电磁场与电磁波 第1章矢量分析

合集下载

电动力学电磁场与电磁波课件第1章矢量分析

电动力学电磁场与电磁波课件第1章矢量分析
分析和处理电磁场问题的方法 —— 数学处理过程
矢量分析
本课程约定
? 物理量符号上方用“ ? ”或粗斜? 印刷体代表矢量 ,例如电场强度矢量E
? 物理量符号上方用“ ? ”代表单
位矢量,例如e?x,e?y,e?z 分别代表 x,
y,z 方?向的单位矢量, r? 代表位置 矢量 r 的单位矢量
第一章 矢量分析
e??
?
单位圆
x
?e??
??
?
? e?xcos?
? e?ysin?
?
? e?ρ
xy 平面上的投影图
?
矢量表示: A ? e?? A? ? e?? A? ? e?z Az
z
e?z
位置矢
r ? e?? ? ? e??? ? e?z z ???
?
位置矢量 : r ? e?? ? ? e?zz
? P(?, ?, z) r
场物理量随时间变化。本课程主要讨论随 时间正弦或余弦变化的时变场,称时谐场
标量场( Scalar Field )
场物理量是标量,如温度场,电位场等
场矢物量理场量(是矢Ve量c,to如r F电ie场ldE??)r?,t?
2. 三种常用的坐标系
直角坐标系 基本变量: x, y, z
z
? P(x,y,z) r
e?x ? e?x ? e?y ? e?y ? e?z ? e?z ? 0
e?z e?y
e?x ?e?y ? e?y ?e?z ? e?z ?e?x ? 0
e?x
e?x ?e?x ? e?y ?e?y ? e?z ?e?z ? 1
??
? ? e?x e?x e?x
A?B ? AxBx ? AyBy ? Az Bz A ? B ? Ax Ay Az

《电磁场与电磁波》第一章 矢量分析

《电磁场与电磁波》第一章 矢量分析

ey Ay By
ez Az Bz
显然,矢量的矢积不满足交换律。 两个矢量的矢积仍是矢量。
矢积的几何意义 设 则
A A ex
B Bxex By ey
z
A B y B
A B ez A B sin
A
可见,矢积A×B的方向与矢量A及 矢量B构成的平面垂直,由A旋转到B成 右手螺旋关系;大小为 A B sin 。

S
E dS
0
可见,当闭合面中存在正电荷时,通量为正。当闭合面中存在负电 荷时,通量为负。在电荷不存在的无源区中,穿过任一闭合面的通 量为零。


二、散度(divergence)
通量仅能表示闭合面中源的总量,不能显示源的分布特性。为 此需要研究矢量场的散度。
如果包围点P的闭合面S所围区域V以任意方式缩小为点P 时, 矢量A通过 该闭合面的通量与该闭合面包围的体积之比的极限称为矢量场A在该点的散度, 以divA表示,即
结合律: ( A B) C A ( B C )
标量乘矢量:
A Ax ex Ay e y Az ez
§1-3 矢量的标积和矢积
一、矢量的标积
A Axex Ay e y Az ez
矢量A与矢量B的标积定义为:
B Bxex By ey Bz ez
则: A A ea ex A cos ey A cos ez A cos 标积的几何意义
y B
设 其中
A A ex
B Bxex By ey

Bx B cos By B cos( ) B sin 2
A
x
所以
A B A B cos

精品课件-电磁场与电磁波-第1章

精品课件-电磁场与电磁波-第1章
第1章 矢量分析基础
第1章 矢量分析基础
1.1 矢量分析 1.2 场论 1.3 标量场的方向导数和梯度 1.4 矢量场的通量及散度 1.5 矢量场的环量和旋度 1.6 亥姆霍兹定理 1.7 圆柱坐标系和球坐标系
第1章 矢量分析基础 1.1 矢量分析 矢量分析讨论矢性函数的求导、积分等内容,它是矢量代 数的继续,也是场论的基础。在物理学和工程实际中,许多物 理量本身就是矢量,如电场强度、磁场强度、流体的流动速度、 物质的质量扩散速度及引力等。采用矢量分析研究这些量是很 方便的。有些物理量本身是标量,但是描述它们的空间变化特 性用矢量较为方便。如物体的引力势,描述它的空间变化就需 要用引力。再比如,空间的电位分布,描述其变化采用电场强 度较为方便。
记为
,u 即
l M0
u lim u(M ) u(M0 )
l M0 M M0
M0M
(1-7)
第1章 矢量分析基础 图1-6 梯度和方向导数
第1章 矢量分析基础
2. 方向导数的计算公式
设有向线段l的单位矢量为l°=l/l,这个单位矢量的方
向余弦为(cosα, cosβ, cosγ),则标量场在某点的方向导
第1章 矢量分析基础
例1-1 若两个点电荷产生的电位 u(x, y, z) kq kAq r r1
为 r x2 y2 z2 r1 ,其(x a)2 y2 z2


,A、q和k是常数。求
电位等于零的等位面方程。
解 令u=0,则有1/r=A/r1,即Ar=r1, 左右同时平方, 得
(xA2(x2a+y2+)z22)=(yx2+a)z22+y2+z2A2a 2
若问题的本身就是两个变量的函数,这种情形叫做平面标 量场。此时,标量场一般可以写为u(x,y)。标量场具有相同 数值的点,就组成标量场的等值线,等值线方程为

第一章矢量分析

第一章矢量分析
位置矢量:
P0 z0
r eˆ zeˆz
O ψ0
矢量表示:
x
A r
(
rv)eˆ
A (rv)eˆ
A (rv)eˆ
z
z
2020/4/29
第一章 矢量分析
P(p0,ψ0,z0)
evz
y
ev
e
26
3、球面坐标系 ( r, , )
方向单位矢量:
eˆr , eˆ , eˆ
位置矢量:
r reˆr
x
矢量表示:
2020/4/29
8
第一章 矢量分析
4.电磁场与电磁波的应用
当今世界,电子信息系统,不论是通 信、雷达、广播、电视,还是导航、遥控 遥测,都是通过电磁波传递信息来进行工 作的。因此以宏观电磁理论为基础,电磁 信息的传输和转换为核心的电磁场与电磁 波工程技术将充分发挥其重要作用。下面 我们来看一下一些常见的天线和馈线。
本课程将在“大学物理(电磁学)”的基础 上,进一步研究宏观电磁现象和电磁过程的基 本规律及其分析计算方法。通过课程的学习, 掌握基本的宏观电磁理论,具备分析和解决基 本的电磁场工程问题的能力.
2020/4/29
3
第一章 矢量分析
2.电磁场与电磁波的概念
• 电场 • 磁场 • 电磁场 • 电磁波
2020/4/29
物理意义:表示穿入和穿出闭合 面S的矢量通量的代数和。
讨论:1)面元 d定Sv义;
矢量场的通量
2) A(r) cos (r)ds s
3) 通过闭合面S的通量的物理意义:
a) 若 ,0闭合面内有产生矢量线的正源;
b) 若 ,0闭合面内有吸收矢量线的负源;
2020/4/29

矢量分析【电磁场与波+电子科技大学】

矢量分析【电磁场与波+电子科技大学】

面元矢量与此矢量相合时,极限值为最大值,也就是
该矢量的模。这个矢量称为 的旋度(curl),记为

,故有
其中 是 在面元矢量 (用 表示其方向)上的投影。
第47页
电磁场与电磁波 第一章__矢量分析
旋度:若在矢量场 中的一点M 处存在矢量 , 的方向
是 在该点环流面密度最大的方向,它的模就是这个最大
的环流面密度。矢量 称为矢量场 在点M 的旋度,记



说明:
① 在流体力学中,旋度表示了旋转的强弱即大小;在电磁场中,
不存在旋转强弱的意义;
② 旋度与环流中C 的形状、取向无关,只与场在M 点的量 本身有关;
③ 旋度场: 与矢量场 中的点一一对应得到的新的矢量场
第48页
电磁场与电磁波 第一章__矢量分析
第23页
电磁场与电磁波 第一章__矢量分析 1.3.2/3 方向导数和梯度 方向导数意义:表示场沿某方向的空间变化率
梯度的意义:描述标量场在某点的最大变化率及其 变化最大的方向
第24页
电磁场与电磁波 第一章__矢量分析
定义算符:
←哈密顿算符
数量场u 的梯度是矢量(是空间坐标点的函数) 梯度的大小为该点标量函数u 的最大变化率,即最大方向导数 梯度的方向为该点最大方向导数的方向 梯度场:数量场u 中每点都有一个梯度而形成的矢量场
第25页
电磁场与电磁波 第一章__矢量分析 直角坐标梯度: 圆柱坐标梯度: 球 坐 标 梯度:
第26页
电磁场与电磁波 第一章__矢量分析
梯度运算公式:
k为常数
第27页
电磁场与电磁波 第一章__矢量分析
{例} 考虑一个二维标量场 求此标量场的等值面,求u 的梯度 任取一闭合的积分回路,证明

《电磁场与电磁波》矢量分析

《电磁场与电磁波》矢量分析

梯度:增加最快的方向
l M0 g el
方向导数=梯度在该方向上的投影
小结 等值面:只能反映标量分布的总体趋势 梯度:场中每点变化最快的方向和最大的变化率
求场
解:
在点(0,0.5,1) 处的梯度。
矢量场的通量和散度
矢量线:描述矢量场的线 形象直观地描述矢量场
大小:疏密 方向:切线方向
矢量线的疏密可定性表征矢量场的大小 实际需定量描述,故引入通量
A dS
V 0 V S
对散度作体积分,就得到通量
高斯公式 通量=散度的体积积分 矢量函数的面积分与体积分的相互转换
S A dS 面
divA lim 1
A dS 点
V 0 V S

实现了“面-点-体 ”的转化
矢量场的环量和旋度
通量: 有向曲面上的面积分值,表示体积内 的通量源,分布强度用散度来描述
A B AB cos =Ax Bx Ay By Az Bz
Bcosθ:B在A方向上的投影 B
A ex 2ey 3ez
B 4ex 5ey 6ez
A
B cos
A B 14 25 36 32
矢量标量积满足交换律和结合律
AB B A
kA pB kpA B AB+C A B AC
l M0 =0, 沿l方向不变
l M0
几个问题:
1)方向导数是标量?矢量? 标量 2)不同方向的变化快慢是一样的? 不是
l 方向改变,方向导数值也变 3)方向导数能反映哪方向的变化率最大? 不能 4)标量能准确刻画标量场的空间变化率?不能
3 梯度
l M0 g el | g | cos(g, el )
场中的每一点只与一等值面/线对应 等值面的稀密程度反映场量的空间分布

电磁场与电磁波矢量分析亥姆霍兹定理

电磁场与电磁波矢量分析亥姆霍兹定理
A ( B C) B( A C) C( A B)
电磁场与电磁波
第一章 矢量分析
§1 .2 通量与散度, 散度定理
一、通量
面元:
ˆ ds ds n
ˆ 是面元的法线方向单位矢量 其中: n ˆ 的取向问题: n
对开曲面上的面元, 设这个开曲面是由封闭曲线l所围成的, 则当选定绕行l的方向后, 沿绕行方向按右手螺旋的姆指方 ˆ 的方向 向就是n ˆ 取为封闭面的外法线方向。 对封闭曲面上的面元, n
ˆ (gradient)为 grad n n
grad lˆ l
在直角坐标系中梯度的计算公式
ˆ grad x
ˆ ˆ y z x y z
电磁场与电磁波
第一章 矢量分析
例1 .6
在点电荷q的静电场中, P(x, y, z)点的电位为
注意:x ˆx ˆ
ˆ y ˆz ˆ z ˆ0 y ˆ y ˆz ˆz ˆ, z ˆy ˆ ˆ, y ˆx ˆ x x
直角坐标系中的计算公式:
ˆ x yA ˆ y zA ˆ x yB ˆ y zB ˆ z ) ( xB ˆ z) A B ( xA ˆ ( Ay Bz Az By ) y ˆ ( Az Bx Ax Bz ) z ˆ( Ax By Ay Bx ) x
散度计算公式: divA A
Ax Ay Az ˆ y ˆ z ˆAx y ˆAy z ˆ ˆAz ) A (x x y z x y z x
电磁场与电磁波
第一章 矢量分析
三、散度定理
n2
q ˆds e D ds r r 3 s 4r s q q 2 ds 4 r q 2 s 2 4r 4r

第一章 矢量分析(电磁场与电磁波)

第一章 矢量分析(电磁场与电磁波)

例:已知一矢量场F=axxy-ayzx, 试求: (1) 该矢量场的旋度; (2) 该矢量沿半径为3的四分 之一圆盘的线积分, 如图所 示, 验证斯托克斯定理.
y B r=3
O
A x
四分之一圆盘
第 7,8 学时 , 1.4 标量的方向导数和梯度
1.4.1标量的方向导数和梯度 标量的方向导数和梯度 一个标量场u可以用一个标量函数来表示.在直角坐标 系中, 可将u表示为 u=u(x, y, z) 令 u(x, y, z)=C, C为任意常数.该式在几何上一般表示 一个曲面,在这个曲面上的各点,虽然坐标(x, y, z)不同, 但函数值相等,称此曲面为标量场u的等值面 等值面. 随着C 等值面 的取值不同,得到一系列不同的等值面,如下图所示. 同理,对于由二维函数v=v(x, y)所给定的平面标量场, 可按v(x, y)=C得到一系列不同值的等值线.
S → P
∫ lim
l
A dl
S
称固定矢量R为矢量A 的旋度 旋度,记作 旋度 rotA=R 上式为旋度矢量在n方 向的投影,如图所示, 即
rotA 旋旋旋
n
P l
S → P
∫ lim
l
A dl
S
= rotn A
旋度及其投影
矢量场的旋度 旋度仍为矢量 矢量.在直角坐标系中,旋度的表达式为 旋度 矢量
C C=A× B an aA A (a)
图 1 - 3 矢量积的图示及右手螺旋 (a) 矢量积 (b) 右手螺旋
O
aB B
B A
θ
(b)
矢量积又称为叉积 叉积(Cross Product),如果两个不为零的 叉积 矢量的叉积等于零,则这两个矢量必然相互平行,或者 说,两个相互平行矢量的叉积一定等于零.矢量的叉积 不服从交换律,但服从分配律,即 A×B= -B×A × × A×(B+C)=A×B+A×C × × ×
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v
v
B
C
v
v vv C AB

C v B
v A
v A
a.满足交换律:
vv vv AB B A
vv vv vv vv
b.满足结合律: (A B) (C D) (A C) (B D)
电磁场与电磁波
第1章 矢量分析
在直角坐标系下的矢量表示: 三个方向的单位矢量用 avx , avy , avz 表示。
Az avz
模的计算:
v | A |
Ax2 Ay2 Az2
单位矢量: v
av

|
Av A
|

Avx |A
|
avx

Avy | A|
avy

|
Avz A|
avz
cos avx cos avy cos avz
方向角与方向余弦: , ,
z
v Az
v A

v
v Ax
电磁场与电磁波
第1章 矢量分析
(3)三重积:
三个矢量相乘有以下几种形式:
v vv (A B)C
矢量,标量与矢量相乘。
vvv A (B C)
标量,标量三重积。
v vv A (B C)
矢量,矢量三重积。
a. 标量三重积
法则:在矢量运算中,先算叉积,后算点积。
定义:Av
vv (B C)
( Ax avx

Ayavy

Az avz
)
(Bxavx

Byavy

Bz avz
)
Ax Bx Ay By Az Bz
•结论: 两矢量点积等于对应分量的乘积之和。
电磁场与电磁波
第1章 矢量分析
b.矢量积(叉积):
avc
v A
v B
|
v A||
v B|
sin
avc
B
• 8. 1825年,德国科学家欧姆得出了第一个电路定律:欧姆 定律。
• 9. 1831年,英国实验物理学家法拉第发现了电磁感应定律 并设计了世界上第一台感应发电机。
电磁场与电磁波
第1章 矢量分析
• 10. 1840年,英国科学家焦耳提出了焦耳定律,揭示了电 磁现象的能量特性。
• 11. 1848年 ,德国科学家基尔霍夫提出了基尔霍夫电路理 论,使电路理论趋于完善。
电磁场与电磁波
第1章 矢量分析
五、场的基本概念
• 1.什么是场?
• a.从数学角度:场是给定区域内各点数值的集合,这 些数值规定了该区域内一个特定量的特性。
• b.从物理角度:场是遍及一个被界定的或无限扩展的空 间内的,能够产生某种物理效应的特殊的物质,场是具 有能量的。
温度场 T,重力场、电磁场、……
• 2. 大约在春秋末期(约公元前四、五世纪)成书的《管子·地数篇》, 战国时期的《鬼谷子》,战国末期的《吕氏春秋》等,都留记述了天 然磁石及其吸铁现象,并且出现世界上最古老的指南针“司南”。
• 3. 1638年,我国建筑学书籍中对避雷的记载:屋顶的四角都被雕饰 成龙头的形状,仰头、张口,在它们的舌头上有一根金属芯子,其末 端伸到地下,如有雷电击中房顶,会顺着龙舌引入地下,不会对房屋 造成危险。
•含义:
A
两矢量叉积,结果得一新矢量,其大小为这两个矢量组
成的平行四边形的面积,方向为该面的法线方向,且三者
符合右手螺旋法则。
vv vv vv vv 推论1:不服从交换律: A B B A, A B B A
推论2:服从分配律:
v v v vvvv A(B C) A B AC
o


Ay
y
x
cos Ax , cos Ay , cos Az
| A|
| A|
| A|
在直角坐标系中三个矢量加法运算:
v A

v B

v C

( Ax

Bx

Cx
)avx

( Ay

By

Cy
)avy

( Az

Bz

Cz
)
avz
电磁场与电磁波
第1章 矢量分析
2.减法:换成加法运算
b.矢量三重积:
v v v vv v vv v A(BC) B(AC) C(A B)
电磁场与电磁波
第1章 矢量分析
例2:设 rv1 2aˆx aˆy aˆz , rv2 aˆx 3aˆy 2aˆz rv3 2aˆx aˆy 3aˆz , rv4 3aˆx 2aˆy 5aˆz
• 1866年,德国的西门子发明了使用电磁铁的发电机, 为电力工业开辟了道路。
• 1876年,美国贝尔发明了电话,实现了电声通信。
• 1879年,美国发明家爱迪生发明了电灯,使电进入了 人们的日常生活。
• 1887年,德国的物理学家赫兹首次用人工的方法产生 了电磁波。随后,俄国的波波夫和意大利的马可尼,利 用电磁波通信获得成功,开创了人类无线通信的新时代。
v vvv v
D A B A (B)
逆矢量:Bv

v (B)
的模相等,方向相反,互为逆矢量。
Hale Waihona Puke vvvD v
A
AD
v
v
v
B
B
B
v
v C
Bv v v
v
ABC 0
A
推论:
任意多个矢量首尾相连组成闭合多边形,其矢量和必为零。
在直角坐标系中两矢量的减法运算:
v A

v B

( Ax
推论3:不服从结合律:
v vv vv v A(BC) (A B)C
推论4:当两个非零矢量叉积为零,则这两个矢量必平行。
电磁场与电磁波
第1章 矢量分析
在直角坐标系中,两矢量的叉积运算如下:
z
v A
v B

(
Ax
avx

Ayavy

Azavz
)

(Bx
avx

Byavy

Bz
avz
)
oy x
• 12.奥斯特的电生磁和法拉第的磁生电实验奠定了电磁学 的基础。
电磁学理论的完成者——英国的物理学家麦克斯韦(18311879)。麦克斯韦方程组——用最完美的数学形式表达了宏 观电磁学的全部内容 ,从理论上预言了电磁波的存在。
电磁场与电磁波
第1章 矢量分析
三、电磁学应用突飞猛进(2nd工业革命,19世纪中至今)
电磁场与电磁波
第1章 矢量分析
2.场的分类
a. 按物理量的性质分:
标量场:描述场的物理量是标量。 矢量场:描述场的物理量是矢量。
b. 按场量与时间的关系分:
静态场:场量不随时间发生变化的场。 动态场:场量随时间的变化而变化的场。
动态场也称为时变场。
电磁场与电磁波
第1章 矢量分析
第1章 矢量分析
一、矢量和标量的定义 二、矢量的运算法则 三、矢量微分元:线元,面元,体元 四、标量场的梯度 五、矢量场的散度 六、矢量场的旋度 七、重要的场论公式
vvv A(BC) 0
v vv
h BC v
A

v C
v B
在直角坐标系中:
vvv A(BC)
( Axavx

Ay avy

Az avz
)
avx Bx
avy By
avz Bz
v v v Ax Ay Az A (B C) Bx By Bz
Cx Cy Cz
Cx Cy Cz
电磁场与电磁波
第1章 矢量分析
四、课程内容
• 第一章:电磁学的数学基础 ——矢量运算 • 第二章:电磁学的理论基础 ——麦克斯韦方程组 • 第三、四、五章:麦克斯韦方程组的应用
(媒质与边界,静态场,电路) • 第六章:(平面)电磁波的传输特性 • 第七章:电磁波在波导中的传播(光纤通信) • 第八章:电磁波的辐射
(AyBz AzBy )avx (AzBx AxBz )avy (AxBy AyBx )avz
两矢量的叉积又可表示为:
v v avx A B Ax
Bx
avy Ay By
avz Az Bz

Ay By
Az Bz
avx

Ax Bx
Az Bz
avy

Ax Bx
Ay By
avz
电磁场与电磁波
第1章 矢量分析
一、矢量和标量的定义
1.标量:只有大小,没有方向的物理量。 如:温度 T、长度 L 等
2.矢量:不仅有大小,而且有方向的物理量。
如:力Fv、速度 vv、电场 Ev等
矢量表示为:
v A
|
v A
|
av
其中:|
v A
|
为矢量的模,表示该矢量的大小。
av 为单位矢量,表示矢量的方向,其大小为1。
z
v Az
v A
根据矢量加法运算:
vv v v A Ax Ay Az
vo
Ax
x
其中:
v Ax

Axavx ,
v Ay

Ayavy ,
v Az

Az avz
v Ay
y
所以:
v A

Axavx

Ay avy

Az avz
电磁场与电磁波
相关文档
最新文档