电磁场理论:矢量分析基础

合集下载

电磁场与电磁波期末复习知识点归纳

电磁场与电磁波期末复习知识点归纳

哈密顿算子:矢量微分算子( Hamilton、nabla、del )
ex
x
ey
y
ez
z
★ 标量场的梯度
gradu u u xˆ u yˆ u zˆ ( xˆ yˆ zˆ)u x y z x y z
★ 矢量场的散度计算公式:
divA= • A Ax Ay Az x y z
1
2=∞ nˆ • D1 s
nˆ E1 0 nˆ B1 0
nˆ H1 Js
2、理想介质表面上 的边界条件
1=0
2=0
nˆ • (D1 D2) 0 nˆ (E1 E2 ) 0
nˆ B1 B2 0
nˆ H1 H2 0
第三章 静态电磁场及其边值问题的解
静电场中: E 0
圆柱坐标和球坐标的公式了解:
Bx By Bz
圆柱坐标系中的体积微元: dV=(d)(d)(dz)= d d dz
分析的问题具有圆柱对称性时可表示为:dV=2ddz
球坐标系中的体积微元: dV=(rsind)(rd)(dr)
分析的问题具有球对称性 时可表示为:
=r2sindrdd dV=4r2dr
★ 标量场的等值面方程 u x, y, z 常数C
程的解都是唯一的。这就是边值问题的唯一性定理
◇ 唯一性定理的意义:是间接求解边值问题的理论依据。
● 镜像法求解电位问题的理论依据是“唯一性定理”。
点电荷对无限大接地导体平面的镜像
z
r1
P
q h
r r2 介质
x
h
介质
q
点电荷对接地导体球面的镜像。
P
r
a
r2
o θ q
d
’d

电磁场电磁波复习重点

电磁场电磁波复习重点

电磁场电磁波复习重点(共13页) -本页仅作为预览文档封面,使用时请删除本页-电磁场电磁波复习重点第一章矢量分析1、矢量的基本运算标量:一个只用大小描述的物理量。

矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。

2、叉乘点乘的物理意义会计算3、通量源旋量源的特点通量源:正负无旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面的旋度源等于(或正比于)沿此曲面边界的闭合回路的环量,在给定点上,这种源的(面)密度等于(或正比于)矢量场在该点的旋度。

4、通量、环流的定义及其与场的关系通量:在矢量场F中,任取一面积元矢量dS,矢量F与面元矢量dS的标量积定义为矢量F穿过面元矢量dS的通量。

如果曲面 S 是闭合的,则规定曲面的法向矢量由闭合曲面内指向外;环流:矢量场F沿场中的一条闭合路径C的曲线积分称为矢量场F沿闭合路径C的环流。

如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为保守场。

如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场,能够激发有旋矢量场的源称为旋涡源。

电流是磁场的旋涡源。

5、高斯定理、stokes定理静电静场高斯定理:从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。

Stokes定理:从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即斯托克斯定理是闭合曲线积分与曲面积分之间的一个变换关系式,也在电磁理论中有广泛的应用。

6、亥姆霍兹定理若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为亥姆霍兹定理表明:在无界空间区域,矢量场可由其散度及旋度确定。

第二章电磁场的基本规律1、库伦定律(大小、方向)说明:1)大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;2)方向沿q1 和q2 连线方向,同性电荷相排斥,异性电荷相吸引;3)满足牛顿第三定律。

电磁场理论知识点总结

电磁场理论知识点总结

电磁场理论知识点总结电磁场与电磁波总结第1章场论初步⼀、⽮量代数A ?B =AB cos θA B ?=AB e AB sin θA ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) A ? (B ?C ) = B (A ?C ) – C ?(A ?B ) ⼆、三种正交坐标系 1. 直⾓坐标系⽮量线元 x y z =++l e e e d x y z⽮量⾯元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位⽮量的关系 ?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系⽮量线元 =++l e e e z d d d dz ρ?ρρ?l ⽮量⾯元 =+e e z dS d dz d d ρρ?ρρ? 体积元 dV = ρ d ρ d ? d z 单位⽮量的关系 ?=?? =e e e e e =e e e e zz z ρ??ρρ?3. 球坐标系⽮量线元 d l = e r d r + e θ r d θ + e ? r sin θ d ? ⽮量⾯元 d S = e r r 2sin θ d θ d ? 体积元 dv = r 2sin θ d r d θ d ? 单位⽮量的关系 ?=??=e e e e e =e e e e r r r θ?θ??θcos sin 0sin cos 0 001x r y z z A A A A A A ??=-sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A=--θ?θ?θ?θθ?θ?θ??sin 0cos cos 0sin 010r r z A A A A A A=-θ??θθθθ三、⽮量场的散度和旋度1. 通量与散度=??A S Sd Φ 0lim→?=??=??A S A A Sv d div v2. 环流量与旋度=??A l ?ld Γ maxnrot =lim→A l A e ?lS d S3. 计算公式=++A y x zA A A x y z11()=++A zA A A z ?ρρρρρ? 22111()(sin )sin sin =++A r A r A A r r r r ?θθθθθ?x y z ?=e e e A x y z x y z A A A=?e e e A z z z A A A ρ?ρρρ?ρ sin sin=?e e e A r r zr r r A r A r A ρθθθ?θ 4. ⽮量场的⾼斯定理与斯托克斯定理=A S A SVd dV ?=A l A S ?l四、标量场的梯度 1. ⽅向导数与梯度00()()lim→-?=??l P u M u M u llcos cos cos =++P uu u ulx y zαβγ cos ??=?e l u u θ grad = =+e e e +e n x y zu u u uu n x y z2. 计算公式=++???e e e xy zu u uu x y z1=++???e e e z u u u u z ρρρ? 11sin =++???e e e r u u u u r r r zθ?θθ五、⽆散场与⽆旋场1. ⽆散场 ()0=A =??F A2. ⽆旋场 ()0=u =?F u六、拉普拉斯运算算⼦ 1. 直⾓坐标系222222222222222222222222222222=++?=?+?+??=++?=++?=++A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212=++ =?--+?-++? ? ??????A e e e z z u u uu zA A A A A A A ?ρρρρρρρρρ?ρρ?ρρ?3. 球坐标系22222222111sin sin sin =++ ? ??????????u u uu r r r r r r θθθ?θ? ???+-??+?+???--??+?+???----=θθθ?θ?θθθθ?θθθθθθθ?θθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 2 22222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果⽮量场F 在⽆限区域中处处是单值的,且其导数连续有界,则当⽮量场的散度、旋度和边界条件(即⽮量场在有限区域V ’边界上的分布)给定后,该⽮量场F 唯⼀确定为()()()=-?+??F r r A r φ其中 1()()4''??'='-?F r r r r V dV φπ1()()4''??'='-?F r A r r r V dV π第2章电磁学基本规律⼀、麦克斯韦⽅程组 1. 静电场基本规律真空中⽅程: 0d ?=SE S ?qεd 0?=?lE l ? 0=E ρε 0??=E 场位关系:3''()(')'4'-=-?r r E r r r r V q dV ρπε =-?E φ 01()()d 4π''='-?r r |r r |V V ρφε介质中⽅程: d ?=?D S ?S qd 0?=?lE l ? ??=D ρ 0??=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε极化电荷:==?P e PS n n P ρ =-??P P ρ 2. 恒定电场基本规律电荷守恒定律:0+=?J tρ传导电流: =J E σ与运流电流:ρ=J v恒定电场⽅程: d 0?=?J S ?Sd 0l=E l 0=J 0E =3. 恒定磁场基本规律真空中⽅程:0 d ?=?B l ?lI µd 0?=?SB S ? 0=B J µ 0=B场位关系:03()( )()d 4π ''?-'='-?J r r r B r r r VV µ =??B A 0 ()()d 4π'''='-?J r A r r r V V µ 介质中⽅程:d ?=?H l ?l Id 0?=?SB S ? ??=H J 0??=B磁化:0=-BH M µ m 00(1)=+B H =H =H r χµµµµ 磁化电流:m =??J M ms n =?J M e4. 电磁感应定律d d ?=-SE l B S ?lddt =-BE t5. 全电流定律和位移电流全电流定律:d ()d ??=+D H l J S ?lSt =+DH J t位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0=+?=-??==D H J S B E S D S B Sl S l S SV S l t l t V d ρ 0=+???=-?==?D H J B E D B t t ρ ()() ()()0=+???=-?==?E H E H E E H t t εσµερµ ⼆、电与磁的对偶性e m e m e m e e m m e e m mm e 00=-??==+??=--?=?=?????=?=??B D E H D B H J E J D B D B t t &t t ρρ m e e m ??=--?=+==B E J D H J D B tt ρρ三、边界条件 1. ⼀般形式12121212()0()()()0-=-=-=-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界⾯和理想介质界⾯111100?=??===e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0-=-=-=-=e E E e H H e D D e B B n n n n 第3章静态场分析⼀、静电场分析1. 位函数⽅程与边界条件位函数⽅程: 220?=-电位的边界条件:121212=??-=-?s nn φφφφεερ 111=??=-?s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解⽅法:2211===D SE S E lE l蜒SS d d q C U d d ε3. 静电场的能量N 个导体: 112==∑ne i i i W q φ连续分布: 12=?e V W dV φρ电场能量密度:12D E ω=?e⼆、恒定电场分析1. 位函数微分⽅程与边界条件位函数微分⽅程:20?=φ边界条件:121212=??=?nn φφφφεε 12()0?-=e J J n 1212[]0?-=J J e n σσ 2. 欧姆定律与焦⽿定律欧姆定律的微分形式: =J E σ焦⽿定律的微分形式: =??E J V3. 任意电阻的计算2211d d 1??====E l E l J SE SSSUR G Id d σ(L R =σS )4. 静电⽐拟法:C —— G ,ε —— σ2211===D SE S E lE l蜒SS d d q C U d d ε 2211d d d ??===J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分⽅程与边界条件⽮量位:2?=-A J µ 12121211A A e A A J n s µµ()=?-=标量位:20m φ?= 211221??==??m m m m n nφφφφµµ 2. 电感定义:d d ??===??B S A l ?SlL IIIψ=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ连续分布:m 1d 2A J =??V W V 磁场能量密度:m 12H B ω=? 第4章静电场边值问题的解⼀、边值问题的类型●狄利克利问题:给定整个场域边界上的位函数值()=f s φ●纽曼问题:给定待求位函数在边界上的法向导数值()?=?f s nφ●混合问题:给定边界上的位函数及其向导数的线性组合:2112()()?==?f s f s nφφ●⾃然边界:lim r r φ→∞=有限值⼆、唯⼀性定理静电场的惟⼀性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表⾯电荷分布)下,空间静电场被唯⼀确定。

《矢量分析与场论》PPT课件

《矢量分析与场论》PPT课件
实验证实麦氏方程组—电磁波的存在 近代俄国的波波夫和意大利的马可尼—电磁波传消息 无线电 当今电信时代——“电”、“光”通信
电磁应用
γ射线
医疗上用γ射线作为“手术刀”来切除肿瘤
x 射线
医疗、飞机安检,X射线用于透视检查
紫外线
医学杀菌、防伪技术、日光灯
可见光
七色光(红、橙、黄、绿、青、蓝、紫 )
s r•d S v •Α d V v d V 3 • R 3
1.3.2矢量场的环量及旋度 1、环量的定义
设有矢量场A,l为场中的一条封闭的有向曲线, 定义矢量场A环绕闭合路径l的线 积分为该矢量的 环量,记作
l A dll A cosdl
矢量的环量和矢量穿过闭合面的通量一样,都是 描绘矢量场A性质的重要物理量,同样都是积分 量。为了知道场中每个点上旋涡源的性质,引入 矢量场旋度的概念。
红外线
在特定的红外敏感胶片上能形成热成像(热感应)
微波
军事雷达、导航、电子对抗 微波炉
无线电波
通信、遥感技术
本章主要内容
1、矢量及其代数运算 2、圆柱坐标系和球坐标系 3、矢量场 4、标量场 5、亥姆霍兹定理
1.1矢量及其代数运算
1.1.1标量和矢量
电磁场中遇到的绝大多数物理量, 能够容易地区分为 标量(Scalar)和矢量(Vector)。 一个仅用大小就能够 完整描述的物理量称为标量, 例如, 电压、温度、 时间、质量、电荷等。 实际上, 所有实数都是标量。 一个有大小和方向的物理量称为矢量, 电场、磁场、 力、速度、力矩等都是矢量。例如, 矢量A可以表示 成
《矢量分析与场论》PPT 课件
课程体系
电磁理论
电磁基本理论
电磁工程
产生、辐射、

第0章矢量分析与场论

第0章矢量分析与场论

g
式中
ex ey e z grad x y z
ex ey ez x y z
梯度(gradient)
称为哈密顿算子
二. 梯度的物理意义 • 标量场的梯度是一个矢量,是空间坐标点的函数; • 梯度的大小为该点标量函数 的最大变化率,即该点最大方向导数; • 梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它 指向函数的增加方向. 例1 三维高度场的梯度 例2 电位场的梯度
·A=
r0 (负源)
在矢量场中,若• A= r0,称之为有源场,r 称为(通量)源密度;若矢量场 中处处• A=0,称之为无源场。
四、高斯公式(散度定理)
1 divA lim A dS v0 v S
由于 A 是通量源密度, 即穿过包围单位体积的闭合面的
通量,对 A 体积分后,为穿
形象描绘场分布的工具--场线 标量场--等值线(面). 其方程为
矢量场--矢量线 其方程为
A dl 0
h ( x, y, z ) const
图0.1.2 矢量线
在直角坐标下:
图0.1.1 等值线
二维场
Ax Ay dx dy
在某一高度上沿什么方向高度变化最快?三维场
0.4 标量场的梯度
• 矢量函数的面积分与体积分的互换。 • 该公式表明了区域V 中场A与边界S上的场A之间的关系。
0.6 矢量场的环量与旋度
一、矢量场环量 矢量A沿空间有向闭合曲线L的线积分
A dl
L
环量
该环量表示绕线旋转趋势的大小。
图0.4.1 环量的计算
例:流速场
图0.4.2 流速场

电子科技大学电磁场与电磁波课件第一章+矢量分析1

电子科技大学电磁场与电磁波课件第一章+矢量分析1

思考:计算圆柱、球的表面积、体积?
球坐标系中的线元、面元和体积元
14
线元矢量 d l e d r e r d e r sin d r



面元矢量 2 d S e d l d l e r d d r r rsin
d S e d l d l e r d r d r
A B Ax Bx ex ey Ay By ez Az Bz
A A 矢量 与B 的叉积
叉积仅服从分配律。
9
混合运算: —— 标量三重积 A ( B C ) B ( C A ) C ( A B ) A ( B C ) ( A C ) B ( A B ) C —— 矢量三重积
( A B ) C A C B C —— 分配律 ( A B ) C A C B C —— 分配律
10
1.2 三种常用的正交坐标系
三维空间点的位置可通过三条相互正交曲线的交点来确定。 正交曲线坐标系:三条正交曲线组成的确定三维空间任意点 位置的体系;
e
ey
ez 0 0 1 ez cos sin 0
e
ey

e
ex
圆柱坐标与 球坐标系
e
sin cos 0
ex
e
o

单位圆
x
直角坐标系与柱坐标系之间 坐标单位矢量的关系
0 0 1
ey
z
ez


er
e
直角坐标与 球坐标系

完整版电磁场理论复习总结

完整版电磁场理论复习总结

完整版电磁场理论复习总结1.1 标量场和⽮量场1.2 三种常⽤的正交坐标系1.3标量场的梯度哈密顿算符:(⼀e —e —e z)x y z2.梯度的垄本运算公式1) VC-0 (C^S)2) V(Cu)⼆CVw3) V((/ ⼟巧⼆可肿⼟V7附4) V(/a T) = Z/V V +T V;/5) VF(u) = F r(u)Vu6) V(-) = -l(rV?/-i/Vv)v vFF cF7) ^7(^ v) = —Vw + — Vvdu dv式中:U育常報;级⽢为半标变最遢載;3”梯度的重要性质16CJ55 「「⼩V x V/z = 0产⽣场的场源所在的空闾位国点称为源点上记为am或7 场所在的疇间⾫置点称为场贞「记为(x,y\2}或⼫源点到场点的距S?j?=|r-r| 从源点指向场点的⽮量为^ = r-F例3求鸥叫哙呻?刃畑%&R⾐⽰对仗」4运算R表⽰对运算.R^r-r1^J(x-A?)r+(y-/>:BR 、BR 、BR—MY臥叫帝M还W(R) = ARWR = ^-\R(lii dii fir ?S A dS A. A y A zdivA lim ——V 0 V x y zdivA A x A y A z Ax y zA e x( A z A y) e y( A x A z) e z(⼊sy z z x x y1) V Y C=02) Vx(i = A3) V x(H ±B) —V XJ1±V>.54) V x (u = uV y /< + V u KX B)=2J-V XJ4-J4-V X5l f ***** 4;jd' V x Vy - 0! 7)V (VxJ)-O:W屜囲焉唉屋?熾常数,址为标量函数「du电磁总复习第⼀章⽮量分析l ?Eit ⼗dit ?duIt= 0 r ——+ 0 L ——+&——标量场⼼的梯度. ex cy czV u =—yir rotAc'R ex R_y-y r漁—R 忑RVR = -RR'⽮童场的雄度1.4⽮量场的通量与散度三. 散度的运算公式])V C-02)V(Arl) = )tV^4) V (u A) =wV .4 + 4 Vw 沐为常数」为标量函数)- (IA5) V J(rt) - V// —du四、⾼斯定理(散度定理)L v知⼀丄%物理詳5G穿过⼀封闭曲⾓的总谓呈等于⽮虽散度的休秘分1.5⽮量场的环流与旋度-------------------- V VV v ?c A dl rotA nlim --S 0Sr r re x e y e zir irot A Ax y zA x A y A z4-症度计算相关公式:标葷场的梯度的旌度恒为零1G:2D3*酶点录场点df Rmax三、斯托克斯定理物理含义;—个⿂量场旋度的⾯税分導于演⽮量沿此由⾯周界的曲线眦四、⽮量场擬度的重要性质⼙(Vxj^O任意⽮量场I?度的散度等于議⽮量场有两种不同性质的源:(1)散度源(标量)(2)旋度源(⽮量)。

电磁场-复习资料

电磁场-复习资料

(9.1b) (9.1c)
∫S B(r) ⋅ dS= 0,
∇ ⋅ B(r) = 0
(9.1d)
3.问题:既然变化磁场能产生涡旋电场,那么变化电场能否产生磁场呢?图 4.1 中接交变电
源的电容器的断路回路上为什么存在传导电流?8
4.动态场基本方程——麦克斯韦方程
∫l
E(r,t) ⋅ dl
=
− ∫S
∂B(r , t ) ∂t
性微分算符“ ∇ ”来统一表示?
19.亥姆霍兹定理:在无界区域中,某场点的矢量场由其散度和旋度唯一确定。 第二章 源量的定义和库伦定律 1.微粒物质构成的带电体所带电量的多少称为电荷量。 2.当观察点与带电体的距离远大于带电体尺度时,可将点电荷视为体积很小而电荷密度很大 的带电小球的极限,其总电量完全集中于球心处。 3.电荷作定向运动,形成电流,其大小用电流强度来表示。
6.线电流——电流在某细导线上定向运动形成的电流。 7.电荷守恒性——电荷不能自生自灭,只能在物体内不同区域、或不同物体间转移。
电荷守恒定律——在一个无外界电荷交换的闭合系统内,正、负电荷的代数和在任何电磁
过程中均保持不变。 8. 库仑定律:自由空间中两个静止点电荷 q 和 q0 (探测静电力的试验电荷)的相互作用
与该点场矢量的方向一致。
4. 问题:为什么要同时应用矢量场的通量和环量来描述矢量场的场域性质?
5. 矢量场对有向曲面的面积分称为矢量场通过该有向曲面的通量。 7.(1)当ψ > 0 时,表示穿出闭合闭曲面 S 的通量线多于穿入的通量线,闭曲面 S 内必有发出
通量线的正通量源(例如,发出静电场力线的正电荷);
构成一个完备方程组,它定量描述了场量、源量和媒质间的相互作用规律和转化关系,全面 反映了电磁场与波的基本性质和普遍的运动规律,是宏观电磁理论的基础,所有的电磁现象 都可以由它得到说明。 7.问题:如何得动态位波动方程的单值解?按什么原则选择 A 的散度之值? 8. 理想介质——电导率极小的低耗介质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

场的分类
第一类场:矢量场F 在区域中处处是
0F ∇⋅= 和0F ∇⨯=
矢量的旋度为零,则矢量能够写成标量函数f 的梯度表示,即
F f =-∇
从0F ∇⋅=我们得:
()200f f ∇⋅-∇=⇒∇=
此为拉普拉斯方程。

所以为求得一类场,必须解拉普拉斯方程并服从区域的边界条件。

一旦求得f ,然后由F f =-∇求矢量场F 。

第二类场:矢量场F 在区域中处处是
0F ∇⋅≠ 和0F ∇⨯=
矢量的旋度为零,则矢量能够写成标量函数f 的梯度表示,即
F f =-∇
但是0F ∇⋅≠,我们可写成:
F ρ∇⋅=
此处的ρ 可以是一个常数或区域中的已知函数于是得:
2f ρ∇=-
此为泊松方程。

二类场由解泊松方程在边界条件约束下找到f ,然后由F f =-∇求矢量场F 。

第三类场:矢量场F 在区域中
0F ∇⋅= 和0F ∇⨯≠
由于矢量的散度为零,则该矢量能用另一矢量的旋度表示:
F A =∇⨯
式中A 为另一矢量场。

由于0F ∇⨯≠可将其写成F j ∇⨯=,此处j 为一已知矢量场,带入F A =∇⨯得
A j ∇⨯∇⨯=
利用矢量恒等式将其展开,
()
2A A j ∇∇⋅-∇=
根据唯一性定理,为使矢量场唯一,必须还定义散度。

如果给定任意约束0A ∇⋅= 得: 2A j ∇=-
上式成为矢量泊松方程。

矢量场F 利用F A =∇⨯,由A 算出。

约束0A ∇⋅=通常称为库伦规范(Coulomb’s gauge )
第四类场:一个矢量 F ,如果他的散度和旋度都不为零,则能将F 分解成两个矢量场G 和H ,让G 满足三类场要求,H 满足二类场要求。

即:
F G H =+
0G ∇⋅= ,0G ∇⨯≠而0H ∇⋅≠ 和0H ∇⨯=
因此,G A =∇⨯ 和H f =-∇ 。

可压缩媒质中的流体动力场就是第四类场的例子。

矢量恒等式
两个恒等于零:
()0f ∇⨯∇=
()
0A ∇⋅∇⨯=
二阶符号: ()2f f ∇=∇⋅∇
()
2A A A ∇=∇∇⋅-∇⨯∇⨯
和:
()f g f g ∇+=∇+∇
()
A B A B ∇⋅+=∇⋅+∇⋅ ()
A B A B ∇⨯+=∇⨯+∇⨯
含标量乘积: ()fg f g g f ∇=∇+∇
()fA f A A f ∇⋅=∇⋅+⋅∇
()
fA f A f A ∇⨯=∇⨯+∇⨯
矢量积: ()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯
()()()A B C B A C C A B ⨯⨯=⋅-⋅
()()()A B B A A B ∇⋅⨯=⋅∇⨯-⋅∇⨯
()()()
A B A B B A B A A B ∇⨯⨯=∇⋅-∇⋅+⋅∇-⋅∇
格林定理
设矢量场A 在体积v 和它的表面积s 上处处都是连续可微的单值函数。

由散度定理
v s
Adv A ds ∇⋅=⋅⎰⎰
如果定义矢量场A 为一标量函数φ与一矢量函数ϕ∇之积,则
()2A φϕφϕφϕ∇⋅=∇⋅∇=∇⋅∇+∇
将上式带入散度定理
2
v v s dv dv ds φϕφϕφϕ∇+∇⋅∇=∇⋅⎰⎰⎰
上式称为格林第一恒等式。

互换φ和ϕ则可写成
2v v s
dv dv ds ϕφϕφϕφ∇+∇⋅∇=∇⋅⎰⎰⎰
上式减下式得:
[]22v s
dv ds φϕϕφφϕϕφ⎡⎤∇-∇=
∇-∇⋅⎣⎦⎰⎰ 特殊情况,φ和ϕ相等时,有
2
2v v s dv dv ds φφφφφ∇+∇=∇⋅⎰⎰⎰
唯一性定理
矢量场在区域中唯一确定,如下要求得到满足:
1、 它的散度遍及全区域是确定的
2、 它的旋度遍及全区域是确定的
3、 在包围区域的封闭面上它的法向分量是确定的。

相关文档
最新文档