第一章矢量分析与场论

合集下载

第一章矢量分析与场论-ppt课件

第一章矢量分析与场论-ppt课件

坐标元
1.8 微分元 恣意元 微分元是矢量微、积分的根底。
坐标元
坐标线元
坐标平面元dσ
坐标体元dv
dx 直 dy
dz dρ
dx= dx ex
dy= dz=
ey dy ez
dρ= dz eρ
dφ= dρ ej
dddσσσ=假yx ==设: xd=σc,z =
yd=σc,ρ = zdd=σσc,φz ==
A× (B×C) = (A ·C) B - (A·B) C
A·(B×C) = B ·(C×A) = C ·(A×B)


‖ Ax Ay Az
[ABC] = [BCA] = [CAB] = Bx By Bz
Cx Cy Cz
假设 B=C 那么 A·B = A ·C及A×B = A ×C 成立 B C 假设 A·B = A ·C及A×B = A ×C 那么 B=C不一定成立
er(90°s,iφn+θ9c0o°sφ)·ez ez sinθ sinφ
cosθ
ex
= sin(θ+90°) cosφ
sin (θ+90°) sinφ cos (θ+90°)
ey
sin90° cos(φ+90°) sin90° sin(φ+90°) cos90°
ez sinθ cosφ
sinθ sinφ
因此:ex = 1/√2er-1/√2eφ , ey = 1/√2er+1/√2eφ , ez = - eθ
∴ A = 3√2er -2 eθ +√2 eφ ②对于点(√2,√2,2) : sinθ = sinφ= cosθ= cosφ=1/√2

第01章 矢量分析和场论基础

第01章 矢量分析和场论基础
位置矢量
r e ze z ,如图1-10所示。
柱坐标与直角坐标之间的关系(见图1-10~11)。
x cos y sin z z
x2 y2 arctg y x zz
取值范围
0 0 2 z
A
(1-15)
显然矢量投影为: Al A el
Ax A e x , Ay A e y , Az A e z
第一章 矢量分析与场论基础
电磁场与电磁波理论基础
3. 矢量的矢积
矢量的矢积也称叉积,其定义为
A B A B sin n
(1-17)
式中 n 是一垂直于由矢量 A 和 B 构成的平面的单位 矢量,并遵循右手螺旋法则,见图1-3。 矢量的矢积不满足交换律;由图1-3可以看出,矢量 矢积交换满足如下关系 (1-18) A B B A
(1-47)
利用其逆变换也可得柱坐标分量的直角坐标表达式。
第一章 矢量分析与场论基础
电磁场与电磁波理论基础
三、球坐标系 球坐标系中任一点P在球坐标系下的坐标为( r , , ), 其中 r 为位置矢量 r 的大小,如图1-15所示。
r re r 位置矢量 正交单位矢量为( er , e , e ),并服从右手法则。在 球坐标系下,er , e , e 都是空间坐标点的函数。
Z
Z
Y
Y
X
X
图1-4 温度场分布示意图
图1-5 电场分布示意图
第一章 矢量分析与场论基础
电磁场与电磁波理论基础
1.4 常用正交曲线坐标系 一、直角坐标系 直角坐标系由三个相互垂直的有向线段构成,三直 线称为X、Y和Z轴,三个单位矢量 ex、ey 和 ez相互 垂直,分别表示X、Y和Z轴的方向。 位置矢量 r xe x ye y ze z ,如图1-6所示。

第1章 矢量分析与场论基础

第1章 矢量分析与场论基础

ex e y e y ez ez ex 0 ex ex e y e y ez ez 1
(4)矢量的矢积(叉积) 两矢量的叉积是一个矢量,其大小为两个矢量的大小与它们之
用单位矢量 en 表示。
间夹角 的正弦之积,它的方向垂直于包含两个矢量的平面,
工程电磁场
第1章 矢量分析与场论基础
10
1.2 三种常用的正交曲线坐标系
三维空间任意一点的位置可通过三条相互正交曲线的交点来 确定。 三条正交曲线组成的确定三维空间任意点位置的体系,称为
正交曲线坐标系;三条正交曲线称为坐标轴;描述坐标轴的量称
为坐标变量。 在电磁场与波理论中,三种常用的正交曲线坐标系为:直角 坐标系、圆柱坐标系和球坐标系。
矢量的加减符合交换律和结合律 交换律 A B B A 结合律 A ( B C ) ( A B) C
B B
A B
矢量的减法
A
工程电磁场
第1章 矢量分析与场论基础
6
(2)标量乘矢量
B sA ex sAx e y sAy ez sAz
第1章 矢量分析与场论基础
17
(3)圆柱坐标系与球坐标系的坐标变量之间的转换
r柱 r球 sin r球 r柱 z 2
2
z r cos r柱 z
arctg
工程电磁场
第1章 矢量分析与场论基础
18
1.3场的基本概念和可视化 1场的概念 “场”是指某种物理量在空间的分布。具有标量特征的物理量在空间 的分布是标量场,具有矢量特征的物理量在空间的分布是矢量场。 例如,温度场、能量场、电位场是标量场;电场、磁场、流速场与 重力场都是矢量场。 定义了场量的空间点称为场点。

第1章矢量分析与场论01

第1章矢量分析与场论01

dS r = rdϕ dzar
dSϕ = drdzaϕ
dS z = rdϕ draz
体元: dV = rdrdϕ dz
3. 球坐标系 在球坐标系中,坐标变量为 ( R,θ , ϕ ) ,如图,做一微分体 元。 线元:
dl = dRaR + Rdθ aθ + R sinθ dϕaϕ
面元:
dS R = R 2 sin θ dθ dϕ aR
A
一矢量在另一矢量方向上的投影与另一矢量模的乘 积,其结果是一标(数)量。
推论1:满足交换律 推论2:满足分配律
A⋅ B = B ⋅ A
A ⋅ (B + C) = A ⋅ B + A ⋅ C
推论3:当两个非零矢量点积为零,则这两个矢量必正交。 •在直角坐标系中,已知三个坐标轴是相互正交的,即
ˆ ˆ a x ⋅ a y = 0, ˆ ˆ a x ⋅ a x = 1, ˆ ˆ a x ⋅ a z = 0, ˆ ˆ a y ⋅ a y = 1, ˆ ˆ ay ⋅ az = 0 ˆ ˆ az ⋅ az = 1
在直角坐标系下的矢量表示:
ˆ ˆ ˆ 三个方向的单位矢量用 a x , a y , a z
表示。 根据矢量加法运算:
o
Ax
z
Az
A
Ay
A = Ax + Ay + Az
其中:
y
x
ˆ ˆ ˆ Ax = Ax ax , Ay = Ay a y , Az = Az az
ˆ ˆ ˆ 所以: A = Ax ax + Ay a y + Az az
dSθ = R sin θ dRdϕ aθ
dSϕ = RdRdθ aϕ

工程电磁场-第1章-矢量分析和场论基础

工程电磁场-第1章-矢量分析和场论基础

04
电磁2
03
静电场
由静止电荷产生的电场, 其电场线不随时间变化。
恒定磁场
由恒定电流产生的磁场, 其磁场线是闭合的,且不 随时间变化。
时变电磁场
由变化的电流或变化的电 荷产生的电场和磁场,其 电场线和磁场线都随时间 变化。
电磁场的分类
按存在形式分类
有源场和无源场。有源场是指其散度非零的场,如静电场和恒定 磁场;无源场是指其散度为零的场,如时变电磁场。
根据场的来源,可以将场分为自然场 和人工场。
场量和场强
场量是描述场中物理量分布的量,如电场强度、磁场强度等 。
场强是描述场作用的强度和方向的物理量,如电场线、磁场 线等。
03
矢量场和标量场
矢量场的性质
02
01
03
矢量场由矢量线组成,具有方向和大小。
矢量场具有旋度或散度,分别表示场中的旋涡或电荷 分布。 矢量场的变化遵循斯托克斯定理和格林定理。
80%
斯托克斯定理
斯托克斯定理是矢量积分的重要 定理之一,它描述了矢量场中某 点处的散度与该点处单位球体体 积内的积分之间的关系。
矢量函数和场
矢量函数
矢量函数是描述空间中矢量场 变化的数学工具,其定义域和 值域都是矢量。
矢量场
矢量场是由空间中一系列点构 成的集合,每个点都有一个与 之相关的矢量。
梯度、散度和旋度
在磁场的边界上,磁场线切线方向的 分量连续,即磁场强度不突变。
05
电磁场的能量和动量
电磁场的能量
电磁场能量的定义
01
电磁场能量是指存在于电磁场中的能量,它与电场和磁场的变
化率有关。
电磁场能量的计算
02
通过计算电场和磁场的能量密度,可以得出整个电磁场的总能

矢量分析与场论

矢量分析与场论

矢量分析与场论矢量分析与场论第一章矢理分析1.1 矢性函数1.矢性函数的定义:数性变量t 在一范围G 内,对于任意的t 都有唯一确定的矢量A与其对应则称A 是t 的矢性函数,并称G 为A 的定义域,记作:()A A t =2.矢性函数的极限和连续性(1)矢性函数极限的定义:()A t在0t 某领域内有定义,对于0ε?>,0δ?>,常矢量0A ,只要为0<0t t δ-<就有0()A t A ε-< ,则称0A 为()A t 当0t t →的极限,记作:00lim ()t t A t A →=;极限的性质:(有界性)若00lim ()t t A t A →=,则0δ?>,M>0,0(;)t U t δ?∈ 都有()A t M <。

证明:0lim ()1,0,..(;)t t A t A s t t U t εδδ→=∴=?>?∈都有0()1A t A ε-<= ,00()()1A t A A t A ∴-<-<,0()1A t A ∴<+ ,取M=01A +极限的则运算:0lim ()()lim ()lim ()t t t t t t u t A t u t A t →→→=?000l i m (()())l i m ()l i m()t tt tt tA tB t A t B t →→→±=±lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=?lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=?其中()u t ,()A t ,()B t当0t t →时极限均存在。

证明:设00lim ()t t A t A →= ,00lim ()t t u t u →=,00lim ()t t B t B →=;000000()()()()()()u t A t u A u t A t u A t u A t u A -=-+-,00000000000()()()()()()()()()()()u t A t u A t u A t u A u t A t u A t u A t u A u t u A t u A t A -+-≤-+-=-?+?- 00000()()()()()u t A t u A u t u A t u A t A ∴-≤-?+?-而11010,0,..(;)M s t t U t δδ?>>?∈有1()A t M <;对于任意给定的ε>o ,101010,..(;),()2s t t U t u t u M εδδ''?>?∈-<; 同理20,s tt U t δδ?>?∈有00()2A t A u ε-<所以取{}112m i n ,,δδδδ'=,则有0(;)t U t δ?∈,00()()u t A t u A -<10122M u M u εε+?=ε其他证明方法类似,可参看数学分析中相关证明。

矢量分析与场论

矢量分析与场论

i
F ds lim F P ds
S N i 1 i N S N i 1 i
i

L
F dl lim F Pi
N i 1
N

dli
F ds lim F P ds
i
标 量 场
标量场:随空间和时间变化的单值标量函数,如温度场。
ˆ cos cos cos G l l x y z
显然,在直角坐标系中有
ˆ grad G x ˆ ˆ y z x y z
矢 量 场
矢量场:随空间和时间变化的单值矢量函数,如流速场。
一年四季大气流速分布
F t F t0 ,则称 F 在 t0处连续。 连续:若 lim t t
0
F t F0 ,则称 lim F t F0 。 t t
0
导数:

增量: F F t t F t
F t
F

dF F 可导: lim t 0 t dt lim F t t F t t
a e a j m a
x ,y ,z

ˆe a j
x ,y ,z

ˆm a
矢 量 代 数
运算规则:当以坐标分量表示时,形式上与实矢量运算 规则相同。 但是没有任何几何意义!
ˆ ay by z ˆ a x bx y ˆ a z bz abx ˆ ay by z ˆ a x bx y ˆ a z bz ab x
f f x1, x 2 , x 3, x 4 , f f x1, x 2 , x 3, x 4 ,

第一章矢量分析与场论

第一章矢量分析与场论

0.2 标量场和矢量场
场是一个标量或一个矢量的位置函数,即场中任一个点都有一个确 定的标量值或矢量. . 例如,在直角坐标下, 标量场 如温度场,电位场,高度场等; 矢量场 如流速场,电场,涡流场等.
形象描绘场分布的工具---场线 -标量场---等值线(面). -. 其方程为
矢量场---矢量线 -其方程为
• 矢量函数的面积分与体积分的互换。 • 该公式表明了区域V 中场A与边界S上的场A之间的关系。
0.5 矢量场的环量与旋度
一、矢量场环量 矢量A沿空间有向闭合曲线L的线积分
Γ=
∫ A ⋅ dl
L
环量
该环量表示绕线旋转趋势的大小。
图0.4.1 环量的计算
例:流速场
图0.4.2 流速场
水流沿平行于水管轴线方向流动 Γ=0,无涡旋运动
≠0 ∇ × F = ? =0
∇⋅F = ?
∇⋅F = ?
=0 ∇ × F = ? ≠0
0.7 三种特殊形式的场
1.平行平面场:如果在经过某一轴线(设为 Z 轴)的一族平行平面上,场 F 的分布都 相同,即 F=f(x,y),则称这个场为平行平面场。 2.轴对称场:如果在经过某一轴线(设为 Z 轴)的一族子午面上,场 F 的分布都相同, 即 F=f(r,Φ),则称这个场为轴对称场。 3,球面对称场:如果在一族同心球面上(设球心在原点),场 F 的分布都相同,即
流体做涡旋运动 Γ≠0,有产生涡旋的源
二、矢量场的旋度 在直角坐标系中,设
A = Axe x + A ye y + Aze z ,
则环量可写成: 由斯托克斯公式:
Γ =

L
A⋅L =
∫ (A
L
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( P 1 ) ( P) l l
的极限存在,则称此极限为函数
在P
点沿 方向的方向导数。 d (P 1 ) ( P) |P lim l 0 dl l
方向导数 是函数 方向对距离的变化率. 沿l方向增大; 沿l方向减小 在直角坐标系中, 设函数 P(x,y,z)处可微,则有
两矢量叉积满足分配律,但不满足交换律和结合 律。
A (B C) A B A C A B B A A (B C) ( A B) C
当两个非零矢量叉积为零,则这两个矢量必平行。
在直角坐标系中,两矢量的叉积运算可以用行列式 表示。
④三个矢量的乘积
标量,标量三重积。 混合积
A ( B C ) C ( A B ) B (C A)
矢量,矢量三重积。
注意:先后轮换次序。
在矢量运算中,先算叉积,后算点积。

矢量三重积: A ( B C ) B( A C ) C ( A B)
= 0 (无源)
3.矢量场的散度
设有矢量场F, 在场中任一点P处作一 个包含P点在内的任一闭合曲面S,设S 所限定的体积为ΔV, 当体积ΔV以任 意方式缩向P点时, 取下列极限: F dS
V 0
lim

S
V
如果上式的极限存在, 则称此极限为 矢量场A在点P处的散度(Divergence), 记作:
Biblioteka 教材的1.8节给出了一些常用的矢量恒等 式,以供参考。
3.两个算子
(1)哈米尔顿(Hamilton)算子
为了方便, 我们引入一个矢性微分算子, 在直角坐标系中有:
称之为哈米尔顿算子,记为 ,读作del.它是 一个微分符号, 同时又要当作矢量看待。
(2)拉普拉斯(Laplace)算子
属于一阶微分算子,而在场论的研究中还 会用到二阶微分算子,即拉普拉斯算子:
散度代表矢量场的通量源的分布特性
• F= 0 (无源)
• F= 0 (正源)
• F= 0 (负源)
4. 散度定理
由于 体积的闭合面的通量,对 出闭合面S的通量,即:
是通量体密度,即穿过包围单位
体积分后,为穿
•高斯散度定理
理解: 矢量函数的面积分与体积分的互换。
该公式表明了区域V 中场F与边界S 上的场F之间的关系。
divF lim

S V 0
F dS
V
在直角坐标系中, 散度的表达式为
F F F divF x y z F x y z
理解:
矢量的散度是一个标量,它表示从单位体积 内散发出的通量(通量密度);
它表示场中一点处通量对体积的变化率,也 就是在该点处对一个单位体积来说所穿出的 通量,称为该点处源的强度;
标量场φ (x,y,z)的等值面方程为:
φ(x, y, z)=C, C为任意常数
在几何上一般表示一个曲面,在这个曲面 上的各点,虽然坐标(x,y,z)不同,但函数值相 等,称此曲面为标量场φ的等值面。随着C的 取值不同,得到一系列不同的等值面。
2.方向导数
设P为标量场 中的一点, 设在某 一时刻,在该场中取相邻的两个等值面,函 数值分别为 和 。由等值面 上的P点 出发,引出一条射线 ,到达等值面 上的P1点,记为 ,如果当 时
在P处沿
P2
dn dl
P
P 1
0
0 d

d cos cos cos dl x y z
式中, cosα, cosβ, cosγ为l方向的方向余弦。
3.标量场的梯度 (1)定义
标量场中某点梯度的大小为该点最大的方向导 数, 其方向为该点所在等值面的法线方向。
2.矢量的运算
(1)加法和减法
任意两个矢量 与 相加等于两个矢量对 应分量相加,它们的和仍然为矢量. 加减法服从交换律和结合律。 (2) 乘积运算
①标量与矢量的乘积
常用作图的方法来求矢量的加减法。
②两个矢量的标量积
两矢量的点积定义为一个矢量在另一个矢量 方向上的投影与另一个矢量模的乘积,结果 是个标量。
四、矢量场的散度
1.矢量场的矢量线
对于矢量场F(x,y,z),可以用一些有向曲 线来形象的表示F在空间的分布,称为矢量 线(Vector Line)。 A (r) 在曲线上的每一点处, 场矢量都位于该点处的 切线上(如图示)。 像 静电场的电力线、磁场的 磁力线、流速场中的流线 等, 都是矢量线的例子。
dS R sin dRd a dS RdRd a
③体积元
dv R 2 sin dRdd
2.矢量在不同坐标系之间的变换 圆柱坐标系
(1)基本变量之间的转换
直角坐标系
(2)矢量函数之间的转换 设矢量
在直角坐标系中可表示为:
而其在圆柱坐标系中可表示为:
下面我们要做的工作就是推导出同一 矢量在两种不同坐标系下的转换关系。
cos Ax sin Ay Az 0

Ax sin cos Ay sin sin Az cos cos cos cos sin sin
显然,它是一个标量算子.
二、矢量微分元
1.常用坐标系 (1)直角坐标系
基本变量 单位矢量 位置矢量 坐标面

三个平面
ˆ dya ˆ dza ˆ 微分元 ①线元 dl dxa x z y ˆ x dS y dxdza ˆ y dS z dxdya ˆz ②面元 dS x dydza ③体积元 dV dxdydz
五、矢量场的旋度
1.环量
设有矢量场F, l为场中的 一条封闭的有向曲线,定义 矢量场F环绕闭合路径l的线 积分为该矢量的环量 (Circulation), 记作:
环量表示矢量绕线旋转趋势的大小。
注意: 方向 的确定.
理解:
环量是一标量,其大小不仅与闭合曲线 的大小有关,还取决于该曲线相对于矢 量的取向。
已知:
由图可知:
y
x
所以得 或
球坐标系
(1)基本变量之间的转换
直角坐标系
(2)矢量函数之间的转换
AR sin cos A cos cos sin A
sin sin cos sin cos
矢量的环量和矢量穿过闭合面的通量一 样, 都是描绘矢量场F性质的重要物理量. 若矢量穿过封闭曲面的通量不为0,则表 示该封闭曲面内存在通量源;同样,若 矢量沿封闭曲线的环量不为0,则表示该 封闭曲线内存在另一种源—漩涡源。
2.旋度
设P为矢量场中的任一点, 作一个包含P点的微小面元ΔS, 其周界为l,它的正向与面元 ΔS的法向矢量n成右手螺旋关 系(如图所示)。
因此矢量场F穿过整个曲面S的通量为:

S
F dS


S
F cos dS
如果S是一个闭曲面, 则通过闭合曲面 的总通量可表示为:

S
F dS
净通量=流出-流入
若S 为闭合曲面,可以根据净通量的 大小判断闭合面中源的性质:
> 0 (有正源)
< 0 (有负源)
两矢量点积等于对应分量的乘积之和。
两矢量点积满足交换律和分配律。
A B B A
A (B C) A B A C
当两个非零矢量点积为零,则这两个矢量必正 交。
③两个矢量的矢量积
ˆc a
B

A
两矢量叉积,结果得一新矢量,其大小为这两个 矢量组成的平行四边形的面积,方向为该面的法线 方向,且三者符合右手螺旋法则。
(2)圆柱坐标系
基本变量 r是位置矢量R在xoy面上的 投影. φ是从+x轴到r的夹角.
z是R在z轴上的投影.
位置矢量
单位矢量
分别指向:r、φ和z增加的方向。 应该指出:圆柱坐标系中的三 个单位矢量除 外, 和 都 不是常矢量,它们的方向随P点 的位置不同而变化,但三者始终 保持正交关系,并遵循右手螺旋 法则.
坐标面
表示一个以z轴作轴线的半径 为r的圆柱面。
表示一个以z轴为界的半平面.
z=常数
表示一个平行于xoy平面的平面。
如同直角坐标系一样,圆柱坐标系也具有 三个相互垂直的坐标面.但是它们不再都是 平面.
微分元 ①线元
dl drar rd a dzaz
②面元 dS r rd dzar dS drdza dS z rd dra z ③体积元
矢量分析与场论
矢量的概念及运算 矢量微分元 标量场的梯度 矢量场的散度 矢量场的旋度
一、矢量的概念及运算
1.概念
常矢量: 模和方向保持不变 的矢量. 如重力 空/零矢量:大小为零, 方向任意. 单位矢量:大小为1. 位置矢量: 从原点指向点 P的矢量 . 标量(Scalar)
矢量(Vector)
逆矢量: 通常,矢量 称为矢量 的逆矢量。 两者大小相等,方向相反。
P2
d ˆn grad a dn
P 1 dn dl
P
0
0 d
理解
标量场的梯度是一个矢量,其大小是方向 导数的最大值,即φ的最大空间变化率。
标量函数φ在P点沿 的方向导数等于 梯度在该方向上的投影; 直角坐标系中梯度的表达式为:
grad ax ay az x y z
o
x 的方向垂直于上述平面, 增大的方向。
相关文档
最新文档