第一章 矢量分析(电磁场与电磁波)

合集下载

电动力学电磁场与电磁波课件第1章矢量分析

电动力学电磁场与电磁波课件第1章矢量分析
分析和处理电磁场问题的方法 —— 数学处理过程
矢量分析
本课程约定
? 物理量符号上方用“ ? ”或粗斜? 印刷体代表矢量 ,例如电场强度矢量E
? 物理量符号上方用“ ? ”代表单
位矢量,例如e?x,e?y,e?z 分别代表 x,
y,z 方?向的单位矢量, r? 代表位置 矢量 r 的单位矢量
第一章 矢量分析
e??
?
单位圆
x
?e??
??
?
? e?xcos?
? e?ysin?
?
? e?ρ
xy 平面上的投影图
?
矢量表示: A ? e?? A? ? e?? A? ? e?z Az
z
e?z
位置矢
r ? e?? ? ? e??? ? e?z z ???
?
位置矢量 : r ? e?? ? ? e?zz
? P(?, ?, z) r
场物理量随时间变化。本课程主要讨论随 时间正弦或余弦变化的时变场,称时谐场
标量场( Scalar Field )
场物理量是标量,如温度场,电位场等
场矢物量理场量(是矢Ve量c,to如r F电ie场ldE??)r?,t?
2. 三种常用的坐标系
直角坐标系 基本变量: x, y, z
z
? P(x,y,z) r
e?x ? e?x ? e?y ? e?y ? e?z ? e?z ? 0
e?z e?y
e?x ?e?y ? e?y ?e?z ? e?z ?e?x ? 0
e?x
e?x ?e?x ? e?y ?e?y ? e?z ?e?z ? 1
??
? ? e?x e?x e?x
A?B ? AxBx ? AyBy ? Az Bz A ? B ? Ax Ay Az

电磁场与电磁波期末复习知识点归纳

电磁场与电磁波期末复习知识点归纳

哈密顿算子:矢量微分算子( Hamilton、nabla、del )
ex
x
ey
y
ez
z
★ 标量场的梯度
gradu u u xˆ u yˆ u zˆ ( xˆ yˆ zˆ)u x y z x y z
★ 矢量场的散度计算公式:
divA= • A Ax Ay Az x y z
1
2=∞ nˆ • D1 s
nˆ E1 0 nˆ B1 0
nˆ H1 Js
2、理想介质表面上 的边界条件
1=0
2=0
nˆ • (D1 D2) 0 nˆ (E1 E2 ) 0
nˆ B1 B2 0
nˆ H1 H2 0
第三章 静态电磁场及其边值问题的解
静电场中: E 0
圆柱坐标和球坐标的公式了解:
Bx By Bz
圆柱坐标系中的体积微元: dV=(d)(d)(dz)= d d dz
分析的问题具有圆柱对称性时可表示为:dV=2ddz
球坐标系中的体积微元: dV=(rsind)(rd)(dr)
分析的问题具有球对称性 时可表示为:
=r2sindrdd dV=4r2dr
★ 标量场的等值面方程 u x, y, z 常数C
程的解都是唯一的。这就是边值问题的唯一性定理
◇ 唯一性定理的意义:是间接求解边值问题的理论依据。
● 镜像法求解电位问题的理论依据是“唯一性定理”。
点电荷对无限大接地导体平面的镜像
z
r1
P
q h
r r2 介质
x
h
介质
q
点电荷对接地导体球面的镜像。
P
r
a
r2
o θ q
d
’d

《电磁场与电磁波》第一章 矢量分析

《电磁场与电磁波》第一章 矢量分析

ey Ay By
ez Az Bz
显然,矢量的矢积不满足交换律。 两个矢量的矢积仍是矢量。
矢积的几何意义 设 则
A A ex
B Bxex By ey
z
A B y B
A B ez A B sin
A
可见,矢积A×B的方向与矢量A及 矢量B构成的平面垂直,由A旋转到B成 右手螺旋关系;大小为 A B sin 。

S
E dS
0
可见,当闭合面中存在正电荷时,通量为正。当闭合面中存在负电 荷时,通量为负。在电荷不存在的无源区中,穿过任一闭合面的通 量为零。


二、散度(divergence)
通量仅能表示闭合面中源的总量,不能显示源的分布特性。为 此需要研究矢量场的散度。
如果包围点P的闭合面S所围区域V以任意方式缩小为点P 时, 矢量A通过 该闭合面的通量与该闭合面包围的体积之比的极限称为矢量场A在该点的散度, 以divA表示,即
结合律: ( A B) C A ( B C )
标量乘矢量:
A Ax ex Ay e y Az ez
§1-3 矢量的标积和矢积
一、矢量的标积
A Axex Ay e y Az ez
矢量A与矢量B的标积定义为:
B Bxex By ey Bz ez
则: A A ea ex A cos ey A cos ez A cos 标积的几何意义
y B
设 其中
A A ex
B Bxex By ey

Bx B cos By B cos( ) B sin 2
A
x
所以
A B A B cos

精品课件-电磁场与电磁波-第1章

精品课件-电磁场与电磁波-第1章
第1章 矢量分析基础
第1章 矢量分析基础
1.1 矢量分析 1.2 场论 1.3 标量场的方向导数和梯度 1.4 矢量场的通量及散度 1.5 矢量场的环量和旋度 1.6 亥姆霍兹定理 1.7 圆柱坐标系和球坐标系
第1章 矢量分析基础 1.1 矢量分析 矢量分析讨论矢性函数的求导、积分等内容,它是矢量代 数的继续,也是场论的基础。在物理学和工程实际中,许多物 理量本身就是矢量,如电场强度、磁场强度、流体的流动速度、 物质的质量扩散速度及引力等。采用矢量分析研究这些量是很 方便的。有些物理量本身是标量,但是描述它们的空间变化特 性用矢量较为方便。如物体的引力势,描述它的空间变化就需 要用引力。再比如,空间的电位分布,描述其变化采用电场强 度较为方便。
记为
,u 即
l M0
u lim u(M ) u(M0 )
l M0 M M0
M0M
(1-7)
第1章 矢量分析基础 图1-6 梯度和方向导数
第1章 矢量分析基础
2. 方向导数的计算公式
设有向线段l的单位矢量为l°=l/l,这个单位矢量的方
向余弦为(cosα, cosβ, cosγ),则标量场在某点的方向导
第1章 矢量分析基础
例1-1 若两个点电荷产生的电位 u(x, y, z) kq kAq r r1
为 r x2 y2 z2 r1 ,其(x a)2 y2 z2


,A、q和k是常数。求
电位等于零的等位面方程。
解 令u=0,则有1/r=A/r1,即Ar=r1, 左右同时平方, 得
(xA2(x2a+y2+)z22)=(yx2+a)z22+y2+z2A2a 2
若问题的本身就是两个变量的函数,这种情形叫做平面标 量场。此时,标量场一般可以写为u(x,y)。标量场具有相同 数值的点,就组成标量场的等值线,等值线方程为

矢量分析【电磁场与波+电子科技大学】

矢量分析【电磁场与波+电子科技大学】

面元矢量与此矢量相合时,极限值为最大值,也就是
该矢量的模。这个矢量称为 的旋度(curl),记为

,故有
其中 是 在面元矢量 (用 表示其方向)上的投影。
第47页
电磁场与电磁波 第一章__矢量分析
旋度:若在矢量场 中的一点M 处存在矢量 , 的方向
是 在该点环流面密度最大的方向,它的模就是这个最大
的环流面密度。矢量 称为矢量场 在点M 的旋度,记



说明:
① 在流体力学中,旋度表示了旋转的强弱即大小;在电磁场中,
不存在旋转强弱的意义;
② 旋度与环流中C 的形状、取向无关,只与场在M 点的量 本身有关;
③ 旋度场: 与矢量场 中的点一一对应得到的新的矢量场
第48页
电磁场与电磁波 第一章__矢量分析
第23页
电磁场与电磁波 第一章__矢量分析 1.3.2/3 方向导数和梯度 方向导数意义:表示场沿某方向的空间变化率
梯度的意义:描述标量场在某点的最大变化率及其 变化最大的方向
第24页
电磁场与电磁波 第一章__矢量分析
定义算符:
←哈密顿算符
数量场u 的梯度是矢量(是空间坐标点的函数) 梯度的大小为该点标量函数u 的最大变化率,即最大方向导数 梯度的方向为该点最大方向导数的方向 梯度场:数量场u 中每点都有一个梯度而形成的矢量场
第25页
电磁场与电磁波 第一章__矢量分析 直角坐标梯度: 圆柱坐标梯度: 球 坐 标 梯度:
第26页
电磁场与电磁波 第一章__矢量分析
梯度运算公式:
k为常数
第27页
电磁场与电磁波 第一章__矢量分析
{例} 考虑一个二维标量场 求此标量场的等值面,求u 的梯度 任取一闭合的积分回路,证明

电磁场与电磁波矢量分析亥姆霍兹定理

电磁场与电磁波矢量分析亥姆霍兹定理
A ( B C) B( A C) C( A B)
电磁场与电磁波
第一章 矢量分析
§1 .2 通量与散度, 散度定理
一、通量
面元:
ˆ ds ds n
ˆ 是面元的法线方向单位矢量 其中: n ˆ 的取向问题: n
对开曲面上的面元, 设这个开曲面是由封闭曲线l所围成的, 则当选定绕行l的方向后, 沿绕行方向按右手螺旋的姆指方 ˆ 的方向 向就是n ˆ 取为封闭面的外法线方向。 对封闭曲面上的面元, n
ˆ (gradient)为 grad n n
grad lˆ l
在直角坐标系中梯度的计算公式
ˆ grad x
ˆ ˆ y z x y z
电磁场与电磁波
第一章 矢量分析
例1 .6
在点电荷q的静电场中, P(x, y, z)点的电位为
注意:x ˆx ˆ
ˆ y ˆz ˆ z ˆ0 y ˆ y ˆz ˆz ˆ, z ˆy ˆ ˆ, y ˆx ˆ x x
直角坐标系中的计算公式:
ˆ x yA ˆ y zA ˆ x yB ˆ y zB ˆ z ) ( xB ˆ z) A B ( xA ˆ ( Ay Bz Az By ) y ˆ ( Az Bx Ax Bz ) z ˆ( Ax By Ay Bx ) x
散度计算公式: divA A
Ax Ay Az ˆ y ˆ z ˆAx y ˆAy z ˆ ˆAz ) A (x x y z x y z x
电磁场与电磁波
第一章 矢量分析
三、散度定理
n2
q ˆds e D ds r r 3 s 4r s q q 2 ds 4 r q 2 s 2 4r 4r

电磁场与电磁波第四版课后答案

电磁场与电磁波第四版课后答案

答案:① aA =
1 14
(ax
+
2ay

3az
)
;②
A−B =
53 ;③ A • B = −11;

θ AB = 135.48 ; ⑤
A× C = −(4ax +13ay +10az ) ; ⑥
A •(B × C)=(A • B)× C = −42 ; ⑦
(A× B)× C = 2ax − 40ay + 5az 和
托克斯定理求解此线积分。
∫ ∫ 答案:① A •dl = π a4 ;② (∇ × A) dS = π a4 。
l
4
l
4
1-18 试在直角坐标系下证明: − 1 ∇2 (1 R)=δ(r − r′)。 4π
∫ 1-19 若矢量 A = a(R cos2 ϕ
R3 ),1 ≤ R ≤ 2 ,求
∇• AdV 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η

答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η


0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
+ ay
y − 2x x2 + y2

1-22 已知 A = a a x + b a y + c a z ,写出圆柱坐标系和圆球坐标系下 A 的表达式。
答案: A = (a cosϕ + b sinϕ )ar + (b cosϕ − a sin ϕ )aϕ + caz ;

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例:已知一矢量场F=axxy-ayzx, 试求: (1) 该矢量场的旋度; (2) 该矢量沿半径为3的四分 之一圆盘的线积分, 如图所 示, 验证斯托克斯定理.
y B r=3
O
A x
四分之一圆盘
第 7,8 学时 , 1.4 标量的方向导数和梯度
1.4.1标量的方向导数和梯度 标量的方向导数和梯度 一个标量场u可以用一个标量函数来表示.在直角坐标 系中, 可将u表示为 u=u(x, y, z) 令 u(x, y, z)=C, C为任意常数.该式在几何上一般表示 一个曲面,在这个曲面上的各点,虽然坐标(x, y, z)不同, 但函数值相等,称此曲面为标量场u的等值面 等值面. 随着C 等值面 的取值不同,得到一系列不同的等值面,如下图所示. 同理,对于由二维函数v=v(x, y)所给定的平面标量场, 可按v(x, y)=C得到一系列不同值的等值线.
S → P
∫ lim
l
A dl
S
称固定矢量R为矢量A 的旋度 旋度,记作 旋度 rotA=R 上式为旋度矢量在n方 向的投影,如图所示, 即
rotA 旋旋旋
n
P l
S → P
∫ lim
l
A dl
S
= rotn A
旋度及其投影
矢量场的旋度 旋度仍为矢量 矢量.在直角坐标系中,旋度的表达式为 旋度 矢量
C C=A× B an aA A (a)
图 1 - 3 矢量积的图示及右手螺旋 (a) 矢量积 (b) 右手螺旋
O
aB B
B A
θ
(b)
矢量积又称为叉积 叉积(Cross Product),如果两个不为零的 叉积 矢量的叉积等于零,则这两个矢量必然相互平行,或者 说,两个相互平行矢量的叉积一定等于零.矢量的叉积 不服从交换律,但服从分配律,即 A×B= -B×A × × A×(B+C)=A×B+A×C × × ×
第一章 矢量分析
1.1, 1.1,矢量的基本运算 学时) (1.2学时) 学时 1.2,矢量的通量和散度( 学时 学时) 1.2,矢量的通量和散度(3.4学时) 1.3,矢量的环量和旋度(5.6学时) 学时) 1.3,矢量的环量和旋度( 学时 1.4,标量的方向导数和梯度( 学时 学时) 1.4,标量的方向导数和梯度(7.8学时)
Γ = ∫ A dI = ∫ A cosθdl
l l
矢量的环量和矢量穿过闭合面的通量一样,都是描绘矢 量场A性质的重要物理量,同样都是积分量.为了知道 场中每个点上旋涡源的性质,引入矢量场旋度 旋度的概念. 旋度
返回
z
n
A P dl
θ
l
P
y
S
O x
l
矢量场的环量
闭合曲线方向与面元的方向示意图
1.3. 2. 矢量场的旋度 1) 旋度的定义 ) 设P为矢量场中的任一点,作一个包含P点的微小面元 S,其周界为l,它的正向与面元S的法向矢量n成右 手螺旋关系(如下图所示).当曲面S在P点处保持以n 为法矢不变的条件下,以任意方式缩向P点,取极限
Az Ay Ay Ax Ax Az rotA = a x y z + a y z x + a z x y
为方便起见,也引入算子,则旋度在直角坐标系中为:
az rotA = × A = x Ax
ay y Ay
az z Az
矢量函数A在圆柱坐标系 球坐标系 圆柱坐标系和球坐标系 圆柱坐标系 球坐标系中的旋度表达式分别为
设P为矢量线上任一点,其矢径为r, 则根据矢量线的定义, 必有 A×dr= 0 × 在直角坐标系中, 矢径r的表达式 为 r=axx+ayy+azz 矢量场的矢量线满足的微分方程为
dx dy dz = = Ax Ay Az
A(r) P r dr
O
图1 - 4 矢量线图
第 3,4 学时 , 1.2 矢量的通量和散度
矢量函数的导数与积分
矢量函数对空间的偏导数仍是一个矢量 矢量,它的分 矢量 量等于原矢量函数各分量对该坐标的偏导数 偏导数.这 偏导数 一结论同样矢用于矢量函数对时间求导数.
A A , y z
矢量函数的积分包括不定积分 定积分 不定积分和定积分 不定积分 定积分两种,它们 和一般函数的积分在形式上类似,所以一般函数 积分的基本法则对矢量函数积分也适用.
返回
一个大小为零的矢量称为空矢 空矢(Null Vector)或零矢 零矢(Zer 空矢 零矢 o Vector),一个大小为1的矢量称为单位矢量(Unit Vecto r).在直角坐标系中,用单位矢量ax , ay , az 表征矢量分 别沿x,y, z轴分量的方向. x y z 空间的一点P(X,Y,Z)能够由它在三个相互垂直的轴线上的投 影唯一地被确定,如图1-1所示.从原点指向点P的矢量r称 为位置矢量(Position Vector),它在直角坐标系中表示为 r=axX+ayY+azZ
∫ A ndS lim
S
V
如果上式的极限存在,则称此极限为矢量场A在点P处的 散度, 记作
divA = lim

S
A ndS
V → 0
V
显然,其物理意义是从点P单位体积内散发的通量.在 直角坐标系中, 散度的表达式为
Ax Ay Az divA = + + x y z
2) 哈米尔顿(Hamilton)算子 ) 哈米尔顿( ) 为了方便,引入一个矢性微分算子 矢性微分算子: 矢性微分算子
B
θ
Bcos θ
图1-2 标量积

例如,直角坐标系中的单位矢量有下列关系式: axay=ayaz= axaz=0 axax=ayay=azaz=1 任意两矢量的标量积,用矢量的三个分量表示为 AB=AxBx+AyBy+AzBz 标量积服从交换律和分配律,即 AB=BA A(B+C)=AB+AC
2) 矢量积 ) 任意两个矢量A与B的矢量积(Vector Product)是一个 矢量,矢量积的大小等于两个矢量的大小与它们夹角 的正弦之乘积,其方向垂直于矢量A与B组成的平面, 如图1-3所示,记为 C=A×B=anAB sinθ × an=aA×aB (右手螺旋)
1.3.3 斯托克斯定理(Stokes Theorem) 斯托克斯定理( ) 矢量分析中另一个重要定理是

l
A dl = ∫ rotA dS
S
称之为斯托克斯定理 斯托克斯定理,其中S是闭合路径l所围成的 斯托克斯定理 面积,它的方向与l的方向成右手螺旋关系.该式表 明:矢量场A的旋度沿曲面S法向分量的面积分等于 该矢量沿围绕此面积曲线边界的线积分.
A B = ex (A x Bx ) + e y (A y By ) + ez (A z Bz )
1.1.3矢量的乘积 矢量的乘积
矢量的乘积包括标量积和矢量积. 1) 标量积 ) 任意两个矢量A与B的标量积 (Scalar Product)是一个标量, 它等于两个矢量的大小与它 们夹角的余弦之乘积,如图 1-2所示, 记为 AB=AB cosθ
aρ × A = ρ Aρ
ρ
a ρA
az z Az aθ r sin θ θ rAθ a r r sin θA
ρ
ar r 2 sin θ × A = r Ar
旋度的一个重要性质 重要性质就是任意矢量旋度的散度恒等于 重要性质 散度恒等于 零, 即 ▽ (▽ ×A)≡0 即如果有一个矢量场B的散度等于零,则该矢量B就可 以用另一个矢量A的旋度来表示,即当 ▽ B=0 则有 B= ▽ ×A
1.2.3 高斯散度定理(Divergence Theorem) 高斯散度定理( ) 在矢量分析中, 一个重要的定理为散度定理 散度定理

V
AdV = ∫ A dS
S
第 5,6 学时 , 1.3 矢量的环度和旋度
1.3 .1环量的定义 环量的定义 设有矢量场A,l为场中的一条封闭的有向曲线,定义矢 量场A环绕闭合路径l的线 积分为该矢量的环量 环量,记作 环量
矢 量 场
矢量场的矢量线 矢量场中任意一点P处的矢量可以用一个矢性函数A=A(P) 来表示.当选定了直角坐标系后,它就可以写成如下形式: A=A(x, y, z) 设Ax, Ay, Az为矢性函数A在直角坐标系中的三个坐标分量, 且假定它们都具有一阶连续偏导数,则A又可以表示为 A=axAx(x,y,z)+ayAy(x,y,z)+azAz(x,y,z) 所谓矢量线 矢量线是这样一些曲线:在曲线上的每一点处,场的 矢量线 矢量都位于该点处的切线上(如图1-4所示),像静电场的 电力线,磁场的磁力线,流速场中的流线等,都是矢量线 的例子.
矢量函数的导数与积分
矢量函数一般是空间坐标 空间坐标的函数,有时它也是时间 时间的 空间坐标 时间 函数.在我们以后研究的有关内容中必将涉及到矢量函 数随空间坐标和时间的变化率问题,既对上述变量的导 数问题
A = (e x A x + e y A y + e z A z ) x x A y ey A x ex A z ez = ex + Ax + ey + Ay + ez + Az x x x x x x A y A x A z = ex + ey + ez x x x
1. 2.1矢量场的通量 矢量场的通量 在矢量场A中取一个 面元dS及与该面元垂 直的单位矢量n(外 法向矢量,如图所 示),则面元矢量表 示为:dS=ndS
n A
θ
dS
矢量场的通量及散度
返回
由于所取的面元dS很小 很小,因此可认为在面元上各点矢 很小 量场A的值相同 相同, A与面元dS的标量积称为矢量场A穿 相同 过dS的通量 通量记作 通量
相关文档
最新文档