电磁场与电磁波(第1章矢量分析)

合集下载

电动力学电磁场与电磁波课件第1章矢量分析

电动力学电磁场与电磁波课件第1章矢量分析
分析和处理电磁场问题的方法 —— 数学处理过程
矢量分析
本课程约定
? 物理量符号上方用“ ? ”或粗斜? 印刷体代表矢量 ,例如电场强度矢量E
? 物理量符号上方用“ ? ”代表单
位矢量,例如e?x,e?y,e?z 分别代表 x,
y,z 方?向的单位矢量, r? 代表位置 矢量 r 的单位矢量
第一章 矢量分析
e??
?
单位圆
x
?e??
??
?
? e?xcos?
? e?ysin?
?
? e?ρ
xy 平面上的投影图
?
矢量表示: A ? e?? A? ? e?? A? ? e?z Az
z
e?z
位置矢
r ? e?? ? ? e??? ? e?z z ???
?
位置矢量 : r ? e?? ? ? e?zz
? P(?, ?, z) r
场物理量随时间变化。本课程主要讨论随 时间正弦或余弦变化的时变场,称时谐场
标量场( Scalar Field )
场物理量是标量,如温度场,电位场等
场矢物量理场量(是矢Ve量c,to如r F电ie场ldE??)r?,t?
2. 三种常用的坐标系
直角坐标系 基本变量: x, y, z
z
? P(x,y,z) r
e?x ? e?x ? e?y ? e?y ? e?z ? e?z ? 0
e?z e?y
e?x ?e?y ? e?y ?e?z ? e?z ?e?x ? 0
e?x
e?x ?e?x ? e?y ?e?y ? e?z ?e?z ? 1
??
? ? e?x e?x e?x
A?B ? AxBx ? AyBy ? Az Bz A ? B ? Ax Ay Az

《电磁场与电磁波》第一章 矢量分析

《电磁场与电磁波》第一章 矢量分析

ey Ay By
ez Az Bz
显然,矢量的矢积不满足交换律。 两个矢量的矢积仍是矢量。
矢积的几何意义 设 则
A A ex
B Bxex By ey
z
A B y B
A B ez A B sin
A
可见,矢积A×B的方向与矢量A及 矢量B构成的平面垂直,由A旋转到B成 右手螺旋关系;大小为 A B sin 。

S
E dS
0
可见,当闭合面中存在正电荷时,通量为正。当闭合面中存在负电 荷时,通量为负。在电荷不存在的无源区中,穿过任一闭合面的通 量为零。


二、散度(divergence)
通量仅能表示闭合面中源的总量,不能显示源的分布特性。为 此需要研究矢量场的散度。
如果包围点P的闭合面S所围区域V以任意方式缩小为点P 时, 矢量A通过 该闭合面的通量与该闭合面包围的体积之比的极限称为矢量场A在该点的散度, 以divA表示,即
结合律: ( A B) C A ( B C )
标量乘矢量:
A Ax ex Ay e y Az ez
§1-3 矢量的标积和矢积
一、矢量的标积
A Axex Ay e y Az ez
矢量A与矢量B的标积定义为:
B Bxex By ey Bz ez
则: A A ea ex A cos ey A cos ez A cos 标积的几何意义
y B
设 其中
A A ex
B Bxex By ey

Bx B cos By B cos( ) B sin 2
A
x
所以
A B A B cos

精品课件-电磁场与电磁波-第1章

精品课件-电磁场与电磁波-第1章
第1章 矢量分析基础
第1章 矢量分析基础
1.1 矢量分析 1.2 场论 1.3 标量场的方向导数和梯度 1.4 矢量场的通量及散度 1.5 矢量场的环量和旋度 1.6 亥姆霍兹定理 1.7 圆柱坐标系和球坐标系
第1章 矢量分析基础 1.1 矢量分析 矢量分析讨论矢性函数的求导、积分等内容,它是矢量代 数的继续,也是场论的基础。在物理学和工程实际中,许多物 理量本身就是矢量,如电场强度、磁场强度、流体的流动速度、 物质的质量扩散速度及引力等。采用矢量分析研究这些量是很 方便的。有些物理量本身是标量,但是描述它们的空间变化特 性用矢量较为方便。如物体的引力势,描述它的空间变化就需 要用引力。再比如,空间的电位分布,描述其变化采用电场强 度较为方便。
记为
,u 即
l M0
u lim u(M ) u(M0 )
l M0 M M0
M0M
(1-7)
第1章 矢量分析基础 图1-6 梯度和方向导数
第1章 矢量分析基础
2. 方向导数的计算公式
设有向线段l的单位矢量为l°=l/l,这个单位矢量的方
向余弦为(cosα, cosβ, cosγ),则标量场在某点的方向导
第1章 矢量分析基础
例1-1 若两个点电荷产生的电位 u(x, y, z) kq kAq r r1
为 r x2 y2 z2 r1 ,其(x a)2 y2 z2


,A、q和k是常数。求
电位等于零的等位面方程。
解 令u=0,则有1/r=A/r1,即Ar=r1, 左右同时平方, 得
(xA2(x2a+y2+)z22)=(yx2+a)z22+y2+z2A2a 2
若问题的本身就是两个变量的函数,这种情形叫做平面标 量场。此时,标量场一般可以写为u(x,y)。标量场具有相同 数值的点,就组成标量场的等值线,等值线方程为

矢量分析【电磁场与波+电子科技大学】

矢量分析【电磁场与波+电子科技大学】

面元矢量与此矢量相合时,极限值为最大值,也就是
该矢量的模。这个矢量称为 的旋度(curl),记为

,故有
其中 是 在面元矢量 (用 表示其方向)上的投影。
第47页
电磁场与电磁波 第一章__矢量分析
旋度:若在矢量场 中的一点M 处存在矢量 , 的方向
是 在该点环流面密度最大的方向,它的模就是这个最大
的环流面密度。矢量 称为矢量场 在点M 的旋度,记



说明:
① 在流体力学中,旋度表示了旋转的强弱即大小;在电磁场中,
不存在旋转强弱的意义;
② 旋度与环流中C 的形状、取向无关,只与场在M 点的量 本身有关;
③ 旋度场: 与矢量场 中的点一一对应得到的新的矢量场
第48页
电磁场与电磁波 第一章__矢量分析
第23页
电磁场与电磁波 第一章__矢量分析 1.3.2/3 方向导数和梯度 方向导数意义:表示场沿某方向的空间变化率
梯度的意义:描述标量场在某点的最大变化率及其 变化最大的方向
第24页
电磁场与电磁波 第一章__矢量分析
定义算符:
←哈密顿算符
数量场u 的梯度是矢量(是空间坐标点的函数) 梯度的大小为该点标量函数u 的最大变化率,即最大方向导数 梯度的方向为该点最大方向导数的方向 梯度场:数量场u 中每点都有一个梯度而形成的矢量场
第25页
电磁场与电磁波 第一章__矢量分析 直角坐标梯度: 圆柱坐标梯度: 球 坐 标 梯度:
第26页
电磁场与电磁波 第一章__矢量分析
梯度运算公式:
k为常数
第27页
电磁场与电磁波 第一章__矢量分析
{例} 考虑一个二维标量场 求此标量场的等值面,求u 的梯度 任取一闭合的积分回路,证明

《电磁场与电磁波》矢量分析

《电磁场与电磁波》矢量分析

梯度:增加最快的方向
l M0 g el
方向导数=梯度在该方向上的投影
小结 等值面:只能反映标量分布的总体趋势 梯度:场中每点变化最快的方向和最大的变化率
求场
解:
在点(0,0.5,1) 处的梯度。
矢量场的通量和散度
矢量线:描述矢量场的线 形象直观地描述矢量场
大小:疏密 方向:切线方向
矢量线的疏密可定性表征矢量场的大小 实际需定量描述,故引入通量
A dS
V 0 V S
对散度作体积分,就得到通量
高斯公式 通量=散度的体积积分 矢量函数的面积分与体积分的相互转换
S A dS 面
divA lim 1
A dS 点
V 0 V S

实现了“面-点-体 ”的转化
矢量场的环量和旋度
通量: 有向曲面上的面积分值,表示体积内 的通量源,分布强度用散度来描述
A B AB cos =Ax Bx Ay By Az Bz
Bcosθ:B在A方向上的投影 B
A ex 2ey 3ez
B 4ex 5ey 6ez
A
B cos
A B 14 25 36 32
矢量标量积满足交换律和结合律
AB B A
kA pB kpA B AB+C A B AC
l M0 =0, 沿l方向不变
l M0
几个问题:
1)方向导数是标量?矢量? 标量 2)不同方向的变化快慢是一样的? 不是
l 方向改变,方向导数值也变 3)方向导数能反映哪方向的变化率最大? 不能 4)标量能准确刻画标量场的空间变化率?不能
3 梯度
l M0 g el | g | cos(g, el )
场中的每一点只与一等值面/线对应 等值面的稀密程度反映场量的空间分布

电磁场与电磁波矢量分析亥姆霍兹定理

电磁场与电磁波矢量分析亥姆霍兹定理
A ( B C) B( A C) C( A B)
电磁场与电磁波
第一章 矢量分析
§1 .2 通量与散度, 散度定理
一、通量
面元:
ˆ ds ds n
ˆ 是面元的法线方向单位矢量 其中: n ˆ 的取向问题: n
对开曲面上的面元, 设这个开曲面是由封闭曲线l所围成的, 则当选定绕行l的方向后, 沿绕行方向按右手螺旋的姆指方 ˆ 的方向 向就是n ˆ 取为封闭面的外法线方向。 对封闭曲面上的面元, n
ˆ (gradient)为 grad n n
grad lˆ l
在直角坐标系中梯度的计算公式
ˆ grad x
ˆ ˆ y z x y z
电磁场与电磁波
第一章 矢量分析
例1 .6
在点电荷q的静电场中, P(x, y, z)点的电位为
注意:x ˆx ˆ
ˆ y ˆz ˆ z ˆ0 y ˆ y ˆz ˆz ˆ, z ˆy ˆ ˆ, y ˆx ˆ x x
直角坐标系中的计算公式:
ˆ x yA ˆ y zA ˆ x yB ˆ y zB ˆ z ) ( xB ˆ z) A B ( xA ˆ ( Ay Bz Az By ) y ˆ ( Az Bx Ax Bz ) z ˆ( Ax By Ay Bx ) x
散度计算公式: divA A
Ax Ay Az ˆ y ˆ z ˆAx y ˆAy z ˆ ˆAz ) A (x x y z x y z x
电磁场与电磁波
第一章 矢量分析
三、散度定理
n2
q ˆds e D ds r r 3 s 4r s q q 2 ds 4 r q 2 s 2 4r 4r

第一章 矢量分析(电磁场与电磁波)

第一章 矢量分析(电磁场与电磁波)

例:已知一矢量场F=axxy-ayzx, 试求: (1) 该矢量场的旋度; (2) 该矢量沿半径为3的四分 之一圆盘的线积分, 如图所 示, 验证斯托克斯定理.
y B r=3
O
A x
四分之一圆盘
第 7,8 学时 , 1.4 标量的方向导数和梯度
1.4.1标量的方向导数和梯度 标量的方向导数和梯度 一个标量场u可以用一个标量函数来表示.在直角坐标 系中, 可将u表示为 u=u(x, y, z) 令 u(x, y, z)=C, C为任意常数.该式在几何上一般表示 一个曲面,在这个曲面上的各点,虽然坐标(x, y, z)不同, 但函数值相等,称此曲面为标量场u的等值面 等值面. 随着C 等值面 的取值不同,得到一系列不同的等值面,如下图所示. 同理,对于由二维函数v=v(x, y)所给定的平面标量场, 可按v(x, y)=C得到一系列不同值的等值线.
S → P
∫ lim
l
A dl
S
称固定矢量R为矢量A 的旋度 旋度,记作 旋度 rotA=R 上式为旋度矢量在n方 向的投影,如图所示, 即
rotA 旋旋旋
n
P l
S → P
∫ lim
l
A dl
S
= rotn A
旋度及其投影
矢量场的旋度 旋度仍为矢量 矢量.在直角坐标系中,旋度的表达式为 旋度 矢量
C C=A× B an aA A (a)
图 1 - 3 矢量积的图示及右手螺旋 (a) 矢量积 (b) 右手螺旋
O
aB B
B A
θ
(b)
矢量积又称为叉积 叉积(Cross Product),如果两个不为零的 叉积 矢量的叉积等于零,则这两个矢量必然相互平行,或者 说,两个相互平行矢量的叉积一定等于零.矢量的叉积 不服从交换律,但服从分配律,即 A×B= -B×A × × A×(B+C)=A×B+A×C × × ×

《电磁场与电磁波》复习纲要(含答案)

《电磁场与电磁波》复习纲要(含答案)

S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0

C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u x, y, z c
40 0 30 0 20 0 10 0
标量场的等值面
◇梯度
方向导数为我们解决了函数u(P)在给定点处沿某个方向的变化率问题。然而从场 中的给定点P出发,标量场u在不同方向上的变化率一般说来是不同的,那么, 可以设想,必定在某个方向上变化率为最大。为此,定义一个矢量G,其方向为 是函数u在点P处变化率为最大的方向,其大小就是这个最大变化率的值,
1.3 标量场的梯度
一、等值面或等位面:标量场中值相等的点构成的 面。 等值面互不相交,完全填充标量场的全部空间
u x, y, z c
二、方向性导数和梯度:描述标量场中各点场量的变化规律
◇ 定义标量函数 u(x, y,z) 在点P沿给定方向 el 的变化率。
u u
aenn N
M aell
u
P
ay
u y
az
u z
在柱坐标系中:
ar
r
a
1 r
az
z
u
ar
u r
a
1 r
u
az
u z
在球坐标系中:
ar
r
a
1 r
a
1 r sin
u
ar
u r
a
1 r
u
a
1 r sin
u
例题:
1、设点电荷位于球坐标原点,在它周围空间任一点的电位为 (r, ,) q 4 0r
式中和为常数。试求空间各点( r 0)电位的梯度。
dl
axdx
aydy
azdz
u
ax
u x
ay
u y
az
u z
du
u
dl
u
dx
u
dy
u
dz
u
dl
u
dl cos
l x y z
为矢量
与 u 同方向时, 0
dl 矢量为为最短,此时dl dln 与等直面垂直, u 也与等直面垂直
梯度的计算公式:
u
ax
u x
场 函 数: 描述场在空间中分布的函数称为场函数
标量场: (x, y, z,t)
矢量场:
F ( x,
y,
z,
t)
静态场:(x, y, z)
时变场:(x, y, z,t)
静态矢量场:F(x, y, z) 时变矢量场:F(x, y, z,t)
5、场的值或场量:物理量在场空间中一点的取值
例:标量场
空间某一区域定义一个标量分布,如温度,电位,高度等,可以用一个标量函 数来描述,其值随空间坐标的变化而变化,有时还可随时间变化。
3
1.2 三种常用正交坐标系
直角坐标系
坐标变变化范围是:
x
y
z
右手螺旋法则 位置矢量: 矢量表示: 微分线元:
ax ay az
r ax x ay y az z
A
ax
Ax
ay
Ay
az Az
dR axdx aydy az dz
度量系数:
x 1 y 1 z 1
面积元: 体积元:
A
rd
az
Az
az
dz
面积元: 体积元:
dSr dl dlz rddz
dS dlr dlz drdz
dS z dlr dl rdrd
d rdrddz
r 1
r
az P(r0 ,0 , z0 ) a z 1
ar
r r0
0
r 1
r
z 1
点处沿方向的长度元分别是: 度量系数分别是:
dl r sind
度量系数: 面积元:
体积元:
hr 1
h r
h r sin
dSr dl dl r 2 sindd dS dlr dl r sindrd dS dlr dl rdrd
d dlr dl dl r 2 sindrdd
ar
a
a
ar
0
ar
a a
r sind
d
作业:习题1.3,习题1.4,习题1.9,习题1.11,习题1.12
u(x,
y,
z,t)
[( x
1)2
5xyzt (y
2)2
z]
例:矢量场
空间某一区域定义一个矢量分布,如速度场,电场、磁场等,可用一个矢量函 数来描述,其大小和方向随空间坐标的变化而变化,有时还可随时间变化。
A(
x,
y,
z)
ax
x
ay
xy
az
yz
A(
x,
y,
z,
t)
ax xt
ay
xyt
2
az
yzt
dSx dydz dS y dxdz
d dxdydz
dSz dxdy
v F
evx
x0
evy
y0
evz
z0
圆柱坐标系
坐标变变化范围是:
0r
0 2
右手螺旋法则:
位置矢量: 矢量表示:
微分线元: 度量系数:
z
ar a az
R
ar
r
az
z
dR
A
ar Ar a
ar dr a
az
a
r
ar
dlr dr
dl rd
dlz dz
r
dr
d
rd
球面坐标系
0r
0
坐标变变化范围是:
0 2
ar a a
右手螺旋法则:
位置矢量: 矢量表示:
微分线元:
R
ar r
A ar Ar a A a A
dR
ar dr
a
rd
a r
sind
坐标线元: dlr dr
dl rd
2、 特征:区域性、物理系统、分布
3、 场的分类: 标量场与矢量场 静态场与时变场
标量场 :描述 物理系统中在该区域的物理量为一标量。
矢量场 :描述 物理系统中在该区域的物理量为一矢量。
静态场:描述 物理系统中的物理量在该区域不随时间变化。
时变场:描述 物理系统中的物理量在该区域随时间变化。
4、 场的描述:场的描述方法有多种:列表法、函数法等,
grad u
lim lim u u u
u u
u0 PM
u0 PM l
为性标导量数场。其u大 x小, y与, z方,向在aPl 有点关沿。al 方向的方向
du
u(P)
u(P0
)
u x
dx
u y
dy
u z
dz
P
P0
l
u+u
u
u u cos u cos u cos
l x
y
z
其中,cosα, cosβ, cosγ为l方向的方向余弦。
标量场 u x, y, z, 在P点的梯度是一个矢量
大小:最大方向性导数 方向:最大方向性导数所在的方向
由方向性导数的定义可知:沿等值面法线an 的方向性导数最大。
标量场的梯度可定义为:
grad
an
n
哈密顿算符
ax
x
ay
y
az
z
对标量函数的运算
u
ax
u x
ay
u y
az
u z
而 du 可写成 dl 与 矢量 u 的标量积
第1章 矢量分析
1.1 场的概念和表示法 1.2 三种常用的坐标系 1.3 标量场的梯度 1.4 矢量场的通量 散度 1.5 矢量场的环流 旋度 1.6 亥姆霍兹定理
1.1 场的概念和表示法
1、场的定义:
一个确定区域中的场被定义为:物理系统中某物理量在该区域的一种分布。如果被描述的物
理量是标量,则定义的场被称为标量场;如果被描述的物理量是矢量,则定义的场被称为矢量 场。
相关文档
最新文档