第一章矢量分析与场论
矢量分析和场论讲义

曲面S。 试求矢量场r从S内穿出S的通量。
P55 3. 求矢量场 A (x3 yz)i (y2 xz)j (z3 +xy)k
的散度。
• 假如曲面s是闭合旳,并要求曲面法矢由闭合 曲面内指向外,矢量场对闭合曲面旳通量是:
A
0
l 当 (G, lˆ) 0
,即
lˆ
与
G
方向一致时,
u l
为最大。
u l
0 ,沿l增加
u
l
0 ,沿l降低
G
n
u l lˆ c2 c1
u c1
梯度、方向导数与等值面
总结:数量场梯度旳性质
(1)数量场沿任一方向旳方向导数等于梯度在 该方向旳投影。
(2)数量场在任一点旳梯度垂直于过该点旳等 值面,且指向场增大旳一方。(注意:等值面 旳法向有两个)
直接从散度旳定义出发,不难得到矢量场 在空间任意闭合曲面旳通量等于该闭合曲 面所包括体积中矢量场散度旳积分。
A ds divAdV
s
V
上式称为矢量场旳Gauss定理。
注:它能把一种闭合曲面旳面积分转为对 该曲面所包围体积旳体积分,反之亦然。
§4 矢量场旳环量及旋度(Rotation)
1. 矢量场旳环量
以温度场为例:
等温面
热源
能够看出:数量场旳函数是单值函数,各等值面 是互不相交旳。
矢量场旳矢量线:直观描述矢量在场中旳分布情况。
矢量线上每一点处曲线与相应于该点旳矢量相切。
A
M
z
r
l
y
o
x
观察:
图2 矢量线
1.在曲线上旳每一点M处, 场旳矢量都位于该点处旳 切线上(如图所示),称其为矢量线。例:静电场电力 线、磁场旳磁力线、流速场中旳流线等。
第一章矢量分析与场论-ppt课件

坐标元
1.8 微分元 恣意元 微分元是矢量微、积分的根底。
坐标元
坐标线元
坐标平面元dσ
坐标体元dv
dx 直 dy
dz dρ
dx= dx ex
dy= dz=
ey dy ez
dρ= dz eρ
dφ= dρ ej
dddσσσ=假yx ==设: xd=σc,z =
yd=σc,ρ = zdd=σσc,φz ==
A× (B×C) = (A ·C) B - (A·B) C
A·(B×C) = B ·(C×A) = C ·(A×B)
‖
‖
‖ Ax Ay Az
[ABC] = [BCA] = [CAB] = Bx By Bz
Cx Cy Cz
假设 B=C 那么 A·B = A ·C及A×B = A ×C 成立 B C 假设 A·B = A ·C及A×B = A ×C 那么 B=C不一定成立
er(90°s,iφn+θ9c0o°sφ)·ez ez sinθ sinφ
cosθ
ex
= sin(θ+90°) cosφ
sin (θ+90°) sinφ cos (θ+90°)
ey
sin90° cos(φ+90°) sin90° sin(φ+90°) cos90°
ez sinθ cosφ
sinθ sinφ
因此:ex = 1/√2er-1/√2eφ , ey = 1/√2er+1/√2eφ , ez = - eθ
∴ A = 3√2er -2 eθ +√2 eφ ②对于点(√2,√2,2) : sinθ = sinφ= cosθ= cosφ=1/√2
第01章 矢量分析和场论基础

r e ze z ,如图1-10所示。
柱坐标与直角坐标之间的关系(见图1-10~11)。
x cos y sin z z
x2 y2 arctg y x zz
取值范围
0 0 2 z
A
(1-15)
显然矢量投影为: Al A el
Ax A e x , Ay A e y , Az A e z
第一章 矢量分析与场论基础
电磁场与电磁波理论基础
3. 矢量的矢积
矢量的矢积也称叉积,其定义为
A B A B sin n
(1-17)
式中 n 是一垂直于由矢量 A 和 B 构成的平面的单位 矢量,并遵循右手螺旋法则,见图1-3。 矢量的矢积不满足交换律;由图1-3可以看出,矢量 矢积交换满足如下关系 (1-18) A B B A
(1-47)
利用其逆变换也可得柱坐标分量的直角坐标表达式。
第一章 矢量分析与场论基础
电磁场与电磁波理论基础
三、球坐标系 球坐标系中任一点P在球坐标系下的坐标为( r , , ), 其中 r 为位置矢量 r 的大小,如图1-15所示。
r re r 位置矢量 正交单位矢量为( er , e , e ),并服从右手法则。在 球坐标系下,er , e , e 都是空间坐标点的函数。
Z
Z
Y
Y
X
X
图1-4 温度场分布示意图
图1-5 电场分布示意图
第一章 矢量分析与场论基础
电磁场与电磁波理论基础
1.4 常用正交曲线坐标系 一、直角坐标系 直角坐标系由三个相互垂直的有向线段构成,三直 线称为X、Y和Z轴,三个单位矢量 ex、ey 和 ez相互 垂直,分别表示X、Y和Z轴的方向。 位置矢量 r xe x ye y ze z ,如图1-6所示。
第1章 矢量分析与场论基础

ex e y e y ez ez ex 0 ex ex e y e y ez ez 1
(4)矢量的矢积(叉积) 两矢量的叉积是一个矢量,其大小为两个矢量的大小与它们之
用单位矢量 en 表示。
间夹角 的正弦之积,它的方向垂直于包含两个矢量的平面,
工程电磁场
第1章 矢量分析与场论基础
10
1.2 三种常用的正交曲线坐标系
三维空间任意一点的位置可通过三条相互正交曲线的交点来 确定。 三条正交曲线组成的确定三维空间任意点位置的体系,称为
正交曲线坐标系;三条正交曲线称为坐标轴;描述坐标轴的量称
为坐标变量。 在电磁场与波理论中,三种常用的正交曲线坐标系为:直角 坐标系、圆柱坐标系和球坐标系。
矢量的加减符合交换律和结合律 交换律 A B B A 结合律 A ( B C ) ( A B) C
B B
A B
矢量的减法
A
工程电磁场
第1章 矢量分析与场论基础
6
(2)标量乘矢量
B sA ex sAx e y sAy ez sAz
第1章 矢量分析与场论基础
17
(3)圆柱坐标系与球坐标系的坐标变量之间的转换
r柱 r球 sin r球 r柱 z 2
2
z r cos r柱 z
arctg
工程电磁场
第1章 矢量分析与场论基础
18
1.3场的基本概念和可视化 1场的概念 “场”是指某种物理量在空间的分布。具有标量特征的物理量在空间 的分布是标量场,具有矢量特征的物理量在空间的分布是矢量场。 例如,温度场、能量场、电位场是标量场;电场、磁场、流速场与 重力场都是矢量场。 定义了场量的空间点称为场点。
第1章矢量分析与场论01

dS r = rdϕ dzar
dSϕ = drdzaϕ
dS z = rdϕ draz
体元: dV = rdrdϕ dz
3. 球坐标系 在球坐标系中,坐标变量为 ( R,θ , ϕ ) ,如图,做一微分体 元。 线元:
dl = dRaR + Rdθ aθ + R sinθ dϕaϕ
面元:
dS R = R 2 sin θ dθ dϕ aR
A
一矢量在另一矢量方向上的投影与另一矢量模的乘 积,其结果是一标(数)量。
推论1:满足交换律 推论2:满足分配律
A⋅ B = B ⋅ A
A ⋅ (B + C) = A ⋅ B + A ⋅ C
推论3:当两个非零矢量点积为零,则这两个矢量必正交。 •在直角坐标系中,已知三个坐标轴是相互正交的,即
ˆ ˆ a x ⋅ a y = 0, ˆ ˆ a x ⋅ a x = 1, ˆ ˆ a x ⋅ a z = 0, ˆ ˆ a y ⋅ a y = 1, ˆ ˆ ay ⋅ az = 0 ˆ ˆ az ⋅ az = 1
在直角坐标系下的矢量表示:
ˆ ˆ ˆ 三个方向的单位矢量用 a x , a y , a z
表示。 根据矢量加法运算:
o
Ax
z
Az
A
Ay
A = Ax + Ay + Az
其中:
y
x
ˆ ˆ ˆ Ax = Ax ax , Ay = Ay a y , Az = Az az
ˆ ˆ ˆ 所以: A = Ax ax + Ay a y + Az az
dSθ = R sin θ dRdϕ aθ
dSϕ = RdRdθ aϕ
工程电磁场-第1章-矢量分析和场论基础

04
电磁2
03
静电场
由静止电荷产生的电场, 其电场线不随时间变化。
恒定磁场
由恒定电流产生的磁场, 其磁场线是闭合的,且不 随时间变化。
时变电磁场
由变化的电流或变化的电 荷产生的电场和磁场,其 电场线和磁场线都随时间 变化。
电磁场的分类
按存在形式分类
有源场和无源场。有源场是指其散度非零的场,如静电场和恒定 磁场;无源场是指其散度为零的场,如时变电磁场。
根据场的来源,可以将场分为自然场 和人工场。
场量和场强
场量是描述场中物理量分布的量,如电场强度、磁场强度等 。
场强是描述场作用的强度和方向的物理量,如电场线、磁场 线等。
03
矢量场和标量场
矢量场的性质
02
01
03
矢量场由矢量线组成,具有方向和大小。
矢量场具有旋度或散度,分别表示场中的旋涡或电荷 分布。 矢量场的变化遵循斯托克斯定理和格林定理。
80%
斯托克斯定理
斯托克斯定理是矢量积分的重要 定理之一,它描述了矢量场中某 点处的散度与该点处单位球体体 积内的积分之间的关系。
矢量函数和场
矢量函数
矢量函数是描述空间中矢量场 变化的数学工具,其定义域和 值域都是矢量。
矢量场
矢量场是由空间中一系列点构 成的集合,每个点都有一个与 之相关的矢量。
梯度、散度和旋度
在磁场的边界上,磁场线切线方向的 分量连续,即磁场强度不突变。
05
电磁场的能量和动量
电磁场的能量
电磁场能量的定义
01
电磁场能量是指存在于电磁场中的能量,它与电场和磁场的变
化率有关。
电磁场能量的计算
02
通过计算电场和磁场的能量密度,可以得出整个电磁场的总能
矢量分析与场论

矢量分析与场论矢量分析与场论第一章矢理分析1.1 矢性函数1.矢性函数的定义:数性变量t 在一范围G 内,对于任意的t 都有唯一确定的矢量A与其对应则称A 是t 的矢性函数,并称G 为A 的定义域,记作:()A A t =2.矢性函数的极限和连续性(1)矢性函数极限的定义:()A t在0t 某领域内有定义,对于0ε?>,0δ?>,常矢量0A ,只要为0<0t t δ-<就有0()A t A ε-< ,则称0A 为()A t 当0t t →的极限,记作:00lim ()t t A t A →=;极限的性质:(有界性)若00lim ()t t A t A →=,则0δ?>,M>0,0(;)t U t δ?∈ 都有()A t M <。
证明:0lim ()1,0,..(;)t t A t A s t t U t εδδ→=∴=?>?∈都有0()1A t A ε-<= ,00()()1A t A A t A ∴-<-<,0()1A t A ∴<+ ,取M=01A +极限的则运算:0lim ()()lim ()lim ()t t t t t t u t A t u t A t →→→=?000l i m (()())l i m ()l i m()t tt tt tA tB t A t B t →→→±=±lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=?lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=?其中()u t ,()A t ,()B t当0t t →时极限均存在。
证明:设00lim ()t t A t A →= ,00lim ()t t u t u →=,00lim ()t t B t B →=;000000()()()()()()u t A t u A u t A t u A t u A t u A -=-+-,00000000000()()()()()()()()()()()u t A t u A t u A t u A u t A t u A t u A t u A u t u A t u A t A -+-≤-+-=-?+?- 00000()()()()()u t A t u A u t u A t u A t A ∴-≤-?+?-而11010,0,..(;)M s t t U t δδ?>>?∈有1()A t M <;对于任意给定的ε>o ,101010,..(;),()2s t t U t u t u M εδδ''?>?∈-<; 同理20,s tt U t δδ?>?∈有00()2A t A u ε-<所以取{}112m i n ,,δδδδ'=,则有0(;)t U t δ?∈,00()()u t A t u A -<10122M u M u εε+?=ε其他证明方法类似,可参看数学分析中相关证明。
最新最全的矢量分析与场论讲义(必考)

矢量分析与场论第一章 矢量分析一 内容概要1 矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。
与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。
2 本章所讨论的,仅限于一个自变量的矢性函数()t A ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数()y x ,A 或者()z y x ,,A ,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。
3 本章的重点是矢性函数及其微分法,特别要注意导矢()t 'A 的几何意义,即()t 'A 是位于()t A 的矢端曲线上的一个切向矢量,其起点在曲线上对应t 值的点处,且恒指向t 值增大的一方。
如果将自变量取为矢端曲线的弧长s ,即矢性函数成为()s A A =,则()dsd s A A ='不仅是一个恒指向s 增大一方的切向矢量,而且是一个单位切向矢量。
这一点在几何和力学上都很重要。
4 矢量()t A 保持定长的充分必要条件是()t A 与其导矢()t 'A 互相垂直。
因此单位矢量与其导矢互相垂直。
比如圆函数()j i e t t t sin cos +=为单位矢量,故有()()t t 'e e ⊥,此外又由于()()t t 1'e e =,故()()t t 1e e ⊥。
(圆函数还可以用来简化较冗长的公式,注意灵活运用)。
5 在矢性函数的积分法中,注意两个矢性函数的数量积和两个矢性函数的矢量积的分部积分法公式有所不同,分别为:dt dt ''⎰⎰⋅-⋅=⋅A B B A B Adt dt ''⎰⎰⨯+⨯=⨯A B B A B A前者与高等数学种数性函数的分部积分法公式一致,后者由两项相减变为了求和,这是因为矢量积服从于“负交换律”之故。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
源点和场点均占有空间位置,因此可用矢径表示: 源点:r′ = x′ex + y′ey + z′ez = ρ′eρ+z′ez = r′er 场点:r = x ex + y ey + z ez = ρ eρ + z ez = r er S′
乘
B = A· Bcos(A· B ) = AxBx + AyBy + Az Bz 点乘 A·
性质:1、若 A· B = 0 则 A⊥B 2、 A· A = A2
∧
设:A = Axex + Ay ey + Az ez , B = Bxex + By ey + Bz ez
ex ey ez Bsin(A· B )en = Ax Ay Az A×B 叉乘 A×B = A· Bx By Bz en 性质:1、若 A×B = 0 则 A∥B 2、 A×A = 0
∧
B A
1.6 矢量的初等运算
矢量初等运算规则(设:A 、B、C 都是矢量)
A+B = B+A ; A±(B±C) = (A±B ) ±C A· B =B· A ; A· (B+C) = A· B+A· C A×B = - B×A ; A× (B+C) = A×B+A×C (A·B) C ≠ A (B·C) ; A× (B×C) ≠ (A×B) ×C A× (B×C) = (A · C) B - (A· B) C A· (B×C) = B ·(C×A) = C ·(A×B) ‖ ‖ ‖ Ax Ay Az [ABC] = [BCA] = [CAB] = Bx By Bz Cx Cy Cz 若 B=C 则 A· B=A· C及A×B = A ×C 成立 B 若 A· B=A· C及A×B = A ×C 则 B=C不一定成立
○
P(1,2,2)
1.5 源点、场点、矢径、距离矢量
1.6 矢量的初等运算
矢量的初等运算与标量一样有加、减、乘但没有除 且以各矢量同在某一点为前提
加 减 A±B = (Ax± Bx ) ex + (Ay ±By ) ey + ( Az ± Bz ) ez 标乘 μA = μAxex + μAy ey +μ Azez
(若将坐标线标上方向则该坐标线称坐标(线)矢量) A er 对于不同的坐标系有不同的坐标单位矢量: ez 直角: ex ey ez eθ 圆柱: eρ e ez ey ex 球面: er eθ e e 有了单位矢量,矢量A就可表现为如下形式: eρ A = A eA = Axex + Ay ey + Az ez = Aρ eρ + Aφeφ + Az ez= Ar er+Aφeφ+Aθeθ
1.2 标量与矢量 物理量通常是时间和空间的函数 描述空间的数学语言是坐标 描述物理量的数学语言是标量和矢量
标量(A):只有大小没有方向的物理量 算数量:>0 代数量:≠0 不变量:A· B
矢量(A):即有大小又有方向且符合平行四边形法则的物理量。
标量与矢量
复数
1.3 标量场与矢量场
物质
粒子:有静止质量,两粒子不能同时占有同一空间位置。 场:没有静止质量,两个场能同时占有同一空间位置。 标量场:其物理量为标量的场 矢量场:其物理量为矢量的场
常矢:大小和方向均不变的矢量。 矢量场的不变性 变矢:大小和方向其中有一个发生变化的矢量。
?
1.5 源点、场点、矢径、距离矢量
矢径(r):由O点指向空间任一点M的矢量OM 用 r 表示称矢径。 r = x ex + y ey + z ez = ρ eρ + z ez = r er
矢径是一特殊的矢量,具有明确的定义和表达式, 表示的是空间位置,没有物理含义。
距离矢量 R:由源点指向场点的矢量, 用符号 R 表示。 R = r - r′
P
R
r
○
r′
注意:矢径和矢量的区别
例:已知,A = xyex + z2 ey + y ez 求:A及r 在点P(1,2,2)的值,且图示。 解:① 求值 ∵r = x ex + y ey + z ez 由题意可知:x=1, y=2, z=2 将此代入A及r 得: A = 2ex + 4 ey + 2 ez ; r = ex + 2 ey + 2 ez ② 图示 A r
场:某一物理量在空间的分布称场
场
场 A(或A)
物理量
静态场: A(M) 均匀场: A(t)
动态场
均匀平面场: A(z,t)
一般时变场: A(M,t)
1.4 坐标单位矢量、常矢、变矢 单位矢量 eA : 模(大小)为1,以矢量 A 的方向为方向的矢量。 A e 1 A eA = A/A A 坐标单位矢量:指坐标(线)矢量上的单位矢量。
第一章 矢量分析与场论
标量场和矢量场 矢量场的初等运算
矢量场的微、积分
梯度、散度、旋度 亥姆霍兹定理 场的图示法
1.1 常用坐标系(正交系)
形式 直角 坐标 x,y,z 取值范围 几何意义 -∞<x<∞ X=C;是一截距为C且与X轴⊥的平面 -∞<y<∞ Y=C;是一截距为C且与Y轴⊥的平面 -∞<z<∞ Z=C;是一截距为C且与Z轴⊥的平面 0≤ <∞ =C;是一Z轴为轴心半径为C的柱面 0≤ <2 =C;是一过Z轴的半平面(子午面) -∞<z<∞ Z=C;是一截距为C且与Z轴⊥的平面 r=C;是一O点为中心C为半径的球面 =C;O为顶点Z为中心轴C为半顶角 的圆锥面 0≤ ≤2 =C;是一过Z轴的半平面(子午面) z ( 0 0 z 0 ) 0≤r <∞ 0≤ ≤
圆柱
,,z
球面
r,,
z x
O
( x 0 y0 z0 )
·
·
z ( r 0 0 0 ) r
·
y
x
O
O
y
x
三种正交系的相互关系 z
r
·
y
) (
x
X=cos = rsin cos Y=sin = rsin sin Z=rcosθ r2= x2 + y2 +z2 = 2 + z2 = rsin = arc tg(y/x) = arc cos(z/r) cosα = (x/r) cosβ = (y/r) cos = (z/r) cos2α +cos2β +cos2 = 1