半导体制造工艺简介
半导体制造工艺范文

半导体制造工艺范文1.晶圆制备:晶圆是制造半导体器件的基础。
可通过切割单晶硅棒或者熔融硅制备。
制备好的晶圆表面需要经过化学机械抛光,使其表面光滑。
2.掩膜制备:掩膜是指将特定模式转移到晶圆表面的层。
通过光刻技术,在掩膜层上照射紫外线光束,使其形成特定模式。
常用掩膜材料有光刻胶。
3.刻蚀:刻蚀是通过化学或物理的方式去除掩膜层以外的材料,形成所需的结构。
常用的刻蚀方法有湿刻蚀和干刻蚀。
湿刻蚀使用化学溶液去除非掩膜区域的材料,干刻蚀则使用离子轰击或者等离子体气体去除材料。
4.离子注入:离子注入是指向掺杂原子加速并注入到晶圆内部,改变其电学性质。
通过掩膜层上开口处的掺杂窗口进行注入,常用的离子有硼、磷等。
5.扩散:扩散是将注入到晶圆内的掺杂原子在高温下扩散扩展,形成特定的杂质浓度分布。
扩散可以使半导体材料的电学性能得到改善。
通常在氮气或者氢气气氛中进行。
6.金属沉积:金属沉积是将金属材料沉积在晶圆表面,用于电极、导线等器件的制作。
通过化学气相沉积或者物理气相沉积等方法进行。
7.封装:封装是将制造好的芯片装配到封装材料中,制作成可使用的半导体器件。
常用的封装方法有芯片焊接在载体上并用封装材料覆盖,然后进行焊接。
此外,半导体制造工艺还包括成品测试和质量控制等环节。
成品测试是指对制造好的半导体器件进行功能性、电学性能等方面的测试,以验证其质量和性能是否达到要求。
质量控制是指在制造过程中对各个步骤进行监控和调整,以确保最终的产品达到规定的质量标准。
总结而言,半导体制造工艺是一个复杂严谨的过程,需要精确的控制和高精度的设备支持。
只有通过严格的工艺流程和质量控制,才能制备出性能稳定可靠的半导体器件。
这些器件广泛应用于电子、通信、计算机等领域,对现代社会的发展具有重要作用。
半导体制造工艺技术概述

铝淀积
42
蒸铝的台阶覆盖
43
难熔阻挡金属(RBM)溅射
44
塞状钨通孔系统
45
硅化
46
现代金属化系统
47
铜金属化
• 铝的缺点
– 电阻比铜大,在亚微米工艺下表现明显 – 电迁徙问题
• 铜的优点
– 导电性能好 – 提高抗电迁徙特性
48
双大马士革工艺
49
功率铜
50
组装
晶圆结构
52
安装与键合
• 氧化工艺
– 干法:在纯净干燥的氧气中加热,速度缓慢,质量很高,用于器件 – 湿法:在氧气混合水蒸气中加热,速度加快,质量降低,用于场氧化层 – 淀积:在非硅材料上形成二氧化硅,通过气态硅化合物和气态氧化剂反
应值得,用于两层导体之间的绝缘层或保护层
17
氧化炉简图
18
氧化物去除
19
氧化物刻蚀
• 湿法刻蚀
– 使用稀释的氢氟酸溶液
• 干法刻蚀
– 反应离子刻蚀 (RIE) – 等离子刻蚀 – 化学气相刻蚀
20
反应离子刻蚀
21
对晶圆表面形貌的影响
22
氧化分凝机制
23
杂质增强氧化效应
24
硅的局部氧化 (LOCOS)
25
Kooi效应
26
扩散和离子注入
扩散工艺
28
磷扩散工艺
29
横向扩散
30
改变扩散速率的机制
中国芯技术系列
半导体制造工艺技术概述
技术创新,变革未来
提纲
• 硅制造 • 光刻技术 • 氧化物生长和去除 • 扩散和离子注入 • 硅淀积和刻蚀 • 金属化 • 组装
八大半导体工艺顺序剖析

八大半导体工艺顺序剖析八大半导体工艺顺序剖析在现代科技领域中,半导体材料和器件扮演着重要的角色。
作为电子设备的基础和核心组件,半导体工艺是半导体制造过程中不可或缺的环节。
有关八大半导体工艺顺序的剖析将会有助于我们深入了解半导体制造的工作流程。
本文将从简单到复杂,逐步介绍这八大工艺的相关内容。
1. 排版工艺(Photolithography)排版工艺是半导体制造过程中的首要步骤。
它使用光刻技术,将设计好的电路图案转移到硅晶圆上。
排版工艺需要使用光刻胶、掩膜和曝光设备等工具,通过逐层叠加和显影的过程,将电路图案转移到硅晶圆上。
2. 清洗工艺(Cleaning)清洗工艺在排版工艺之后进行,用于去除光刻胶和其他污染物。
清洗工艺可以采用化学溶液或高纯度的溶剂,保证硅晶圆表面的干净和纯净。
3. 高分辨率电子束刻蚀(High-Resolution Electron BeamLithography)高分辨率电子束刻蚀是一种先进的制造技术。
它使用电子束在硅晶圆表面进行刻蚀,以高精度和高分辨率地制作微小的电路图案。
4. 电子束曝光系统(Electron Beam Exposure Systems)电子束曝光系统是用于制造高分辨率电子束刻蚀的设备。
它具有高能量电子束发射器和复杂的控制系统,能够精确控制电子束的位置和强度,实现微米级别的精细曝光。
5. 高能量离子注入(High-Energy Ion Implantation)高能量离子注入是半导体器件制造中的一项重要工艺。
通过将高能量离子注入到硅晶圆表面,可以改变硅晶圆的电学性质,实现电路中的控制和测量。
6. 薄膜制备与沉积(Film Deposition)薄膜制备与沉积是制造半导体器件的关键工艺之一。
这个工艺将薄膜材料沉积在硅晶圆表面,包括化学气相沉积、物理气相沉积和溅射等方法。
这些薄膜能够提供电介质、导电材料或阻挡层等功能。
7. 设备和工艺完善(Equipment and Process Optimization)设备和工艺完善的步骤是优化半导体制造工艺的关键。
半导体制造工艺技术

半导体制造工艺技术半导体制造工艺技术是指用于生产半导体器件的工艺步骤和方法。
半导体器件是现代电子设备中最基本的组成部分,包括晶体管、集成电路等。
半导体制造工艺技术是将半导体材料加工成器件的关键环节,对于器件的性能和质量有着重要影响。
首先,半导体制造工艺技术的第一步是选择合适的半导体材料。
常用的半导体材料有硅、砷化镓等。
这些材料具有较好的导电性和半导性,能够在一定条件下控制电流的传导。
接下来,半导体制造工艺技术的第二步是进行材料清洁和去除氧化层。
在制造过程中,材料表面可能会附着一些杂质和氧化层,会影响器件的性能。
因此,将材料进行清洁和去除氧化层是非常重要的步骤。
第三步是进行材料的掺杂和扩散。
掺杂是向材料中加入一定浓度的所需的杂质元素,以改变材料的导电性。
扩散是使掺杂材料均匀分布在整个材料中,以获得稳定的性能。
第四步是进行光刻和蚀刻。
光刻是在材料表面涂覆光刻胶,通过光刻机械刻蚀模板上的图案,以形成器件的结构。
蚀刻是使用化学物质去除材料表面的不需要的部分。
第五步是进行金属沉积和金属化。
金属沉积是将金属材料沉积在材料表面,以与器件的其他部分连接。
金属化是利用蚀刻制造导线和联系器件。
第六步是进行热处理和包封。
热处理是使用高温处理器件,以提高其电学性能和结构稳定性。
包封是将器件用封装材料密封,以保护器件并提供连接接口。
最后,进行测试和质检。
测试是检验制造的器件是否符合要求。
质检是对制造过程中的每个步骤进行检查,以确保器件的质量和可靠性。
总的来说,半导体制造工艺技术是一项复杂而精密的工艺,需要严格控制每个步骤和参数,以确保制造出高性能、高质量的半导体器件。
随着科技的进步,半导体制造工艺技术也在不断创新和发展,为电子产业的发展提供了强有力的支持。
半导体制造工艺技术是一门关乎现代电子产业发展的重要技术,其应用范围广泛,涵盖了从传统的晶体管制造到先进的集成电路制造等多个领域。
随着电子产品的普及和需求的不断增长,半导体制造工艺技术也在不断发展和改进,以满足市场的需求。
半导体制造工艺流程简介

半导体制造工艺流程简介导言:一、晶圆加工晶圆加工是制造集成电路的第一步。
它包括以下过程:1.晶圆生长:通过化学气相沉积或金属有机化学气相沉积等方法,在硅片基底上生长单晶硅。
这个过程需要非常高的温度和压力。
2.剥离:将生长的单晶硅从基底上剥离下来,并校正其表面的缺陷。
3.磨削和抛光:使用机械研磨和化学力学抛光等方法,使晶圆的表面非常光滑。
二、晶圆清洗晶圆清洗是为了去除晶圆表面的杂质和污染物,以保证后续工艺的顺利进行。
清洗过程包括以下步骤:1.热酸洗:利用强酸(如硝酸和氢氟酸)将晶圆浸泡,以去除表面的金属杂质。
2.高温氧化:在高温下将晶圆暴露在氧气中,通过热氧化去除有机杂质和表面缺陷。
3.金属清洗:使用氢氟酸和硝酸等强酸,去除金属杂质和有机污染物。
4.DI水清洗:用去离子水清洗晶圆,以去除化学清洗剂的残留。
三、晶圆制备晶圆制备是将晶圆上的材料和元件结构形成的过程。
它包括以下过程:1.掩膜制作:将光敏材料涂覆在晶圆表面,通过光刻技术进行曝光和显影,形成图案化的光刻胶掩膜。
2.沉积:通过物理气相沉积或化学气相沉积等方法,在晶圆上沉积材料层,如金属、氧化物、硅等。
3.腐蚀:采用湿法或干法腐蚀等技术,去除晶圆上不需要的材料,形成所需的结构。
4.清洗:再次进行一系列清洗步骤,以去除腐蚀产物和掩膜残留物,保证材料层的质量。
四、材料获取材料获取是指在晶圆上制造晶体管、电阻器、电容器等器件结构的过程。
它包括以下步骤:1.掺杂:通过离子注入或扩散等方法,在晶圆上引入有选择性的杂质,以改变材料的导电性或断电性能。
2.退火:通过高温热处理,消除杂质引入过程中的晶格缺陷,并使掺杂的材料达到稳定状态。
3.金属-绝缘体-金属(MIM)沉积:在晶圆上沉积金属、绝缘体和金属三层结构,用于制造电容器。
4.金属-绝缘体(MIS)沉积:在晶圆上沉积金属和绝缘体两层结构,用于制造晶体管的栅极。
五、封装和测试封装是将晶圆上制造的芯片放在封装底座上,并封装成可插入其他设备的集成电路。
半导体工艺流程简介

半导体工艺流程简介
《半导体工艺流程简介》
半导体工艺流程是指在半导体器件制造过程中所采用的一系列工艺步骤。
它包括了晶圆加工、器件制造和封装测试三个主要环节,每个环节又包含了不同的工艺步骤。
首先是晶圆加工。
这个过程包括了晶圆的清洁、去除氧化层、光刻、蚀刻、离子注入、扩散和沉积等步骤。
光刻是把芯片上的线路图案印制到光敏胶上,蚀刻是把芯片上不需要的部分去除,离子注入是通过向晶圆注入掺杂物改变材料的电子性质,扩散是在晶圆中扩散掺杂物,沉积则是在晶圆上沉积导体或绝缘体材料。
接下来是器件制造。
这个过程包括了制造晶体管、电容器、电阻器等器件,并将它们连接成一个完整的电路。
这个过程需要通过光刻、蚀刻、金属沉积、刻蚀、退火、金属化、绝缘层沉积等一系列工艺步骤完成。
最后是封装测试。
在这一步骤中,芯片被封装成一个完整的器件,并通过测试来检测器件的性能和质量。
封装是将芯片封装在塑料或陶瓷封装体内,并连接上引脚;测试则是通过测试设备对器件进行功能、可靠性和一致性等方面的测试。
总的来说,半导体工艺流程包含了各种化学、物理和电子工艺步骤,它是半导体器件制造的基础,对器件的性能和可靠性有
着重要的影响。
随着半导体技术的不断发展,工艺流程也在不断地更新和改进,以适应新的器件制造需求。
ws 半导体工艺

ws 半导体工艺WS半导体工艺是一种常用的半导体制造工艺,它在集成电路的制造过程中起到了重要的作用。
本文将介绍WS半导体工艺的原理、应用以及未来的发展趋势。
一、WS半导体工艺的原理WS半导体工艺,即湿法硅工艺(Wet Silicon),是一种利用湿法处理硅片表面的工艺。
在WS工艺中,硅片经过一系列的清洗和蚀刻处理后,再进行高温烘烤,最后形成所需的结构和电路。
WS工艺的主要步骤包括:清洗、蚀刻、沉积和退火。
清洗过程中,通过化学溶液去除硅片表面的杂质和污染物,保证硅片的纯净度。
蚀刻过程中,利用化学溶液或气体反应,去除硅片表面的一部分材料,使其形成所需的结构。
沉积过程中,通过物理或化学方法,在硅片表面沉积一层新的材料,用于电路的隔离或保护。
退火过程中,通过高温处理,使硅片中的材料重新排列和结晶,提高电路的性能和稳定性。
二、WS半导体工艺的应用WS半导体工艺广泛应用于集成电路的制造过程中。
它可以用于制造各种类型的晶体管、二极管、电容器等器件。
WS工艺具有处理速度快、工艺稳定性好、成本低廉等优点,因此在半导体行业得到了广泛的应用。
在集成电路的制造过程中,WS工艺主要用于形成电路的隔离层和保护层。
通过沉积一层氧化硅或氮化硅材料,可以隔离不同的电路单元,避免干扰和电流泄漏。
同时,这些材料也可以保护电路不受外界环境的影响,提高电路的可靠性和稳定性。
三、WS半导体工艺的发展趋势随着科技的不断进步,WS半导体工艺也在不断发展和改进。
未来的发展趋势主要体现在以下几个方面:1. 纳米工艺的发展:随着集成电路的尺寸越来越小,WS工艺也在不断追求更高的分辨率和精度。
新的纳米工艺技术将进一步提高WS 工艺的制造效率和精度,使得集成电路的性能得到进一步提升。
2. 新材料的应用:随着新材料的不断涌现,WS工艺也将应用更多的新材料。
这些新材料具有更好的电学性能和机械性能,可以提高集成电路的性能和可靠性。
3. 三维集成电路的发展:随着三维集成电路的兴起,WS工艺也将面临新的挑战和机遇。
半导体工艺有哪些

半导体工艺介绍
在现代科技领域中,半导体技术一直扮演着至关重要的角色。
半导体工艺是指制备半导体器件所需的工艺流程和技术。
通过一系列步骤,半导体材料被精确地处理和加工,最终形成各种高性能的电子器件。
下面将介绍一些常见的半导体工艺。
晶体生长
晶体生长是半导体工艺中至关重要的一部分。
在晶体生长过程中,高纯度的半导体原料被加热,液态或气态的半导体材料被沉积在晶体上。
这个过程对半导体器件的电学性能至关重要。
光刻工艺
光刻工艺是半导体工艺中一项关键的步骤,用于在半导体晶片表面定位并加工各种微小的结构。
通过将光源通过光掩膜,将图案投影在光敏剂上,然后对光敏剂进行显影和溅射,形成半导体晶片上所需的微米结构。
清洗工艺
清洗工艺是半导体制造中不可或缺的一环。
在材料处理过程中,表面会附着各种杂质和不纯物,为了确保半导体器件性能的稳定和可靠,清洗工艺起着至关重要的作用。
清洗过程通过使用不同的化学溶液和清洗设备,将表面的不纯物去除,确保器件的质量。
沉积工艺
沉积工艺是将半导体原料沉积在基片上的一种工艺。
通过化学气相沉积或物理气相沉积等方法,将所需的半导体材料以薄膜的形式沉积在基片表面,形成各种功能性薄膜,用于制备半导体器件。
退火工艺
退火工艺在半导体工艺中扮演着至关重要的角色。
在晶片制备完成后,通过高温处理,使半导体材料内部结构重新排列,消除杂质和缺陷,提高器件的性能和稳定性。
以上是半导体工艺中的一些常见步骤和技术,半导体工艺的发展将进一步推动科技的发展,为人类带来更多的便利和可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1半导体基础知识
1、半导体能带
禁带带隙介于导体和绝缘体之间 2、半导体载流子 空穴和电子
3.1半导体基础知识
3、半导体分类
N型半导体和P型半导体 掺杂半导体的特点:
(1)导电性受掺杂浓度影响。被替代的硅原子 数越多,材料的电阻率越低,越容易导电。 (2)多子的浓度取决于杂质浓度,少子的浓度 取决于温度。
光刻:将图形转移到覆盖在半导体硅片表面
的光刻胶 刻蚀:将图形转移到光刻胶下面组成器件的 各层薄膜上 湿法刻蚀:掩膜层下有横向钻蚀 干法刻蚀:等离子体辅助刻蚀,是利用低压 放电等离子体技术的刻蚀方法
6 常用工艺之三:刻蚀
6 常用工艺之三:刻蚀
6 常用工艺之三:刻蚀
各向异性腐蚀
电容
2 无源器件
3、电感:薄膜螺旋电感
过程:硅衬底热生长或淀积一层厚氧化物;
淀积一层金属,形成电感的一个端子;再淀 积一层介质,通过光刻和刻蚀确定出一个过 孔;淀积第二层金属,同时过孔被填充;在 第二层金属上光刻并刻蚀出螺旋图形作为电 感的第二个端子。
电感
3 双极集成电路制造流程
双极集成电路最主要的应用领域是模拟和超
3.1半导体基础知识
关于扩散电阻:
集成电路中经常见到的扩散电阻其实就是利
用掺杂的方法改变材料的电阻率得到的。但 是当掺杂的杂质浓度增高时,电阻率会随着 浓度增高快速降低吗? (与温度有关:杂质需要完全电离;掺杂半 导体中载流子的迁移率会随杂质浓度增加而 显著下降)
3.1半导体基础知识
化学气相淀积
CVD技术具有淀积温度低、薄膜成分和厚度
易于控制、均匀性和重复性好、台阶覆盖优 良、适用范围广、设备简单等一系列优点。 利用CVD方法几乎可以淀积集成电路工艺中 所需要的各种薄膜,例如掺杂或不掺杂的 sio2 、多晶硅、非晶硅、氮化硅、金属(钨、 钼)等。 作用:外延层,二氧化硅膜,多晶硅膜,氮 化硅膜
化学气相淀积
CVD生长的二氧化硅:用作金属间的绝缘层,
用于离子注入和扩散的掩蔽层,也可用于增 加热氧化生长的场氧化层的厚度 热生长的二氧化硅:具有最佳的电学特性。 可用于金属层之间的绝缘体,又可用作器件 上面的钝化层
主要内容
3.1半导体基础知识
工艺流程 3.3 工艺集成
3.2
电阻值计算,xj为结深
当W=L时,G=g
1/g用R■表示,称为方块电阻,单位为欧姆,
习惯上用Ω/ ■表示。
2 无源器件
2、电容
基本上分为两种:MOS电容和P-N结电容 (1)MOS电容:重掺杂区域作为极板,氧
化物作为介质 单位面积的电容为 (2)P-N结电容:N+P结电容,通常加反向 偏置电压
7 常用工艺之四:掺杂
离子注入:与扩散比,离子注入技术具有加
工温度低、大面积注入杂质仍能保证均匀、 掺杂种类广泛等优点。 原理:用一台离子加速器加速杂质粒子向前 运动,轰击硅晶圆表面,最后杂质粒子能量 损失后,渗入到晶圆内部停留下来形成。 漏源自对准:离子注入可以使用光刻好的薄 膜材料作为掩膜来形成对准方法。
8 常用工艺之五:薄膜制备
目的:通过物理或化学方式在硅晶圆上淀积
材料层,来满足集成电路设计的需要,如金 属、多晶硅及磷化玻璃等。 常用方法:氧化、物理气相淀积和化学气相 淀积
8 常用工艺之五:薄膜制备
四种薄膜:氧化膜;电介质膜;多晶硅膜;
金属膜
8 常用工艺之五:薄膜制备
(1)氧化 SiO2的作用 屏蔽杂质、栅氧化层、介质隔离、器件保护和表面 钝化 SiO2的制备 需要高纯度,目前最常用的方法是热氧化法。主要 分为干氧氧化、水汽氧化和湿氧氧化三种。
4 常用工艺之一:外延生长
半导体器件通常不是直接做在衬底上的,
而是先在沉底上生长一层外延层,然后将 器件做在外延层上。外延层可以与沉底同 一种材料,也可以不同。 在双极型集成电路中:可以解决原件间的 隔离;减小集电极串联电阻。 在CMOS集成电路中:可以有效避免闩锁 效应。
5 常用工艺之二:光刻
(漏端电压增加,但沟道的电阻率也在增加)
3.1半导体基础知识
(3)MOS管应用
栅压越大,电子沟道越厚,沟道电阻率越低,
电流越大。因此MOS晶体管是电压控制电流 的器件。 数字电路:开关作用,栅压为VDD或GND 模拟电路:栅压介于VDD和GND之间,调整 电流大小,进行信号放大作用。
高速集成电路。 每个晶体管之间必须在电学上相互隔离开, 以防止器件之间的相互影响。 下图为采用场氧化层隔离技术制造的NPN晶 体管的截面图,制作这种结构晶体管的简要 工艺流程如下所示:
3.3 工艺集成
制作流程 2 无源器件 3 双极集成电路制造流程 CMOS工艺
1
1 制作流程
1 制作流程
2 无源器件
1、电阻
(1)淀积:淀积电阻层,然后光刻刻蚀 (2)扩散或离子注入:在硅衬底上热生长的
氧化层上开出一个窗口,注入或扩散与衬底 类型相反的杂质。
电阻
电阻
氮化硅的制备
主要用作:金属上下层的绝缘层、场氧的屏蔽层、 芯片表面的钝化层。
8 常用工艺之五:薄膜制备
生产SiO2
8 常用工艺之五:薄膜制备
氧化质量
物理气相淀积
(2)物理气相淀积
利用某种物理过程,例如蒸发或溅射,来实
现物质的转移,即把材料的原子由源转移到 衬底表面,从而实现淀积形成薄膜。 金属的淀积通常是物理的。 两种方法:真空蒸发;溅射
主要内容
3.1半导体基础知识
工艺流程 3.3 工艺集成
3.2
3.2 工艺流程
1 制造工艺简介 2 材料的作用 3 工艺流程 4 常用工艺之一:外延生长 5 常用工艺之二:光刻 6 常用工艺之三:刻蚀 7 常用工艺之四:掺杂 8 常用工艺之五:薄膜制备
3.2 工艺流程
扩散和离子注入的对比
离子注入
注入损伤
注入损伤:带有能量的离子进入半导体衬底,
经过碰撞和损失能量,最后停留下来。 电子碰撞:电子激发或新的电子空穴对产生 原子核碰撞:使原子碰撞,离开晶格,形成 损伤,也称晶格无序
晶格无序
退火
由于离子注入所造成的损伤区及无序团,使
迁移率和寿命等半导体参数受到严重影响。 大部分的离子并不位于替位位置 为了激活注入的离子,并回复迁移率和其他 材料的参数,必须在适当的时间与温度下将 半导体退火。
3 工艺流程
集成电路的制造工艺是由多种单道工艺组合而
成的,单道工艺通常归为以下三类: (1)薄膜制备工艺:包括外延生长、氧化工 艺、薄膜淀积工艺,如制造金属、绝缘层等。 (2)图形转移工艺:包括光刻工艺和刻蚀工 艺。 (3)掺杂工艺:包括扩散工艺和离子注入工 艺。
3 工艺流程
以上工艺重复、组合使用,就形成集成电路
1 制造工艺简介
(e)光刻工艺处理后的晶片(金属化工艺) (f)完整工艺处理后的晶片(光刻工艺)
1 制造工艺简介
工艺总结一:集成电路的制造是平面工艺,
需要多层加工 工艺总结二:芯片是由底层P-Sub到最上层 的不同图形层次叠加而成。
2 材料的作用
表2.1
集成电路中所需要的材料 导体:低值电阻,电容极板,器件边线,接 触,焊盘 半导体:衬底 绝缘体:电容介质,栅氧化层,横向隔离, 层间隔离,钝化层
4、
PN结 单向导电性:整流、开关、稳压二极管。 、5 MOS场效应管 (1)MOS管结构 NMOS、PMOS和CMOS MOS管是左右对称的,漏和源可以互换,只 是外加电压不同。
3.1半导体基础知识
漏区和源区称为有源区,是由掺杂形成的。
栅:铝栅和硅栅(性能更好) MOS晶体管尺寸定义:宽和长 (2)MOS管工作原理 反型层、沟道、饱和。 饱和之后,沟道形成楔型,电流不再增加。
目的:按照集成电路的设计要求,在SiO2或
金属层上面刻蚀出与光刻掩膜版完全相对应 的几何图形,以实现选择性扩散或金属布线 的目的。
5 常用工艺之二:光刻
主要步骤 (1)在晶圆上涂一层光刻胶,并将掩膜版 放在其上。 (2)曝光。正胶感光部分易溶解,负胶则 相反。 (3)显影、刻蚀。 (4)去除光刻胶
的完整制造工艺。 光刻掩模版(mask):版图完成后要交付给 代工厂,将版图图形转移到晶圆上,就需要 经过一个重要的中间环节——制版,即制造 一套分层的光刻掩膜版。
3 工艺流程
制版——光刻掩膜版就是讲电路版图的各个
层分别转移到一种涂有感光材料的优质玻璃 上,为将来再转移到晶圆做准备,这就是制 版。 每层版图都有相对应的掩膜版,并对应于不 同的工艺。
材料制备
1 制造工艺简介
(a)n型硅晶片原材料(b)氧化后的晶片
1 制造工艺简介
(c)涂敷光刻胶(d)光刻胶通过掩膜版曝
光
1 制造工艺简介
(a)显影后的晶片(b)SiO2去除后的晶片 氧化工艺
1 制造工艺简介
(c)光刻工艺处理后的晶片 (d)扩散或离子注入形成PN结 光刻和刻蚀工艺;扩散和离子注入工艺
集成电路版图设计与验证
第三章 半导体制造工艺简介
学习目的
(1)了解晶体管工作原理,特别是MOS管
的工作原理 (2)了解集成电路制造工艺 (3)了解COMS工艺流程
主要内容
3.1半导体基础知识
工艺流程 3.3 工艺集成
3.2
3.1半导体基础没有 明显的自由电子。
(湿法刻蚀) 各向同性腐蚀:例如在铝线的刻蚀过程中, 加入含碳的气体,以形成侧壁钝化,这样可 以获得各向异性刻蚀效果