-(d+p*T))= X(2,2) *exp(-(d+p*T))= X(2,1)* exp(-(2*d+p*T))=X(1,2)* exp(-(2*d+p*T))=X(1,1)* exp(-(3*d+p*T));再计算产卵量n=n3*(X(3,1)*exp(-(d+p)*T)+2*X(4,1)*exp(-(d+k)*T))=n3*X(1,1)*exp(-(2d+T*(p+d))*(1+2*exp(-(d+k*T)));平衡时a*n/(a+n)=X(1,1); 解出平衡解X(1,1)=a*(1-1/(n3* exp(-(2d+T*(p+d)))* (1+2*exp(-(d+k*T))));设捕捞率为k(1/年),0时刻某种鱼的尾数为y0,则鱼尾数y的变化满足常微分方程的初值问题(时间单位为年),记T:=2/3; 在1-8月份为Dy=-(d+k)*y, y(0)=y0, 0< =t<T,解为y(t)=y0*exp(-(d+k)*t), 0< =t<=T,在此过程中捕捞了多少鱼呢?由捕捞率的定义得捕捞的鱼的数量by满足微分方程的初值问题:以四龄鱼为例Dby=k*y0*exp(-(d+k)*t), by(0)=0;积分得在0到t<=T月捕捞的鱼数量为by(t)=y0*k(1-exp(-(d+k)*t))/(d+k).取t=T,即得8个月捕捞的鱼的尾数总量为y0*k(1-exp(-(d+k)*T))/(d+k),故4龄鱼的捕捞重量为X(4,1)* k*(1-exp(-(d+k)*T)/(d+k)*w4;3龄鱼的捕捞重量可把上式中X(4,1)改为X(3,1),w4改为w3,k改为p=0.42*k即可因此总捕捞重量等于W=a*exp(-2*d)*(p*(1-exp(-(d+p)*T))/(d+p)*w3+k*exp(-(d+p*T))*(1-exp(-(d+k)*T))/(d+k)*w4)* (1-1/ (n3*exp(-(2d+T*(p+d)))*(1+2*exp(-(d+k*T)))));求这个函数的最大值就可求出最佳的k,从而得到最佳情况下的各种量. 编程计算可得k =17.362926X(1,1)=1.19599377;X(2,1)=0.53739464;X(3,1)=0.24146698;X(4,1)=0.000839552,maxW=3.88707551779345,在用MATLAB求极值的时候,对得到的最大值点的各数值不能保证每位数字都是精确的,虽然我们可以在options中自定义精度,因为最值关于最值点一般是不敏感的,要想得到较高的精度,可以通过求目标函数的导数的零点得到.4.设五年的捕捞强度依次为k(1),k(2),k(3),k(4),k(5),数据为:第一年初各龄鱼的条数为y0;第六年初各龄鱼的条数为ym;设第I年初J龄鱼数量是X(J,I),I=1..6; J=1..4;第I年的捕鱼重量为W(I), I=1..5; 第I年三龄鱼的捕捞强度为p(I)=0.42*k(I),四龄鱼的捕捞强度为k(I),给定各年的捕捞强度k,要求第6年初的四种龄鱼数等于题目要求的数量,并且五年捕鱼总重量最大. 五个未知量,五个条件.对于这种非线性的最优化问题,难点是最值点初始值的估计; 特别是表达式中有指数函数,在作全局寻优的过程中,常常容易数值溢出,因此在求局部最优解时可能没问题的程序在改为求全局最优时就会出现问题,解决的办法是给定变量的界,或通过变量代换避免指数运算再给定变量的界。
数学建模实验报告最优捕鱼策略

最优捕鱼策略一.实验目的:1、了解与熟练掌握常系数线性差分方程的解法;2、通过最优捕鱼策略建模案例,使用MATLAB软件认识与掌握差分方程模型在实际生活方面的重要作用。
二.实验内容:(最优捕鱼策略)生态学表明,对可再生资源的开发策略应在事先可持续收获的前提下追求最大经济效益。
考虑具有4个年龄鱼:1龄鱼,…,4龄鱼的某种鱼。
该鱼类在每年后4个月季节性集中产卵繁殖。
而据规定,捕捞作业只允许在前8个月进行,每年投入的捕捞能力固定不变,单位时间捕捞量与个年龄鱼群条数的比例称为捕捞强度系数。
使用只能捕捞3、4龄鱼的13mm网眼的拉网,其两个捕捞强度系数比为:1.渔业上称这种方式为固定力量捕捞。
该鱼群本身有如下数据:1.各年龄组鱼的自然死亡率为(1/年),其平均质量分别为,,,(单位:g);2.1龄鱼和2龄鱼不产卵,产卵期间,平均每条4龄鱼产卵量为ⅹ105(个),3龄鱼为其一半;3.卵孵化的成活率为ⅹ1011/(ⅹ1011 + n)(n为产卵总量);有如下问题需要解决:1)分析如何实现可持续捕获(即每年开始捕捞时各年龄组鱼群不变),并在此前提下得到最高收获量;2)合同要求某渔业公司在5年合同期满后鱼群的生产能力不能受到太大的破坏,承包时各年龄组鱼群数量为122,,,(ⅹ109条),在固定努力量的捕捞方式下,问该公司应采取怎样的捕捞策略,才能使总收获量最高。
三. 模型建立假设a、鱼群总量的增加虽然是离散的,但对大规模鱼群而言,我们可以假设鱼群总量的变化随时间是连续的;b、龄鱼到来年分别长一岁成为i + 1龄鱼,i = 1,2,3;c、4龄鱼在年末留存的数量占全部数量的比例相对很小,可假设全部死亡。
d 、连续捕获使各年龄组的鱼群数量呈周期性变化,周期为1年,可以只考虑鱼群数量在1年内的变化情况。
(且可设x i (t ):在t 时刻i 龄鱼的条数,i = 1,2,3,4;n :每年的产卵量;k :4龄鱼捕捞强度系数;2a i0:每年初i 龄鱼的数量,i = 1,2,3,4;)进而可建立模型如下:max (total (k ))=⎰⎰+3/203/2043)(99.22)(42.0dt t kx dt t kx)(8.0)(11t x dtt dx -= t ∈[0,1],x1(0)= n ×n +⨯⨯11111022.11022.1 )(8.0)(22t x dt t dx -= t ∈[0,1],x2(0)= x1(1))()42.08.0()(33t x k dt t dx +-= t ∈[0,2/3],x3(0)= x2(1) . )(8.0)(33t x dt t dx -= t ∈[2/3,1],x3(32-)= x3(32+))()8.0()(44t x k dt t dx +-= t ∈[0,2/3],x4(0)= x3(1))(8.0)(44t x dt t dx -= t ∈[2/3,1],x4(32-)= x4(32+))]32()32(5.0[10109.1435++⨯=x x n四. 模型求解(含经调试后正确的源程序)1. 先建立一个的M 文件:function y=buyu(x);global a10 a20 a30 a40 total k;syms k a10;x1=dsolve('Dx1=*x1','x1(0)=a10');t=1;a20=subs(x1);x2=dsolve('Dx2=*x2','x2(0)=a20');t=1;a30=subs(x2);x31=dsolve('Dx31=-+*k)*x31','x31(0)=a30');t=2/3;a31=subs(x31);x32=dsolve('Dx32=*x32','x32(2/3)=a31');t=1;a40=subs(x32);x41=dsolve('Dx41=-+k)*x41','x41(0)=a40');t=2/3;a41=subs(x41);x42=dsolve('Dx42=*x42','x42(2/3)=a41');t=2/3;a31=subs(x31);nn=*10^5**a31+a41);Equ=a10-nn**10^11/*10^11+nn);S=solve(Equ,a10);a10=S(2,1);syms t;k=x;t3=subs(subs(int*k*x31,t,0,2/3)));t4=subs(subs(int(k*x41,t,0,2/3)));total=*t3+*t4;y=subs((-1)*total)2.再建立一个的M文件:global a10 a20 a30 a40 total;[k,mtotal]=fminbnd('buyu',0,20);ezplot(total,0,25);xlabel('');ylabel('');title('');format long;ktotal=-mtotal;a10=eval(a10)a20=eval(a20)a30=eval(a30)a40=eval(a40)format shortclear五.结果分析1.鱼总量与时间图:x 10405101520252.可以看出捕捞强度对收获量的影响:实验输出数据:y =+011y =+011y =+011y =+011y =+011y =+011y =+011y =+011y =+011y =+011y =+011y =y =+011k =total =+011a10 =+011a20 =+010a30 =+010a40 =+007则k=时,最高年收获量为total=×1011(克),此时每年年初1,2,3,4年龄组鱼的数量分别为:×1011×1010×1010×107六.实验总结本次实验的目的是了解差分方程(递推关系)的建立及求解,以及掌握用差分方程(递推关系)来求解现实问题的方法。
数学建模案例――最佳捕鱼方案

最佳捕鱼方案摘要:本文解决的是一个最佳捕鱼方案设计的单□标线性规划问题,U的是制定每天的捕鱼策略,使得总收益最大。
根据题设条件,结合实际情况,我们设计了成本与损失率随天数的增加成反比变化的函数曲线(见图三所示),并导出总收益的表达式:w=£气=£几><亠-r-J i-J r-1由于价格是关于供应量的分段函数(见图一所示),我们引入“0—1”变量法编写程序(程序见附录一),并用数学软件LI\GO求解,得到最大收益(W)为441291.4元,分21天捕捞完毕。
其中第1〜16天,日捕捞量在1030〜1070 公斤之间,第17〜21天的日捕捞量为1610〜1670公斤之间(具体数值见正文)。
由结果分析,我们对模型提出了优化方向,例如人工放水来降低成本。
关键词:“0-1”整数规划,单目标线性规划,离散型分布。
一.问题重述一个水库,由个人承包,为了提高经济效益,保证优质鱼类有良好的生活环境,必须对水库里的杂鱼做一次彻底清理,因此放水清库。
水库现有水位平均为15米,自然放水每天水位降低0. 5米,经与当地协商水库水位最低降至5 米,这样预计需要二十天时间,水位可达到□标。
据估计水库内尚有草鱼二万五千余公斤,鲜活草鱼在当地市场上,若日供应量在500公斤以下,其价格为30元/公斤;日供应量在500-1000公斤,其价格降至25元/公斤,日供应量超过1000公斤时,价格降至20元/公斤以下,日供应量到1500公斤处于饱和。
捕捞草鱼的成本水位于15米时,每公斤6元;当水位降至5米时,为3元 /公斤。
同时随着水位的下降草鱼死亡和捕捞造成损失增加,至最低水位5米时损失率为10%o承包人提出了这样一个问题:如何捕捞鲜活草鱼投放市场,效益最佳?二.模型假设1.池塘中草鱼的生长处于稳定状态,不考虑种群繁殖以及其体重增减,即在捕捞过程中草鱼总量保持在25, 000公斤不变。
2.第一天捕捞时水位为15m,每天都在当天的初始水位捕捞草鱼,水库水位每天按自然放水0. 5m逐渐降低,20天后刚好达到最低要求水位5mo3.在水库自然放水的21内将草鱼捕完。
最优捕鱼策略问题

最优捕鱼策略问题摘要本文以最优捕鱼策略为主题,在logistic模型基础上建立了可持续发展捕鱼策略模型,并借助计算机Matlab,运用二分法近似求得了模型最优解。
在此基础上提出了灵敏度函数S,并由此判断死亡率w和捕捞强度E的变化对产量变化的影响。
最后根据实际生产需求,分析死亡率w对最大产量Qm的影响。
对于问题1,我们首先考虑不存在捕捞情况下的模型,再加入捕捞强度分析,最后根据问题1的条件(每年开始捕捞时渔场中各种年龄组鱼群条数不变)建立方程组,得到可持续发展捕鱼策略模型,解得方程组后在w=0.8时绘图得到最大产量Qm=3.8871*10^11。
对于问题2,我们引用了灵敏度函数S(ω,Q),起意义为ω变化率与Q变化率的比值,例如S=0.1,即表示当死亡率变化1%的时候,产量Q变化0.1%。
发现在问题1取得最大产量的情况下,死亡率每增加1%,最大产量减少1.743%。
并给出了不同死亡率w和产量下S的函数。
对于问题3,方法与问题2相似,灵敏度函数S(E,Q)在问题1的情况下,捕捞强度系数E每增加1%,产量Q减少0.0010%。
并给出了不同捕捞强度E和产量Q下S的函数。
对于问题4,我们取不同的死亡率w,得到不同的最大产量Q,利用MATLAB用函数拟合的方法得到了相似度很高的4阶拟合函数Qm(w)仿照问题2求解了灵敏度函数S(E,Qm),发现了在问题1求得最大产量的时候,死亡率的波动对最大产量的影响是相对较大的。
现实生产中可表现为一段时间内大量鱼群的死亡对渔民的收获量会造成比较大的损失。
为此我们找到了影响较小的点,当把死亡率控制在0.957附近时,鱼群的突然大数目死亡短时间内对渔民造成的损失最小。
对此我们提出了一些策略。
关键词:可持续发展捕鱼策略模型,灵敏度分析,函数拟合,微分方程。
一、问题重述以鳀鱼为例,制定一种最优的捕鱼策略,要求实现可持续捕捞,并且在此前提下得到最高的年收获量,并进一步考虑自然死亡率和捕捞强度系数,提出相关建议。
捕鱼最优化问题课程设计

捕鱼最优化问题课程设计一、课程目标知识目标:1. 学生能理解捕鱼最优化问题,掌握线性规划的基本概念和原理;2. 学生能运用数学模型表达实际问题,理解捕鱼最优化问题的约束条件和目标函数;3. 学生了解捕鱼资源合理利用的重要性,认识到数学知识在解决实际问题中的应用。
技能目标:1. 学生能运用线性规划方法解决捕鱼最优化问题,提高数学建模和解决问题的能力;2. 学生通过小组讨论和合作,培养团队协作和沟通表达的能力;3. 学生能够运用计算工具,如计算器和电脑软件,进行数据处理和求解最优化问题。
情感态度价值观目标:1. 学生培养对数学学科的兴趣,认识到数学与实际生活的紧密联系;2. 学生在解决捕鱼最优化问题的过程中,增强环保意识,关注可持续发展;3. 学生通过自主探索和合作学习,培养自信心和自主学习的能力,形成积极向上的学习态度。
二、教学内容本章节教学内容以“捕鱼最优化问题”为主题,结合教材中线性规划的相关章节进行组织。
具体内容包括:1. 线性规划基本概念:定义、约束条件、目标函数、可行解、最优解等;2. 线性规划模型建立:以捕鱼最优化问题为例,引导学生建立数学模型,理解约束条件和目标函数的含义;3. 线性规划求解方法:介绍单纯形法、图形法等基本求解方法,以及运用计算工具进行求解;4. 捕鱼最优化问题案例分析:分析实际捕鱼案例,探讨线性规划在捕鱼资源合理利用中的应用;5. 小组讨论与协作:分组讨论捕鱼最优化问题,培养学生的团队协作能力和沟通表达能力;6. 数学软件应用:指导学生运用数学软件(如MATLAB、Excel等)进行数据处理和求解最优化问题。
教学内容按照以下进度安排:1. 第一节课:线性规划基本概念,建立捕鱼最优化问题的数学模型;2. 第二节课:线性规划求解方法,分析捕鱼最优化问题案例;3. 第三节课:小组讨论与协作,总结捕鱼最优化问题的解决方案;4. 第四节课:数学软件应用,巩固所学知识,拓展解决实际问题的能力。
捕鱼优化模型

5.1.2 最大捕获的目标函数
2 2 ( k3 r ) ( k4 r ) m3 k3 m4 k4 3 max (1 e ) N 3 (M) (1 e 3 ) N 4 (M) k3 r k4 r
约束条件:
2 2 n(M) a (0.5 N 3 (M ) N 4 (M )) 3 3 N1 (M) N1 (M 1) n(M) b r N 2 (M) N 2 (M 1) n(M) b e 2 r N3 (M) N3 (M 1) n(M) b e e (2/3k3 3r ) N 4 ( M ) bn(M) 1 e (2/3k4 r ) a 1.109 105 其中: b 1.22 1011 k k4 k3 / 0.42 5.2 问题二模型模型的建立 5.2.1 模型Ⅰ(5 年内 k 值保持不变)的目标函数
2
4.1.2 对捕捞强度系数 k 的理解
因为只捕捞 3、4 龄鱼,因此捕捞强度系数只会影响 3、4 龄鱼群数量。又捕 捞期为一年当中的前八个月,故类似第 1 点的分析,可以得到
2 dN i (t ) ( r ki ) N i (t ) i 3, 4; t [M, M ], M 0, M dt 3 2 dN i (t ) rN (t ) i 3, 4; t [M ,M 1],M 0,M i 3 dt
3 符号定义
t T
t
时间过程 年份 时间间隔
N i (t )
i 龄鱼在时间 t 的数量( i =1,2,3,4)
自然死亡率 第 M 年产卵总量 4 龄鱼的产卵量( 1.109 105 ),3 龄鱼为 a / 2 卵的成活率 1.22 1011 / (1.22 1011 n) 3 龄鱼的捕捞强度 ( k3 0.42k4 ) 4 龄鱼的捕捞强度 (决策变量) 第 i 年 4 龄鱼的捕捞强度( i =1,2,3,4,5) 5 年捕捞总量
数学建模课程设计_最佳捕鱼方案

数学建模论文姓名: 文勇学号:201315020220论文标题:最佳捕鱼方案1.问题的提出一个水库,由个人承包,为了提高经济效益,保证优质鱼类有良好的生活环境,必须对水库的杂鱼做一次彻底清理,因此放水清库。
水库现有水位平均为15米,自然放水每天水位降低0.5米,经与当地协商,水库水位最低降至5米,这样预计需要二十天时间,水位可达到目标。
据估计水库内尚有草鱼25000余公斤,鲜活草鱼在当地市场上,若日供应量在500公斤以下,其价格为30元/公斤;日供应量在500—1000公斤,其价格降至25元/公斤,日供应量超过1000公斤时,价格降至20元/公斤以下,日供应量到1500公斤,已处于饱和,捕捞草鱼的成本水位于15米时,每公斤6元;当水位降至5米时,为3元/公斤。
同时随着水位的下降草鱼死亡和捕捞造成损失增加,至最低水位5米时损失率为10%。
承包人提出了这样一个问题:如何捕捞鲜活草鱼投放市场,效益最佳?2.问题分析通过简单的分析和思考,该问题可以归为一个数学规划问题。
条件(1)(2)是针对目前状况的约束,条件(3)是通过卖鱼可以获得的利润,条件(4)是对成本的约束。
在四个条件约束的情况下,我们可以建立模型。
由于对损失率的理解不同,我们进行了不同的假设,并在这些假设下建立了模型一和模型二、三。
模型一中,损失率是基于水库草鱼的总量,草鱼的损失是一些定值的累加。
而在模型二、三中,为了更接近现实生活中的情况及人们的认知观,我们对第n天草鱼的损失率的理解是基于第n-1天剩下的草鱼而言。
模型二将不考虑日供应量超过1500kg的情况,而模型三考虑。
模型三的建立采用多目标的规划方法进行求解。
3.条件假设1、日供应量不受外界条件的变化而变化,是一定的。
2、当天售出的草鱼数量等于当天捕捞的草鱼。
3、水位的变化除了每天的自然放水,不考虑蒸发等其他的情况。
4、假设在放水清库的过程中,随着水位的下降,捕捞成本成呈递减等差数列,而草鱼的损失成递增等差数列。
最优捕鱼策略(1)

第二步 得出最终模型 • 根据可持续捕捞的要求, 给出约束条件及其目标函数
最优捕鱼策略(1)
由于每年各龄鱼的演化规律相同,且捕捞模式相
同,综上可得:
第k年底i 龄鱼的数量Ni1(k)对第k年初i 龄鱼的数量Ni0(k) 的
递推关系
(4最优捕鱼策略(1)
由各龄鱼之间的年龄增长关系,并假定产卵在年底一次完成,利用关系 式(4)得
从而第k+1年初i 龄鱼的数量Ni0 (k+1)与第k年初i 龄鱼的数量Ni0 (k) 的递
最优捕鱼策略(1)
3rew
演讲完毕,谢谢听讲!
再见,see you again
2020/11/17
最优捕鱼策略(1)
最优捕鱼策略(1)
2020/11/17
最优捕鱼策略(1)
(1)建立数学模型分析如何实现可持续捕捞(即每年开始捕捞时渔场中
各年龄组鱼群条数不变),并且在此前提下得到最高年收获量(捕捞总重 量)。 (2)某渔业公司承包这种鱼的捕捞业务5年,合同要求5年后鱼群的生产 能力不能受到太大破坏。
已 知 承 包 时 各 年 龄 组 鱼 群 数 量 分 别 为 : 122 , 29.7 , 10.1 , 3.29 (×109条)。如果仍用固定努力量的捕捞方式,该公司采用怎样的策略才 能使总收获量最高。
Qk —k年度鱼产卵总量
p —鱼卵的成活率
Mi—第i 龄鱼的平均重量(i=1,2,3,4) Ei —第i 龄鱼的捕捞强度系数 ai —对i 龄鱼的年捕捞量(i=3,4) W—年总收获量,即W=M3a3+M4a4 WW — 5年的总收获量为,即