第一章 矢量分析总结
第1章(矢量分析)

矢量分析与张量初步第一章矢量分析U STU STU ST标量(数量):有大小,没方向的物理量。
矢量:既具有大小又具有方向的物理量,矢量又称为向量。
矢量与标量的根本区别是:有没有方向性。
如:温度、质量、角度、长度等。
如:力、速度、电场强度、力矩等。
矢量的模:矢量的大小。
矢量的模记为:或。
A K A ||A KU STU STU ST自由矢量:矢量平移后,其作用效果不变。
即自由矢量就是具有平移不变性的矢量。
FK 只考虑刚体的质心运动,作用力可以平移。
能不能平移?下面只讨论自由矢量。
如果要考虑刚体的转动,则作用力不能平移。
U STU STU ST始端在坐标原点的矢量常称为矢径,显然矢径的末端与直角坐标系中的三个坐标分量之间具有一一对应的关系,则矢径可用其末端的空间坐标来表示:①在直角坐标中的表示对矢量,始端平移到坐标原点,表示为:A Kr xi yj zk=++KK K K、、:单位矢量,分别指向三个坐标轴的正向。
i K j K k K x y z A A i A j A k=++K K K KU STU STU ST其中:为矢量的模,为指向矢量方向上的单位矢量。
R A A e A 三个:、和。
R βαcos cos cos A e i j kαβγ=++K K K KAKRxy zO因为222cos cos cos 1αβγ++=的直角坐标表示为A e K有几个独立坐标量?A Kr e =KU STU STU STOxe ρρK zA kK A K cos sin e i j ρϕϕ=+K K K三个:、和。
ρϕz 的直角坐标表示为e ρK在矢量的球坐标及柱坐标表示中,只要分别把单位矢量和的直角坐标表示代入,即得到矢量的直角坐标表示。
e ρKr e K 有几个独立坐标量?A K第一章矢量分析U STU ST U ST U STU STcos xA Aα=cos yA Aβ=cos zA A γ=(cos cos cos )A A i j k αβγ=++K K K K④方向余弦表示:设矢量与直角坐标三个坐标轴正向的夹角分别为、和,则:αγβA K用方向余弦()表示矢量:A Kcos ,cos ,cos αβγcos x A A α=这实际上就是直角坐标表示,因为:cos y A A β=cos z A A γ=U STU STU ST不能按大小排列)。
第1章矢量分析

第1章 矢量分析§1.1 标量场与矢量场一、场的概念如果某物理量在空间每一时刻和每一位置都有一个确定的值,则称在此空间中确定了该物理量的场。
二、标量场与矢量场标量场:若所研究的物理量是一个标量,则称该物理量的场为标量场,例如:温度场、密度场、电位场。
),(t r u u =矢量场:若所研究的物理量是一个矢量,则称该物理量的场为矢量场,例如:力场、速度场、电场。
),(t r A A =三、静态场和时变场静态场:若物理量不随时间变化,则称该物理量所确定的场为静态场。
)(r u u =)(r A A =时变场:若物理量随时间变化,则称该物理量所确定的场称为动态场或时变场。
),(t r u u=),(t r A A =标量场在空间的变化规律由其梯度来描述,矢量场在空间的变化规律由矢量场的散度和旋度来描述。
§1.2 矢量场的通量 散度一、矢量线 矢量场的通量 1、矢量线(1)矢量场的表示在矢量场中,各点的场量是随空间位置变化的矢量。
矢量场可以用一个矢量函数)(r A来表示。
在直角坐标系中表示为:),,()(z y x A r A=(2)矢量线在矢量场中,为了形象直观地描述矢量在空间的分布状况,引入了矢量线的概念。
矢量线:是一条空间曲线,在它上面每一点的场矢量都与其相切,并且用箭头来表示矢量线的正方向。
例如,静电场中的电力线、磁场中的磁力线等。
(3)矢量线方程0)(=⨯r A r d在直角坐标系下为:)()()(r A dzr A dy r A dx z y x == 2、矢量场的通量 通过面积元的通量:S d r A d⋅=Φ)(通过有限面积的通量:⎰⋅=ΦSS d r A)(通过闭合曲面的通量:⎰⋅=ΦS S d r A)(二、矢量场的散度 1、散度的定义在矢量场)(r A中的任意一点M 处作一个包围该点的任意闭合曲面S ,所限定的体积为τ∆。
矢量场)(r A 在点M 处的散度记作A div,其定义为:ττ∆⋅=⎰→∆SS d r A A div)(lim 0 2、散度在坐标系下的表示A A div ⋅∇=定义哈密顿算符:ze y e x e z y x ∂∂+∂∂+∂∂=∇(1)在直角坐标系中的表示zu y u x u A ∂∂+∂∂+∂∂=⋅∇(2)在圆柱坐标系中的表示()zA A A A z ∂∂+∂∂+∂∂=⋅∇φρρρρφρ11 (3)在球坐标系中的表示()()φθθθθφθ∂∂+∂∂+∂∂=⋅∇A r A r A r r r A r sin 1sin sin 11223、散度的性质(1)散度是通量源的密度;0>⋅∇A表示该点有发出通量线的正通量源; 0<⋅∇A表示该点有接收通量线的负通量源;0=⋅∇A表示该点无通量源。
《电磁场与电磁波》第一章 矢量分析

ey Ay By
ez Az Bz
显然,矢量的矢积不满足交换律。 两个矢量的矢积仍是矢量。
矢积的几何意义 设 则
A A ex
B Bxex By ey
z
A B y B
A B ez A B sin
A
可见,矢积A×B的方向与矢量A及 矢量B构成的平面垂直,由A旋转到B成 右手螺旋关系;大小为 A B sin 。
S
E dS
0
可见,当闭合面中存在正电荷时,通量为正。当闭合面中存在负电 荷时,通量为负。在电荷不存在的无源区中,穿过任一闭合面的通 量为零。
㊀
㊉
二、散度(divergence)
通量仅能表示闭合面中源的总量,不能显示源的分布特性。为 此需要研究矢量场的散度。
如果包围点P的闭合面S所围区域V以任意方式缩小为点P 时, 矢量A通过 该闭合面的通量与该闭合面包围的体积之比的极限称为矢量场A在该点的散度, 以divA表示,即
结合律: ( A B) C A ( B C )
标量乘矢量:
A Ax ex Ay e y Az ez
§1-3 矢量的标积和矢积
一、矢量的标积
A Axex Ay e y Az ez
矢量A与矢量B的标积定义为:
B Bxex By ey Bz ez
则: A A ea ex A cos ey A cos ez A cos 标积的几何意义
y B
设 其中
A A ex
B Bxex By ey
Bx B cos By B cos( ) B sin 2
A
x
所以
A B A B cos
矢量分析总结

第1章 矢量分析 在矢量代数中,曾经讨论过模和方向都保持不变的矢量,这种矢量称为常矢。
然而,在科学和技术的许多问题中,也常遇到模和方向改变或其中之一会改变的矢量,这种矢量称为变矢。
如非等速及非直线运动物体的速度就是变矢量的典型例子。
变矢量是矢量分析研究的重要对象。
本章主要讨论变矢与数性变量之间的对应关系——矢函数及微分、积分和它们的一些主要性质。
§1.1 矢函数与普通数量函数的定义类似,我们引进矢性函数(简称矢函数)的概念,进而结出矢函数的极限与连续性等概念。
1、矢函数的概念定义1.1.1 设有数性变量t 和变矢A ,如果对于t 在某个范围D 内的每一个数值,A 都以一个确定的矢量和它对应,则称A 为数性变量t 的矢量函数,记作A =A)(t(1.1.1)并称D 为矢函数A 的定义域。
在Oxyz 直角坐标系中,用矢量的坐标表示法,矢函数可写成 A {})(),(),()(t A t A t A t z y x =(1.1.2)其中)(),(),(t A t A t A z y x 都是变量t 的数性函数,可见一个矢函数和三个有序的数性函数构成一一对应关系。
即在空间直角坐标系下,一个矢函数相当于三个数性函数。
本章所讲的矢量均指自由矢量,所以,以后总可以把A )(t 的起点取在坐标原点。
这样当t 变化时,A )(t 的终点M 就描绘出一条曲线l (图1.1),这样的曲线称为矢函数A )(t 的矢端曲线,也称为矢函数A )(t 的图形。
同时称(1.1.1)式或(1.1.2)式为此曲线的矢量方程。
愿点O 也称为矢端曲线的极。
由于终点为),,(z y x M 的矢量OM 对于原点O 的矢径为zk yj xi r ++==当把A )(t 的起点取在坐标原点时,A )(t 实际上就成为其终点),,(z y x M 的矢径,因此)(t A 的三个坐标)(),(),(t A t A t A z y x 就对应地等于其终点M 的三个坐标z y x ,,,即)(),(),(t A z t A y t A x z y x ===(1.1.3)此式就是曲线l 的参数方程。
第1章 矢量分析

第一章 矢量分析
矢量的直角坐标分量表示
r v v v A= A ex + A ey + A ez x y z
s A = Aco α x s A = Aco β y A = Aco γ s z
2 A = Ax2 + Ay + Az2
z
A z
r A
A y
A x
y
r v A= A A e
x
v v v v eA = ex cosα +ey cos β +ez cosγ
r r r eρ × eφ = ez r r r eφ × e z = e ρ r r r e z × e ρ = eφ
2 2
x = ρ cos φ y = ρ sin φ z=z
ρ = x + y , φ = y/ x tan
第一章 矢量分析
位置矢量
v r r r 线元矢量 dl = eρ dρ + eφ ρ dφ + ez dz
第一章 矢量分析
2、矢量的加减运算
v A
v B
直角坐标系下:
v v A+B
v v A− B
v −B
v A
v v A− B
v B
v v v v v v C = A + B = ( Ax + Bx )i + ( Ay + By ) j + ( Az + Bz )k
v v v v v v C = A − B = ( Ax − Bx )i + ( Ay − By ) j + ( Az − Bz )k
性质:
r B
AB sin θ
v v v v A× B = −B × A v v v v A × B = 0 ⇔ A // B
第1章 矢量分析

§1 .1 矢量及其代数运算
2 矢量代数运算
矢量相加的平行四边形法则,矢量的加法的坐标分 量是两矢量对应坐标分量之和,矢量加法的结果仍 是矢量 ��
�� � �� � �� � A = ex A x + ey A y + ez A z
� � �� � �� � �� � B = e x Bx + e y B y + e z Bz
� � A = Ae
� � � 其中, A是矢量 A的大小; e 代表矢量 A 的方向。 � � e = A / A 大小等于1。
§1 .1 矢量及其代数运算
1 标量和矢量
一个大小为零的矢量称为空矢(Null Vector)或零矢 (Zero Vector),一个大小为1的矢量称为单位矢量 (Unit Vector)。 在直角坐标系中,用单位矢量 ex、 ey 、 ez 表征矢量分 别沿x、y、z轴分量的方向。
r
r=exX+eyY+ezZ
§1 .1 矢量及其代数运算
1 标量和矢量
X、Y、Z是位置矢量r在x、y、z轴上的投影。
任一矢量A在三维正交坐标系中都可以给出其三个分 量。例如,在直角坐标系中,矢量A的三个分量分别 是Ax、Ay、Az,利用三个单位矢量ex、ey、ez可以将矢 量A表示成:
A=exAx+eyAy+ezAz
§1 .2 标量场的梯度
5 梯度的性质
4)标量场的梯度垂直
于通过该点的等值 面(或切平面)
§1 .2 标量场的梯度
6 梯度运算的基本公式
⎧ ⎪ ⎪∇ ⎪∇ ⎪ ⎪∇ ⎪ ⎨∇ ⎪∇ ⎪ ⎪∇ ⎪ ⎪∇ ⎪ ⎩
第1章 矢量分析

第1章 矢量分析
1
1.1 标量场和矢量场
1.2 坐标系的转换
1.3 矢量运算 1.4 标量场的梯度
1.5 亥姆霍兹定理
2
1.1.1 相关定义
标量(scalar):只具有数值大小,而没有方向 的物理量。如质量、密度、温度、功、能量、 速率、时间、热量、电阻等物理量。这些量之 间的运算遵循一般的代数法则。
12
1.2.2 圆柱坐标系
圆柱系中: dS = a dS+ adS + azdSz dS= d dz, dS =ddz,dSz=dd dS、dS 、dSz分别是dS 在圆柱侧面( 面)、过轴线 的半平面(面)和xOy面(z 面)上的投影。
z
az d d P a a y
长旋转椭球、扁旋转椭球、椭球、双球、 圆锥、环
6
1.2.1 正交曲线坐标系简介
坐标线(轴):三张曲面两两正交相交而成的曲线 坐标原点(基准点):三条坐标线的交点 坐标单位矢量:空间任一点与坐标线相切且指向 变量增加方向的三个单位矢量,用a1、a2、a3表示 坐标变量:三个独立的自由度,用e1、e2、e3表示 位矢:坐标原点到空间任一点的矢量。 e1、e2、e3呈右手螺旋关系——右手系
两个矢量的叉乘满足: (1) A×B = -B×A A×(B+C) = A×B + A×C (2) A×A = 0 推论:A×B = 0 A ∥ B
32
1.3.3 矢量的积分运算
在直角坐标系中,路径长度微分元,曲 面积微分元和体积微分元为:
d l d xa x d ya y d za z d s dy d za x dzdxa y dxdya z dv d xdy d z
矢量分析报告

第一章 矢量分析
静电场的基本方程是
(1-52) 对于各向同性的媒质, 电通量密度和电场强度的关系为
D=εE, 因而式(1-52)可改写为
假设在无限空间中有两个矢量函数F和G,它们具有相同的散 度和旋度。但这两个矢量函数不等,可令
第一章 矢量分析
由于矢量F和矢量G具有相同的散度和旋度, 根据矢量场由其 散度和旋度唯一确定, 那么矢量g应该为零矢量, 也就是矢量 F 与矢量G是同一个矢量。
因为▽·F= ▽ ·G, 所 以
同样由于▽ ×G= ▽ ×F, 所 以
拉普拉斯微分算子▽ 2的表示式为
第一章 矢量分析
例1-14 在一对相距为l的点电荷+q和-q的静电场中, 当距 r>>l离时, 其空间电位的表达式 为
求其电场强度E(r, θ, φ)。 解: 在球面坐标系中,哈密顿微分算子▽的表达式为
第一章 矢量分析
因为
第一章 矢量分析
1.6 亥姆霍兹定理
亥姆霍兹定理的简单表达是: 若矢量场F在无限空间中处处单 值,且其导数连续有界,而源分布在有限空间区域中,则矢量场 由其散度和旋度唯一确定,并且可以表示为一个标量函数的梯度 和一个矢量函数的旋度之和, 即
图 1-6 例 1-11 图
第一章 矢量分析
解: 由于在曲线l上z=0,所以dz=0。
第一章 矢量分析
例1-12 求矢量场A=x(z-y) ex+y(x-z)ey+z(y-x)ez在点 M(1,0 1)处的旋度以及沿n=2ex+6ey+3ez方向的环量面密度。
解: 矢量场A的旋度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结
电子科技大学编写
论……
高等教育出版社 & 高等教育电子音像出版社 出版
2u 2u 2u = 2 2 2 2u x y z
电子科技大学编写 高等教育出版社 & 高等教育电子音像出版社 出版
电磁场与电磁波
第1章 矢量分析
3
2.主要技术
微分规律 (微观) 积分规律 (宏观)
•散度定理
•旋度定理
v
F (r ) dv
s
F (r ) d s
无散场
2. 矢量场的结构 • 无旋场( F l (r ) 0 )
F l (r ) u (r )
在关心的区域中即 无旋又无散的场, 该场为零场码?
u (r ) 0
好处?
• 无散场( F c (r ) 0 )
F c (r ) A(r )
A(r ) 0
第1章 矢量分析
2
二. 研究的手段 1.核心思想 围绕一个算符求三个度,分析对象的分布规律
针对标量场 针对矢量场
分析矢量的方法
•几何图象(定性) •解析分析(定量)
u ( r )
F (r ) ;
F (r )
要求充分掌握 矢性微分运算的特征 如:
u ( u u u ex e y ez ) ( ex e y ez ) x y z x y z
s
F (r ) d s
F (r ) dl
l
电子科技大学编写
高等教育出版社 & 高等教育电子音像出版社 出版
电磁场与电磁波
第1章 矢量分析
4
三. 结论和规律 1.矢量场的构成
F (r ) F l (r ) F c (r ) u (r ) A(r )
无旋场
好处?
电子科技大学编写
高等教育出版社 & 高等教育电子音像出版社 出版
电磁场与电磁波
第1章 矢量分析
5
3.矢量场的解
F (r ) u (r ) A(r )
其中:
2u (r ) F (r )
方程的解:
A(r ) F (r )
1 F (r ) 1 F (r ) dS u (r ) dV V S 4π r r 4π r r 1 F (r ) 1 F (r ) dS A(r ) dV V S 4π r r 4π r r
电磁场与电磁波
第1章 矢量分析
1
总
一. 研究的对象 1.类型 标量
如某个位置的 电位
结
矢量
电场
张量
u
2. 关心的核心问题
E
场:空间分布的规律
标量场
如某区域的 电位分布
矢量场
电场分布
(标量函数) (矢量函数)
u (r )
电子科技大学编写
E (r )
高等教育出版社 & 高等教育电子音像出版社 出版
电磁场与电磁波