电子科技大学,电磁场与电磁波。第一章__矢量分析

合集下载

电动力学电磁场与电磁波课件第1章矢量分析

电动力学电磁场与电磁波课件第1章矢量分析
分析和处理电磁场问题的方法 —— 数学处理过程
矢量分析
本课程约定
? 物理量符号上方用“ ? ”或粗斜? 印刷体代表矢量 ,例如电场强度矢量E
? 物理量符号上方用“ ? ”代表单
位矢量,例如e?x,e?y,e?z 分别代表 x,
y,z 方?向的单位矢量, r? 代表位置 矢量 r 的单位矢量
第一章 矢量分析
e??
?
单位圆
x
?e??
??
?
? e?xcos?
? e?ysin?
?
? e?ρ
xy 平面上的投影图
?
矢量表示: A ? e?? A? ? e?? A? ? e?z Az
z
e?z
位置矢
r ? e?? ? ? e??? ? e?z z ???
?
位置矢量 : r ? e?? ? ? e?zz
? P(?, ?, z) r
场物理量随时间变化。本课程主要讨论随 时间正弦或余弦变化的时变场,称时谐场
标量场( Scalar Field )
场物理量是标量,如温度场,电位场等
场矢物量理场量(是矢Ve量c,to如r F电ie场ldE??)r?,t?
2. 三种常用的坐标系
直角坐标系 基本变量: x, y, z
z
? P(x,y,z) r
e?x ? e?x ? e?y ? e?y ? e?z ? e?z ? 0
e?z e?y
e?x ?e?y ? e?y ?e?z ? e?z ?e?x ? 0
e?x
e?x ?e?x ? e?y ?e?y ? e?z ?e?z ? 1
??
? ? e?x e?x e?x
A?B ? AxBx ? AyBy ? Az Bz A ? B ? Ax Ay Az

《电磁场与电磁波》第一章 矢量分析

《电磁场与电磁波》第一章 矢量分析

ey Ay By
ez Az Bz
显然,矢量的矢积不满足交换律。 两个矢量的矢积仍是矢量。
矢积的几何意义 设 则
A A ex
B Bxex By ey
z
A B y B
A B ez A B sin
A
可见,矢积A×B的方向与矢量A及 矢量B构成的平面垂直,由A旋转到B成 右手螺旋关系;大小为 A B sin 。

S
E dS
0
可见,当闭合面中存在正电荷时,通量为正。当闭合面中存在负电 荷时,通量为负。在电荷不存在的无源区中,穿过任一闭合面的通 量为零。


二、散度(divergence)
通量仅能表示闭合面中源的总量,不能显示源的分布特性。为 此需要研究矢量场的散度。
如果包围点P的闭合面S所围区域V以任意方式缩小为点P 时, 矢量A通过 该闭合面的通量与该闭合面包围的体积之比的极限称为矢量场A在该点的散度, 以divA表示,即
结合律: ( A B) C A ( B C )
标量乘矢量:
A Ax ex Ay e y Az ez
§1-3 矢量的标积和矢积
一、矢量的标积
A Axex Ay e y Az ez
矢量A与矢量B的标积定义为:
B Bxex By ey Bz ez
则: A A ea ex A cos ey A cos ez A cos 标积的几何意义
y B
设 其中
A A ex
B Bxex By ey

Bx B cos By B cos( ) B sin 2
A
x
所以
A B A B cos

矢量分析【电磁场与波+电子科技大学】

矢量分析【电磁场与波+电子科技大学】

面元矢量与此矢量相合时,极限值为最大值,也就是
该矢量的模。这个矢量称为 的旋度(curl),记为

,故有
其中 是 在面元矢量 (用 表示其方向)上的投影。
第47页
电磁场与电磁波 第一章__矢量分析
旋度:若在矢量场 中的一点M 处存在矢量 , 的方向
是 在该点环流面密度最大的方向,它的模就是这个最大
的环流面密度。矢量 称为矢量场 在点M 的旋度,记



说明:
① 在流体力学中,旋度表示了旋转的强弱即大小;在电磁场中,
不存在旋转强弱的意义;
② 旋度与环流中C 的形状、取向无关,只与场在M 点的量 本身有关;
③ 旋度场: 与矢量场 中的点一一对应得到的新的矢量场
第48页
电磁场与电磁波 第一章__矢量分析
第23页
电磁场与电磁波 第一章__矢量分析 1.3.2/3 方向导数和梯度 方向导数意义:表示场沿某方向的空间变化率
梯度的意义:描述标量场在某点的最大变化率及其 变化最大的方向
第24页
电磁场与电磁波 第一章__矢量分析
定义算符:
←哈密顿算符
数量场u 的梯度是矢量(是空间坐标点的函数) 梯度的大小为该点标量函数u 的最大变化率,即最大方向导数 梯度的方向为该点最大方向导数的方向 梯度场:数量场u 中每点都有一个梯度而形成的矢量场
第25页
电磁场与电磁波 第一章__矢量分析 直角坐标梯度: 圆柱坐标梯度: 球 坐 标 梯度:
第26页
电磁场与电磁波 第一章__矢量分析
梯度运算公式:
k为常数
第27页
电磁场与电磁波 第一章__矢量分析
{例} 考虑一个二维标量场 求此标量场的等值面,求u 的梯度 任取一闭合的积分回路,证明

电磁场与电磁波课件第一章 矢量分析

电磁场与电磁波课件第一章  矢量分析
divA lim SA dS V 0 V
第一章 矢量分析
矢量场A的散度可表示为哈密顿微分算子▽与矢量A的标量
积, 即
divA A
A
x
ex
y
ey
z
ez
( Axex
Ayey
Azez )
Ax Ay Az x y z
(A B) A B
(A) A A
第一章 矢量分析
第一章 矢量分析
图 1-3 法线方向的取法
第一章 矢量分析
将曲面S各面元上的A·dS相加,它表示矢量场A穿过整个曲面 S的通量,也称为矢量A在曲面S上的面积分:
SdS SA ndS
如果曲面是一个封闭曲面,则
SA dS
第一章 矢量分析
1.3.2 矢量场的散度
lim SA dS
V 0 V
称此极限为矢量场A在某点的散度,记为divA,即散度的定义式为
grad (uv) vgradu ugradv 或 (uv) vu uv
grad
u v
1 v2
(vgradu
ugradv

u v
1 v2
(vu
uv)
grad[ f (u)] f ' (u)gradv 或 [ f (u)] f ' (u)u
第一章 矢量分析
例1-4 设标量函数r是动点M(x, y, z)的矢量r=xex+yey+zez的模,
(x y)2 z 0

z (x y)2
第一章 矢量分析
例1-2 求矢量场A=xy2ex+x2yey+zy2ez的矢量线方程。 解: 矢量线应满足的微分方程为
dx xy 2

电磁场与电磁波讲义(电子科大第三版)

电磁场与电磁波讲义(电子科大第三版)

第一章 矢量分析仅具有大小特征的量为标量,标量的空间分布构成标量场,标量场可用一个标量函数),(t r u来描述;不仅具有大小而且具有方向特征的量称为矢量,矢量的空间分布构成矢量场,矢量场可用一个矢量函数),(t r F来描述。

矢量分析是研究场在空间的分布和变化规律的基本数学工具:标量场在空间的变化规律由其梯度来描述,矢量场在空间的变化规律通过场的散度和旋度来描述,因此本章的重点是标量场的梯度、矢量场的散度和旋度的概念及其运算规律。

1.1 矢量代数1.矢量的表示矢量A 可用一条有方向的线段表示,线段的长度表示矢量A的大小,称为矢量的模;箭头的指向表示矢量A 的方向。

用A e表示与矢量A 同方向的单位矢量,则A e A A=; AA e A=2.矢量的加法 矢量的加法遵循平行四边形法则,加法运算符合结合律和交换律。

交换律:A B B A+=+;结合律:)()(C B A C B A++=++两个矢量的相减可以归结为相加运算。

3.矢量的乘法(1)标量与矢量相乘矢量A 与标量k 的乘积A k 为矢量,大小为A k 。

若0>k ,A k 与A同向;若0<k ,Ak 与A反向。

(2)矢量的标积或点积 θcos AB B A =⋅标积的运算符合交换律和分配律:A B B A⋅=⋅;C A B A C B A ⋅+⋅=+⋅)((3)矢量的矢积或叉积大小:θsin AB ;即等于矢量A 和B构成的平行四边形的面积。

方向:与矢量A 和B垂直,其指向由右手螺旋决定。

矢量积不服从交换律,但服从分配律:A B B A⨯-=⨯;C A B A C B A ⨯+⨯=+⨯)( (4)标量三重积(三矢量的混合积)形式:)(C B A⨯⋅几何意义:等于矢量C B A,,构成的平行六面体的体积性质:a.把三个矢量按循环次序轮换,其积不变。

)()()(B A C A C B C B A⨯⋅=⨯⋅=⨯⋅b.只把两矢量对调,其积差一负号。

矢量分析【电磁场与波+电子科技大学】

矢量分析【电磁场与波+电子科技大学】

只要 以 面体,故
即可。
z
点为顶点作一个平行六 x
经过左右两面的通量为:
(x,y,z +△z)
y △z
M●(x,y,z) △y
△x
(x+△x,y,z)
(x,y+△y,z)
用偏微分代替偏增量,得:
第36页
电磁场与电磁波 第一章__矢量分析 同理,前后、上下面的通量分别为:
故从该平行六面体穿出的通量为:
; 没有 分量,则
,所以
第42页
电磁场与电磁波 第一章__矢量分析
微分面积:
e
单位长度( z=1 )圆柱面的通量:
e e
第43页
电磁场与电磁波 第一章__矢量分析
第五节 矢量的环流与旋度
(Circulation and Rotation of Vector Field) 不是所有的矢量场都由通量源激发。存在另一类 不同于通量源的源,它所激发的矢量场的力线是闭合的, 它对于任何闭合曲面的通量为零但在场所定义的空间中 闭合路径的积分不为零。
例如:流速场
、电场
是矢量场
第6页
电磁场பைடு நூலகம்电磁波 第一章__矢量分析
3、场的表示
矢量

矢量场
一个矢量场对应着三个标量场
第7页
电磁场与电磁波 第一章__矢量分析 1.1.2 矢量的加法和减法
B
A+B
A
矢量的加法
B
A
-B A-B
矢量的减法
B
第8页
电磁场与电磁波 第一章__矢量分析
1.1.3 矢量的乘法 矢量的点积(标积):
的环流面密度。矢量 称为矢量场 在点M 的旋度,记

《电磁场与电磁波》复习纲要(含答案)

《电磁场与电磁波》复习纲要(含答案)

S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0

C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S

电子科技大学电磁场与电磁波课件第一章+矢量分析1

电子科技大学电磁场与电磁波课件第一章+矢量分析1

思考:计算圆柱、球的表面积、体积?
球坐标系中的线元、面元和体积元
14
线元矢量 d l e d r e r d e r sin d r



面元矢量 2 d S e d l d l e r d d r r rsin
d S e d l d l e r d r d r
A B Ax Bx ex ey Ay By ez Az Bz
A A 矢量 与B 的叉积
叉积仅服从分配律。
9
混合运算: —— 标量三重积 A ( B C ) B ( C A ) C ( A B ) A ( B C ) ( A C ) B ( A B ) C —— 矢量三重积
( A B ) C A C B C —— 分配律 ( A B ) C A C B C —— 分配律
10
1.2 三种常用的正交坐标系
三维空间点的位置可通过三条相互正交曲线的交点来确定。 正交曲线坐标系:三条正交曲线组成的确定三维空间任意点 位置的体系;
e
ey
ez 0 0 1 ez cos sin 0
e
ey

e
ex
圆柱坐标与 球坐标系
e
sin cos 0
ex
e
o

单位圆
x
直角坐标系与柱坐标系之间 坐标单位矢量的关系
0 0 1
ey
z
ez


er
e
直角坐标与 球坐标系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dS
螺旋法则确定;
对闭合曲面:闭合面外法线方向
蜒s FvgdSv
s
FvgevndS
?s
v F
cos (rv)dS
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第1章 矢量分析
通过闭合面S的通量的物理意义:
0
0
0
若 0,通过闭合曲面有净的矢量线穿出,闭合面内有发
出矢量线的正源;
z
Az
A
Ay
Ax O
y
x
r A
A(erx
cos
ery
cos
erz
cos
)
erA erx cos ery cos erz cos
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第1章 矢量分析
1.1.2 矢量的运算
v A
evx
Ax
evy
Ay
evz
Az
v B
evx Bx
evy
By
evz Bz
vv vv v v v vv vv AgB BgA Ag(B C) AgB AgC
2、两个矢量的点积为标量
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第1章 矢量分析
➢ 矢量的矢积(叉积)
v A
v B
evn
AB
sin
AB
evx Ax
evy Ay
evz Az
A B
B
AB sin
evx
( Ay Bz
电磁场与电磁波
第1章 矢量分析
三种坐标系有不同适用范围:
1、直角坐标系适用于场呈面对称分布的问题求解,如无限大 面电荷分布产生电场分布。
2、柱面坐标系适用于场呈轴对称分布的问题求解,如无限长 线电流产生磁场分布。
3、球面坐标系适用于场呈点对称分布的问题求解,如点电荷 产生电场分布。
电子科技大学电磁场与电磁波课程组
r dS
er dl dlz
er d dz
r dSz
r ez dl dl
r ez
d
d
圆柱坐标系
体积元
dV dddz
圆柱坐标系中的线元、面元和体积元
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第1章 矢量分析
说明:圆柱坐标系下矢量运算方法:
v A
ev
A
ev
A
evz
Az
v B
ev
B
ev B
evz Bz
A
ev
A
v B
evr Br
ev B
ev B
v 加减:A
v B
evr (Ar
Br
)
ev
( A
B
)
ev
( A
B
)
vv 标积:AgB
(evr Ar
ev
A
ev
A
)g(evr Br
ev B
ev B )
Ar Br A B A B
v v evr ev ev 矢积:A B Ar A A
Br B B evr ( A B A B ) ev ( A Br Ar B ) ev ( Ar B A Br )
u
0 l M0
,标量场
u

M
处沿
0
l
方向减小率;
u
0 l M0
,标量场 u在M0处沿 l 方向为等值面方向(无改变)
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第1章 矢量分析
1.3.3 标量场的梯度
梯度的定义
gradu(x, y,
式中:evl 为场量 u
z) evl
u l
max
最大变化率的方向上的单位矢量。
Az By
Bx )
By Bz evy ( Az Bx
Ax Bz
)
evz
A
( AxBy
Ay Bx )
说明:
1、矢量的叉积不符合交换律,但符合分配律:
vv vv v v v vv vv A B B A A(B C) A B AC
2、两个矢量的叉积为矢量 3、矢量运算恒等式
vv v vv v vv v Ag(B C) Bg(C A) Cg(A B) v v v vvv vvv A (B C) B(AgC) C(AgB)
sin cos
cos sin
ey
sin sin cos sin
ez
cos sin
e sin
cos
0
y e
ey e
φ ex
φ
o
单位圆
x
直角坐标系与柱坐标系
ez
θ θ
er e
单位圆
e
r
柱坐标系与球坐标系之间 坐标单位矢量的关系
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第1章 矢量分析
第一章 矢量分析
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第1章 矢量分析
本章内容
本章重点介绍与矢量场分析有关的数学基 础内容。 • 矢量代数 • 常用正交坐标系 • 标量场的梯度 • 矢量场的散度 • 矢量场的旋度 • 拉普拉斯运算 • 亥姆霍兹定理
电子科技大学电磁场与电磁波课程组
x
直角坐标系的长度元、面积元、体积元
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
1.2.2 圆柱坐标系
第1章 矢量分析
坐标变量
,, z
坐标单位矢量
r e
,
r e
,
erz
位置矢量
rr er erz z
线元矢量
drv erd er d erzdz
面元矢量
r dS
r e
dl
dlz
r e
d
dz
v 加减:A
v B
ev
( A
B
)
ev
( A
B
)
evz
( Az
Bz
)
标积:AvgBv (ev A ev A evz Az )g(ev B ev B evz Bz )
A B A B Az Bz
矢积:Av
v B
ev A
ev A
evz Az ev ( A Bz Az B ) ev ( Az B A Bz )
电磁场与电磁波
第1章 矢量分析
1.1 矢量代数
1.1.1 标量和矢量
标量与矢量
标量:只有大小,没有方向的物理量(电压U、电荷量Q、能量W等)
矢量:既有大小,又有方向的物理量(作用力,电、磁场强度)
矢量的代数表示
vv v v
F E Hv 矢v量可表示为:A
B evA
v vD A 其中
eA
A A
A 为模值,表征矢量的大小;
r erdl dl er dlrdl
erdlrdl
r er
r
2sin
d
d
r ez
rsin
drd
errdrd
球坐标系
体积元
dV r2sindrdd
球坐标系中的线元、面元和体积元
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第1章 矢量分析
说明:球面坐标系下矢量运算:
v A
evr Ar
ev
从数学上看,场是定义在空间区域上的函数:
静态标量场和矢量场可分别表示为:
u(x,
y,
z)、
r F
(x,
y,
z)
r
时变标量场和矢量场可分别表示为: u(x, y, z,t) 、 F (x, y, z,t)
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第1章 矢量分析
1.3.1 标量场的等值面
标量场空间中,由所有场值相等的点所构成的面,即为等值面。
电磁场与电磁波
第1章 矢量分析
若S 为闭合曲面
Ñs Av(rv)
v dS
物理意义:表示穿入和穿出闭合面S的通量的代数和。
说明:1)
面元矢量
v dS
定义:面积很小的有向曲面。
dS :面元面积,为微分量,无限小
2) 面evn元:法面向元e法vn 线的方确向定,方垂法直:于面元平面。
evn
对非闭合曲面:由曲面边线绕向按右手
1.4.2 矢量场的通量
r F M drr rr rr drr
O
矢量线
问题:如何定量描述矢量场的大小?
引入通量的概念。
若矢量场 Fv(rv) 分布于空间中,在
空间中存在任意曲面S,则定义:
Fv(rv)gdSv
为矢量
Fv(rv)
S
沿有向曲面
S
的通量。
矢量场的通量
电子科技大学电磁场与电磁波课程组
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第1章 矢量分析
1.2.1 直角坐标系
坐标变量
x, y, z
rrr
坐标单位矢量 ex , ey , ez
位置矢量
rr erx x ery y erz z
线元矢量
r dl
r exdx
r eydy
r ezdz
面元矢量
r dSx
r exdlydlz
r exdydz
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第1章 矢量分析
1.2.4 坐标单位矢量之间的关系
直角坐标与 圆柱坐标系
eeez
ex
cos sin
0
ey
sin cos
相关文档
最新文档