高考不等式易错题解析

合集下载

高考数学压轴专题(易错题)备战高考《不等式》难题汇编含答案

高考数学压轴专题(易错题)备战高考《不等式》难题汇编含答案
新高考数学《不等式》练习题
一、选择题
1.设 , 满足 ,向量 , ,则满足 的实数 的最小值为()
A. B. C. D.
【答案】B
【解析】
【分析】
先根据平面向量垂直的坐标表示,得 ,根据约束条件画出可行域,再利用 的几何意义求最值,只需求出直线 过可行域内的点C时,从而得到 的最小值即可.
【详解】
解:不等式组表示的平面区域如图所示:因为 , ,
6.已知 、 满足约束条件 ,若 ,则实数 的最小值为()
A. B. C. D.
【答案】C
【解析】
【分析】
作出不等式组所表示的可行域,利用目标函数的几何意义求出 的最小值,进而可得出实数 的最小值.
【详解】
作出不等式组 所表示的可行域如下图所示,
表示原点到可行域内的点 的距离的平方,
原点到直线 的距离的平方最小, .
10.已知实数 , 满足 ,且 ,则 的最小值为().
A. B. C. D.
【答案】B
【解析】
【分析】
令 ,用 表示出 ,根据题意知 ,利用 的代换后根据基本不等式即可得 的最小值.
【详解】

令 ,解得 ,则 , ,
当且仅当 ,即 ,即
即 时取等号.
故选:B.
【点睛】
本题主要考查的是利用基本不等式求最值的问题,换元后根据1的代换是解题的关键,考查学生的计算能力,是中档题.
【详解】
当 时,即当 时,则有 ,该不等式恒成立,合乎题意;
当 时,则 ,解得 .
综上所述,实数 的取值范围是 .
故选:D.
【点睛】
本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.

(易错题)高中数学必修五第三章《不等式》测试题(含答案解析)(4)

(易错题)高中数学必修五第三章《不等式》测试题(含答案解析)(4)

一、选择题1.已知正数a 、b 满足1a b +=,则411a ba b+--的最小值是( ) A .1B .2C .4D .82.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,23.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .954.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .15.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n+的最小值为( ) A .23B .43C .2D .46.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .327.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,38.下列函数中,最小值为4的是( ) A .4y x x=+B .()4sin 0πsin y x x x=+<< C .e 4e x x y -=+D.y =9.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭10.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<11.设a=3x 2﹣x+1,b=2x 2+x ,则( ) A .a >bB .a <bC .a≥bD .a≤b12.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝二、填空题13.若0x >,0y >,若()()144x y --=则x y +的最小值为_________.14.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.15.满足关于x 的不等式()()20ax b x -->的解集为1{|2}2x x <<,则满足条件的一组有序实数对(),a b 的值可以是______.16.已知0,0a b >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____. 17.已知正数a ,b 满足(1)(1)1a b --=,则4a b +的最小值等于________.18.已知正实数,x y 满足x y xy +=,则3211x yx y +--的最小值为______. 19.已知0m >,0n >,且111223m n +=++,则2m n +的最小值为________. 20.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sincos66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.三、解答题21.已知函数2(1)()a x af x bx c-+=+(a ,b ,c 为常数).(1)当1,0b c ==时,解关于x 的不等式()1f x >;(2)当0,2b c a =>=时,若()1f x <对于0x >恒成立,求实数b 的取值范围. 22.已知函数()()20,,f x ax bx c a b R c R =++>∈∈.(1)若函数()f x 的最小值是()10f -=,且1c =,()()(),0,0f x x F x f x x ⎧>⎪=⎨-<⎪⎩,求()()22F F +-的值;(2)若1,0a c ==,且()1f x ≤在区间(]0,1上恒成立,试求b 的取值范围.23.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值.24.(1)若关于x 的不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1恒成立,求实数m 的取值范围. (2)解关于x 的不等式(x ﹣1)(ax ﹣1)>0,其中a <1.25.某村计划建造一个室内面积为800平方米的矩形蔬菜温室,温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地.(1)设矩形温室的一边长为x 米,请用S 表示蔬菜的种植面积,并求出x 的取值范围; (2)当矩形温室的长、宽各为多少时,蔬菜的种植面积最大?最大种植面积为多少. 26.在等腰直角三角形ABC 中,AB =AC =3,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P (如图),光线QR 经过ABC 的重心,若以点A 为坐标原点,射线AB ,AC 分别为x 轴正半轴,y 轴正半轴,建立平面直角坐标系.(1)AP 等于多少?(2)D (x ,y )是RPQ 内(不含边界)任意一点,求x ,y 所满足的不等式组,并求出D (x ,y )到直线2x +4y +1=0距离的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 化简得出441511a b a b b a +=+---,将代数式14a b+与+a b 相乘,展开后利用基本不等式可求得411a b a b +--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a ba ab b a b a--+=+=+---()41454a b a b b a b a ⎛⎫=++-=+≥= ⎪⎝⎭,当且仅当2b a =时,等号成立,因此,411a ba b +--的最小值是4. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意,当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 3.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242 x yzx+-=-,并理解z的几何意义,利用数形结合分析问题.4.C解析:C【分析】作出约束条件的可行域,将目标函数转化为122zy x=-,利用线性规划即可求解.【详解】解:由2z x y=-得122zy x=-,作出x,y满足约束条件424x yx yx+≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC):平移直线122zy x=-,由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.5.C解析:C 【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值. 【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=, ∵0mn >,24m n +=,∴0,0m n >>,∴12112141(2)442444n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n mm n=,即1,2m n ==时等号成立. 故选:C . 【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.6.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.7.C解析:C 【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.8.C解析:C 【分析】逐个分析每个选项,结合基本不等式和函数性质即可判断. 【详解】 A 项,4y x x=+没有最值,故A 项错误; B 项,令sin t x =,则01t <≤,4y t t=+,由于函数在(]0,1上是减函数, 所以min ()(1)5f x f ==,故B 项错误;C 项,4e 4e e 4e x x x xy -=+=+≥=,当且仅当4e e x x =, 即e 2x =时,等号成立,所以函数e 4e xxy -=+的最小值为4,故C 项正确;D 项,y =≥=,时,等号成立,所以函数y =D项错误. 故选:C . 【点睛】本题考查基本不等式的应用,属于基础题.9.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()22332x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B.【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.10.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.11.C解析:C 【解析】试题分析:作差法化简a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0. 解:∵a=3x 2﹣x+1,b=2x 2+x , ∴a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0, ∴a≥b , 故选C .考点:不等式比较大小.12.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.【分析】先整理已知条件得则再利用基本不等式求解即可【详解】由得又得则当且仅当即时取等号故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项解析:【分析】 先整理已知条件得411y x +=,则()41y x x y x y +⎛⎫+=+ ⎪⎝⎭,再利用基本不等式求解即可. 【详解】由()()144x y --=, 得40xy x y --=, 又0x >,0y >, 得411y x+=,则()445529 41x y x yx y x yy xx y xy+⎛⎫+=+=++≥+⨯=⎪⎝⎭,当且仅当4x yy x=即3,6x y==时取等号.故答案为:9.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.2【分析】据题意由于MN为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三解析:2【分析】据题意,由于M,N为平面区域401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a⋅≤(当且仅当MN与a共线同向时等号成立)从而求得最大值.【详解】由401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立), 即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离.2=, 故答案为:2 【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题.15.【分析】根据题意知不等式对应方程的实数根由此求出写出满足条件的一组有序实数对即可【详解】不等式的解集为方程的实数根为和2且即则满足条件的一组有序实数对的值可以是故答案为【点睛】本题考查了一元二次不等 解析:()2,1--【分析】根据题意知,不等式对应方程的实数根,由此求出20a b =<,写出满足条件的一组有序实数对即可. 【详解】不等式()()20ax b x -->的解集为1{|2}2x x <<, ∴方程()()20ax b x --=的实数根为12和2,且012a b a <⎧⎪⎨=⎪⎩,即20a b =<,则满足条件的一组有序实数对(),a b 的值可以是()2,1--. 故答案为()2,1--. 【点睛】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.16.【分析】先将问题转化为恒成立再结合基本不等式求解即可得答案【详解】解:根据题意若恒成立等价于恒成立由于当且仅当即时等号成立所以故答案为:【点睛】本题考查利用基本不等式解决恒成立问题是基础题解析:(],12-∞【分析】 先将问题转化为()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,再结合基本不等式求解即可得答案. 【详解】解:根据题意,0,0a b >>,若313m a b a b +≥+恒成立等价于()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,由于0,0a b >>,()31993336612b a a b a b a b a b a b ⎛⎫++=+++=++≥+= ⎪⎝⎭,当且仅当9b aa b=,即3a b =时等号成立. 所以12m ≤ 故答案为:(],12-∞ 【点睛】本题考查利用基本不等式解决恒成立问题,是基础题.17.9【分析】将已知等式变形为然后利用乘1法将进行变形利用基本不等式即可求得【详解】因为所以即又ab 为正数所以当且仅当时等号成立故的最小值等于故答案为:9【点睛】本题考查利用基本不等式求最值关键是将已知解析:9 【分析】 将已知等式变形为111a b+=,然后利用“乘1法”将4a b +进行变形,利用基本不等式即可求得. 【详解】因为(1)(1)1a b --=,所以0ab a b --=,即111a b+=.又a ,b 为正数,所以1144(4)1459b a a b a b a b a b ⎛⎫+=++=+++≥+= ⎪⎝⎭,当且仅当3a =,32b =时,等号成立. 故4a b +的最小值等于9. 故答案为:9 【点睛】本题考查利用基本不等式求最值,关键是将已知条件适当变形,得到111a b+=,以便利用“乘1法”,利用基本不等式求4a b +的最小值.利用基本不等式求最值要注意“正、定、等”的原则.18.【详解】正实数满足故得到等号成立的条件为点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得的条件)的条件才解析:5+. 【详解】正实数,x y 满足x y xy +=,1111132321111111111x y x y x y x y x y yx ⎧=-⎪⎪+=⇒⇒+=+⎨--⎪--=-⎪⎩故得到113121323211=5++111111x 1111y x y x x y y x y x y⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=++≥------()()1111-y x ⎫⎫-⎪⎪⎭⎭. 点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.19.【分析】先换元令则;再采用乘1法求出的最小值即可得解【详解】解:令则且而当且仅当即时等号成立的最小值为故答案为:【点睛】本题考查利用基本不等式求最值采用换元法和乘1法是解题的关键考查学生的转化思想分解析:3+【分析】先换元,令2s m =+,2t n =+,则1113s t +=,226m n s t +=+-;再采用“乘1法”,求出2s t +的最小值即可得解.【详解】解:令2s m =+,2t n =+,则2s >,2t >,且1113s t +=,2(2)2(2)26m n s t s t ∴+=-+-=+-,而112223(2)()3(12)3(32)3(322)st s ts t s t s t t s t s+=++=+++⨯+=+,当且仅当2s tt s=,即s =时,等号成立. 2s t ∴+的最小值为3(3+,2263(322)63m n s t ∴+=+-+-=+故答案为:3+ 【点睛】本题考查利用基本不等式求最值,采用换元法和“乘1法”是解题的关键,考查学生的转化思想、分析能力和运算能力,属于中档题.20.【分析】由已知结合辅助角公式可求然后结合基本不等式即可求解【详解】由题意可知(为辅助角)由题意可得故由解得故答案为【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用属于中档题解析:22⎡-⎢⎣⎦【分析】由已知结合辅助角公式可求2294a b +=,然后结合基本不等式22222a b a b ++⎛⎫≤ ⎪⎝⎭即可求解. 【详解】由题意可知sincos666y a t b t c t c πππθ⎛⎫=++=++ ⎪⎝⎭,(θ为辅助角)由题意可得3=,故2294a b +=, 由2229228a b a b ++⎛⎫≤= ⎪⎝⎭,解得22a b -≤+≤,故答案为22⎡-⎢⎣⎦. 【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用,属于中档题.三、解答题21.(1)见解析(2)1b >+. 【分析】(1)原不等式转化为()()10-+<x a x 然后利用分类讨论思想进行分类求解; (2)原不等式转化22(0)1x b x x +>>+ ,设()()222151214x t g x x t t t+===≤+-++-11b =⇒>. 【详解】(1)当1,0b c ==时,()()()21100f x x a x a x >⇔---<≠()()10x a x ⇔-+<,讨论:①当1a <-时,原不等式的解集为(),1a -; ②当1a =-时,原不等式的解集为φ; ③当10a -<≤时,原不等式的解集为()1,a -; ④当0a >时,原不等式的解集为()()1,00,a -⋃. (2)当,2b c a ==时,()2211x f x bx b +<⇔<+22(0)1x b x x +⇔>>+ 设()221x g x x +=+,令()=22t x t +>, 则()()2221515512254214x t g x t x t t t+===≤=+=+--++-,时取等号, 故512b >+. 【点睛】关键点睛:解题的关键在于利用二次函数的性质,进行数形结合的讨论,难点在于对a 的分类讨论;由参变分离得到函数不等式区间D 上恒成立,一般有以下结论:min 1.():,()a f x x D a f x <∈<即可. max 2.():,()a f x x D a f x >∈>即可.22.(1) 8; (2)[]2,0-. 【分析】(1)根据函数()f x 的最小值是()10f -=且1c =,建立方程关系,求出a b 、的值,从而可求()()22F F +-的值;(2)将不等式()1f x ≤在区间(]0,1上恒成立等价于1b x x ≤-且1b x x ≥--恒成立,转化为求函数的最值即可得到结论. 【详解】 (1)由已知c =1,a -b +c =0,且,解得a =1,b =2,∴f (x )=(x +1)2.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立. 又1x -x 的最小值为0,-1x-x 的最大值为-2 ∴-2≤b ≤0.故b 的取值范围是[-2,0]. 【点睛】本题主要考查二次函数的解析式,求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 23.(1)1;(2)9. 【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值; (2)先求得141b a+=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值. 【详解】 (1)不等式2122x x mx -+>可化为21(2)02x m x +-<,即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --, 又不等式的解集为{|02}x x <<, 所以2(2)2m --=,解得1m =; (2)由正实数a ,b 满足4a b mab +=, 所以4a b ab +=,所以141b a+=, 所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号, 所以+a b 的最小值为9. 【点睛】本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 24.(1) m 34->;(2)见解析 【分析】(1)利用△<0列不等式求出实数m 的取值范围;(2)讨论0<a <1、a =0和a <0,分别求出对应不等式的解集. 【详解】(1)不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1化为(m 2+1)x 2﹣(2m ﹣1)x +1>0, 由m 2+1>0知,△=(2m ﹣1)2﹣4(m 2+1)<0, 化简得﹣4m ﹣3<0,解得m 34->, 所以实数m 的取值范围是m 34->; (2)0<a <1时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)>0,且1a>1, 解得x <1或x 1a>, 所以不等式的解集为{x |x <1或x 1a>}; a =0时,不等式(x ﹣1)(ax ﹣1)>0化为﹣(x ﹣1)>0, 解得x <1,所以不等式的解集为{x |x <1};a <0时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)<0,且1a<1, 解得1a<x <1,所以不等式的解集为{x |1a<x <1}.综上知,0<a <1时,不等式的解集为{x |x <1或x 1a>}; a =0时,不等式的解集为{x |x <1}; a <0时,不等式的解集为{x |1a<x <1}. 【点睛】本题考查了不等式恒成立问题和含有字母系数的不等式解法与应用问题,是基础题. 25.(1)()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 4400x <<;(2)长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【分析】(1)根据矩形温室的一边长为xm ,求出另一边长,然后根据矩形的面积公式表示即可,再由解析式即可列出关于x 的不等式,从而得出x 的取值范围;(2)直接利用基本不等式可求出面积的最大值,注意等号成立的条件,进而得出矩形温室的长、宽. 【详解】解:(1)矩形的蔬菜温室一边长为x 米,则另一边长为800x米,因此种植蔬菜的区域面积可表示()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 由4080020x x->⎧⎪⎨->⎪⎩得: 4400x <<;(2)()8001600 428082808S x x x x =-⋅-=-+≤⎛⎫⎛⎫⎪ ⎪⎝-⎝⎭⎭2808160648m =-=,当且仅当1600x x=,即()404,400x =∈时等号成立.因此,当矩形温室的两边长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【点睛】本题考查了函数模型的选择与应用,以及利用基本不等式求函数的最值,属于中档题.26.(1)||1AP =;(2)x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩,D (x ,y )到直线2x +4y +1=0距离的取值范围为. 【分析】(1)建立坐标系,设点P 的坐标,可得P 关于直线BC 的对称点1P 的坐标,和P 关于y 轴的对称点2P 的坐标,由1P ,Q ,R ,2P 四点共线可得直线的方程,由于过ABC 的重心,代入可得关于a 的方程,解之可得P 的坐标,进而可得AP 的值;(2)先求出,,RQ PR PQ 所在直线的方程,即得x ,y 所满足的不等式组,再利用数形结合求出D (x ,y )到直线2x +4y +1=0距离的取值范围. 【详解】(1)以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示. 则(0,0)A ,(3,0)B ,(0,3)C .设ABC ∆的重心为E ,则E 点坐标为(1,1),设P 点坐标为(,0)m ,则P 点关于y 轴对称点1P 为(,0)m -, 因为直线BC 方程为30x y +-=, 所以P 点关于BC 的对称点2P 为(3,3)m -,根据光线反射原理,1P ,2P 均在QR 所在直线上,∴12E P E P k k =, 即113113mm -+=+-,解得,1m =或0m =.当0m =时,P 点与A 点重合,故舍去.∴1m =.所以||1AP =.(2)由(1)得2P 为(3,2),又1(1,0)-P ,所以直线RQ 的方程为210x y -+=; 令210x y -+=中10,2x y =∴=,所以1(0,),2R 所以直线PR 的方程为210x y +-=; 联立直线BC 和RQ 的方程30210x y x y +-=⎧⎨-+=⎩得54(,)33Q ,所以直线PQ 的方程为220x y --=.D (x ,y )是RPQ 内(不含边界)任意一点,所以x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩. 直线2410x y ++=和直线PR 22351024+ 点Q 到直线2410x y ++=2254|2+4+1|293353024⨯⨯+所以D (x ,y )到直线2x +4y +1=0距离的取值范围为32955)1030,.【点睛】本题主要考查二元一次不等式组对应的平面区域,考查线性规划问题,考查解析法和直线方程的求法,意在考查学生对这些知识的理解掌握水平.。

高考数学压轴专题(易错题)备战高考《不等式》技巧及练习题附答案

高考数学压轴专题(易错题)备战高考《不等式》技巧及练习题附答案

新高中数学《不等式》专题解析一、选择题1.已知函数()2f x ax bx =+,满足()()241f f -≥≥,()12f -≤,则()2f 的最大值为( ) A .12 B .13C .14D .15【答案】C 【解析】 【分析】根据已知条件可得,a b 满足的不等式2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,作出不等式组所表示的平面区域,又()242f a b =+,利用线性规划即可求出()2f 的最大值.【详解】由已知得2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,可得(),P a b 的表示的平面区域如图:可求出()3,1A ,()2,2B ,()0,2C -, 目标函数()242z f a b ==+,可化为122b a z =-+,当直线过点A 时,max 14z =. 故选:C. 【点睛】本题主要考查求线性约束条件下的最值计算,关键是根据,a b 满足的不等式作出可行域,并将目标函数()242z f a b ==+变形为122b a z =-+进行平移,找到截距的最大值.2.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y =-+的最大值为n ,则2n x x ⎛- ⎪⎝⎭的展开式中2x 项的系数为( ) A .60 B .80C .90D .120【答案】B 【解析】 【分析】画出可行域和目标函数,根据平移得到5n =,再利用二项式定理计算得到答案. 【详解】如图所示:画出可行域和目标函数,32z x y =-+,即322zy x =+,故z 表示直线与y 截距的2倍, 根据图像知:当1,1x y =-=时,32z x y =-+的最大值为5,故5n =.52x x ⎛- ⎪⎝⎭展开式的通项为:()()35552155221rr r r r r r r T C x C xx ---+⎛=⋅-=⋅⋅-⋅ ⎪⎝⎭, 取2r =得到2x 项的系数为:()225252180C -⋅⋅-=.故选:B .【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.3.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( ) A .(,1)(3,)-∞-+∞U B .(1,3)- C .(1,3) D .(,1)(3,)-∞+∞U【答案】A 【解析】 【分析】由0ax b ->的解集,可知0a >及1ba=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集. 【详解】由0ax b ->的解集为()1,+?,可知0a >且1ba=, 令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U , 故选:A. 【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.4.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤2n ; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值. A .2 B .3 C .4 D .5【答案】C 【解析】 【分析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断. 【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得()22m n m nm n m +--≤=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确. 故选:C 【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.5.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.6.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( )A .5B 45C 5D 25【答案】C 【解析】 【分析】作出不等式组所表示的平面区域,标出点A 的位置,利用图形可观察出使得AB 最小时点B 的位置,利用两点间的距离公式可求得AB 的最小值.【详解】作出不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示:联立0260x y x y -=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩,由图知AB 的最小值即为()4,3A 、()2,2B 两点间的距离, 所以AB ()()2242325-+-=故选:C . 【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.7.已知变量,x y 满足2402400x y x y x +-≥⎧⎪+-≤⎨⎪≥⎩,则24x y --的最小值为( )A 85B .8C 165D .163【答案】D 【解析】 【分析】222424512x y x y ----=+222412x y --+表示点(,)x y 到直线240x y --=的距离,作出可行域,数形结合即可得到答案. 【详解】因为222424512x y x y ----=+,所以24x y --可看作为可行域内的动点到直线240x y --=5点44(,)33A 到直线240x y --=的距离d 最小,此时224424333512d -⨯-==+, 所以24x y --1653d =. 故选:D. 【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.8.若实数x ,y 满足40,30,0,x y x y y --≤⎧⎪-≥⎨⎪≥⎩,则2x y y +=的最大值为( )A .512B .8C .256D .64【答案】C 【解析】 【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可,根据图像平移得到答案. 【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x yy +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .12【答案】C 【解析】 【分析】 【详解】分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出3a =,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值. 详解:作出不等式组对应的平面区域如图所示:则(,),(,)A a a B a a -,所以平面区域的面积1292S a a =⋅⋅=, 解得3a =,此时(3,3),(3,3)A B -,由图可得当2z x y =+过点(3,3)A 时,2z x y =+取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.10.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.11.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n+的最小值为( ) A .92B .9C . 6D .3【答案】D 【解析】 【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭ ()122152522333n m m n ⎛⎫≥+⨯=+⨯= ⎪ ⎪⎝⎭. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n ∴+的最小值为3. 故选:D . 【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.12.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB 的最大值是( )A .4B .3C .2D 【答案】B 【解析】 【分析】 【详解】试题分析:设,A B 在直线l 上的投影分别是11,A B ,则1AF AA =,1BF BB =,又M是AB 中点,所以111()2MN AA BB =+,则1112MN AA BB AB AB +=⋅2AF BF AB +=,在ABF ∆中222AB AF BF =+22cos3AF BF π-22AF BF AF BF =++2()AF BF AF BF =+-2()AF BF ≥+2()2AF BF +-23()4AF BF =+,所以22()43AF BF AB+≤,即AF BF AB +≤,所以MN AB ≤,故选B .考点:抛物线的性质. 【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦AB 的中点M 到准线的距离首先等于,A B 两点到准线距离之和的一半,然后转化为,A B 两点到焦点F 的距离,从而与弦长AB 之间可通过余弦定理建立关系.13.已知ABC V 外接圆的半径2R =,且2sin 2AA =.则ABC V 周长的取值范围为( )A .B .(4,C .4+D .(4+【答案】C 【解析】 【分析】由2sin 2A A =及倍角公式可得23A π=,2sin a R A ==得2212b c bc =++,再利用基本不等式及三角形两边之和大于第三边求出b c +的取值范围即可得到答案. 【详解】由题意,22cos 112A A -=-,即cos 1A A =-,可化为33A π⎛⎫-= ⎪⎝⎭,即sin 32A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以33A ππ-=,即23A π=,2sin a R A ==ABC V 的内角A ,B ,C ,的对边分别为a ,b ,c ,由余弦定理得,2212b c bc =++,因为222b c bc +≥(当且仅当b c =时取“=”),所以22123b c bc bc =++≥,即4bc ≤,又因为22212()b c bc b c bc =++=+-,所以2()124bc b c =+-≤,故4b c +≤,则4a b c ++≤+b c a +>,所以2a b c a ++>=4a b c +++≤.故ABC V 周长的取值范围为4+.故选:C 【点睛】本题考查利用余弦定理求三角形周长的取值范围,涉及到辅助角公式、基本不等式求最值,考查学生的运算求解能力,是一道中档题.14.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.15.已知函数1()cos 2(2)sin 2f x m x m x =+-,其中12m ≤≤,若函数()f x 的最大值记为()g m ,则()g m 的最小值为( ) A .14-B .1 C.D1【答案】D 【解析】 【分析】2()sin (2)sin 2mf x m x m x =-+-+,令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,结合12m ≤≤可得()221122(2)31144t m m m g m y m m m=-+-===+-,再利用基本不等式即可得到答案.【详解】 由已知,221()(12sin )(2)sin sin (2)sin 22m f x m x m x m x m x =-+-=-+-+, 令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,因为12m ≤≤, 所以对称轴为2111[0,]222m t m m -==-∈,所以 ()221122(2)3111144t m m m g m y m m m =-+-===+-≥=,当且仅当m =. 故选:D 【点睛】本题考查换元法求正弦型函数的最值问题,涉及到二次函数的最值、基本不等式的应用,考查学生的数学运算能力,是一道中档题.16.过抛物线24x y =的焦点F 作倾斜角为锐角的直线l ,与抛物线相交于A ,B 两点,M 为线段AB 的中点,O 为坐标原点,则直线OM 的斜率的取值范围是( )A.2⎫+∞⎪⎪⎣⎭B .[)1,+∞ C.)+∞D .[)2,+∞【答案】C 【解析】 【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果. 【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=, 设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==, M Q 在直线l 上,200121y kx k ∴=+=+,20021122OMy k k k x k k +∴===+≥=k =时取等号), 即直线OM斜率的取值范围为)+∞. 故选:C . 【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.17.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.18.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( ) A .log 3log 3a b > B .336a b +> C .133ab a b ++> D .b a a b >【答案】B 【解析】 【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立. 【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =; 因为0a b >>,1ab >,所以23323323236a b a b a b ab++>=>>,综上选B. 【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.19.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3 B .(),1-∞-C .()1,1-D .()3,1-【答案】C【解析】 【分析】解一元二次不等式求得M ,然后求两个集合的交集. 【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C. 【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.20.已知不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则实数a 的取值范围是( ) A .(,5]-∞ B .[5,)+∞C .(,4]-∞D .[4,)+∞【答案】C 【解析】若不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则4a x x≤+对于任意的[1,3]x ∈恒成立,∵当[1,3]x ∈时,4[4,5]x x+∈,∴4a ≤,即实数a 的取值范围是(,4]-∞,故选C .【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 本题是利用方法 ① 求得a 的取值范围的.。

高考数学压轴专题专题备战高考《不等式》易错题汇编附答案解析

高考数学压轴专题专题备战高考《不等式》易错题汇编附答案解析

新数学高考《不等式》专题解析(1)一、选择题1.已知离散型随机变量X 服从二项分布~(,)X B n p ,且()4E X =,()D X q =,则11p q+的最小值为( ) A .2 B .52C .94D .4【答案】C 【解析】 【分析】根据二项分布()~X B n p ,的性质可得()E X ,()D X ,化简即44p q +=,结合基本不等式即可得到11p q+的最小值.【详解】离散型随机变量X 服从二项分布()X B n p :,, 所以有()4E X np ==,()()1D X q np p ==-(,所以44p q +=,即14qp +=,(0p >,0q >) 所以11114q p p q p q ⎛⎫⎛⎫+=++= ⎪⎪⎝⎭⎝⎭ 5592144444q p q p p q p q ⎛⎫++≥⨯=+= ⎪⎝⎭, 当且仅当423q p ==时取得等号.故选C . 【点睛】本题主要考查了二项分布的期望与方差,考查了基本不等式,属于中档题.2.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( )A .10B .4C .2D .1【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值.【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++ ()002536643y y =++-≥=+ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.3.已知实数x ,y 满足不等式||x y +≥,则22x y +最小值为( )A .2B .4C .D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,x y +≥ (2)当0y <时,x y -≥如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2d ==,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.4.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解. 【详解】 由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=,即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=, 所以()2tan tan 2tan 2tan 11tan tan 13tan 3tan tan αββαβαββββ--===+++,又因为β为锐角,所以tan 0β>,根据基本不等式23 1233tantanββ≤=+当且仅当3tanβ=时等号成立,因为,22ππαβ⎛⎫-∈-⎪⎝⎭,且函数tany x=在区间,22ππ⎛⎫-⎪⎝⎭上单调递增,则αβ-的最大值为6π.故选:B.【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.5.已知实数x、y满足约束条件10330x yx yy-+≥⎧⎪--≤⎨⎪≥⎩,则2z x y=+的最大值为()A.1-B.2C.7D.8【答案】C【解析】【分析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点C时,z取得最大值.【详解】解:作出约束条件表示的可行域是以(1,0),(1,0),(2,3)-为顶点的三角形及其内部,如下图表示:当目标函数经过点()2,3C时,z取得最大值,最大值为7.故选:C.【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.6.已知0a >,0b >,且()122y a b x =+为幂函数,则ab 的最大值为( ) A .18B .14C .12D .34【答案】A 【解析】 【分析】根据()122y a b x =+为幂函数,得到21a b +=,再将ab 变形为ab 122a b =⋅利用基本不等式求解. 【详解】因为()122y a b x =+为幂函数, 所以21a b +=, 又因为0a >,0b >,所以ab 2112122228a b a b +⎛⎫=⋅≤= ⎪⎝⎭,当且仅当21a b +=,2a b =即11,24a b ==取等号. 所以ab 的最大值为 18. 故选:A 【点睛】本题主要考查幂函数的定义和基本不等式的应用,还考查运算求解的能力,属于中档题.7.已知107700,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,表示的平面区域为D ,若“(,),2x y x y a ∃+>”为假命题,则实数a 的取值范围是( ) A .[5,)+∞ B .[2,)+∞C .[1,)+∞D .[0,)+∞【答案】A 【解析】 【分析】作出不等式组表示的可行域,结合目标函数的几何意义可得目标函数最大值,再根据特称命题和全称命题的真假关系得出“(,),2x y x y a ∀+≤”为真命题,由恒等式的思想可得实数a 的取值范围.【详解】绘制不等式组表示的可行域如图中阴影部分(含边界)所示,令2Z x y =+得2y x Z =-+,结合目标函数的几何意义可得目标函数在点A 处取得最大值, 联立直线方程10770x y x y -+=⎧⎨--=⎩得点47,33A ⎛⎫⎪⎝⎭,所以2Z x y =+的最大值为5,因为“(,),2x y R x y a ∃∈+>”为假命题,所以“(,),2x y x y a ∀+≤”为真命题,所以实数a 的取值范围是5a ≤, 故选:A.【点睛】本题考查线性规划问题的最值,以及特称命题与全称命题的关系和不等式的恒成立思想,属于中档题.8.已知实数x ,y 满足20x y >>,且11122x y x y+=-+,则x y +的最小值为( ). A .335+ B .4235+ C .2435+ D .3435+ 【答案】B 【解析】 【分析】令22x y m x y n-=⎧⎨+=⎩,用,m n 表示出x y +,根据题意知111m n +=,利用1的代换后根据基本不等式即可得x y +的最小值. 【详解】20,20,20x y x y x y >>∴->+>Q ,令22x y m x y n -=⎧⎨+=⎩,解得2525m n x n my +⎧=⎪⎪⎨-⎪=⎪⎩,则0,0m n >>,111m n +=,223111555m n n m n m x y m n +-+⎛⎫⎛⎫∴+=+⨯=⨯+ ⎪⎪⎝⎭⎝⎭131313(42)55n m n mm n m n⎛⎫=⨯+++≥⨯+⋅ ⎪⎝⎭4235+=当且仅当3n mm n=,即3m n =,即23(2)x y x y -=+ 即97333,x y +-==时取等号. 故选:B . 【点睛】本题主要考查的是利用基本不等式求最值的问题,换元后根据1的代换是解题的关键,考查学生的计算能力,是中档题.9.若,x y 满足约束条件360,60,1,x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则z x y =-的最小值为( )A .4B .0C .2-D .4-【答案】D 【解析】 【分析】画出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,目标函数z x y =-,可化为直线y x z =-当直线y x z =-经过A 时,z 取得最小值, 又由3601x y y -+=⎧⎨=⎩,解得(3,1)A -,所以目标函数的最小值为min 314z =--=-. 故选:D .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.10.过抛物线24x y =的焦点F 作倾斜角为锐角的直线l ,与抛物线相交于A ,B 两点,M 为线段AB 的中点,O 为坐标原点,则直线OM 的斜率的取值范围是( ) A.2⎫+∞⎪⎪⎣⎭B .[)1,+∞C.)+∞D .[)2,+∞【答案】C 【解析】 【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果. 【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=, 设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==, M Q 在直线l 上,200121y kx k ∴=+=+,20021122OMy k k k x k k +∴===+≥=2k =时取等号), 即直线OM斜率的取值范围为)+∞. 故选:C . 【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.11.在三角形ABC 中,给出命题:p “2ab c >”,命题:q “3C π<”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】由余弦定理将2c 化为222cos a b ab C +-,整理后利用基本不等式求得12cos 2C +>,求出C 范围,即可判断充分性,取4a =,7b =,6c =,则可判断必要性不成立,两者结合可得正确的选项.【详解】充分性:由余弦定理,2222cos c a b ab C =+-, 所以2ab c >,即222cos ab a b ab C >+-,整理得,2212cos a b C ab++>,由基本不等式,222a b ab +≥=,当且仅当a b =时等号成立, 此时,12cos 2C +>,即1cos 2C >,解得3C π<, 充分性得证;必要性:取4a =,7b =,6c =,则164936291cos 247562C +-==>⨯⨯,故3C π<,但228ab c =<,故3C π<推不出2ab c >.故必要性不成立; 故p 是q 的充分不必要条件. 故选:A 【点睛】本题主要考查充分必要条件的判断、余弦定理的应用和基本不等式的应用,考查学生分析转化能力,属于中档题.12.在ABC ∆中,222sin a b c C ++=,则ABC ∆的形状是 ( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等边三角形【答案】D 【解析】 【分析】由余弦定理可知2222cos a b c ab C +-=,与已知条件相加,得到cos 3C π⎛⎫-⎪⎝⎭的表达式,利用基本不等式得到范围,结合其本身范围,得到cos 13C π⎛⎫-= ⎪⎝⎭,从而得到C 的大小,判断出ABC ∆的形状,得到答案. 【详解】由余弦定理可知2222cos a b c ab C +-=,222sin a b c C ++=两式相加,得到()22cos 2cos 3a b ab C C ab C π⎛⎫+=+=-⎪⎝⎭所以222cos 1322a b ab C ab ab π+⎛⎫-== ⎪⎝⎭≥,当且仅当a b =时,等号成立, 而[]cos 1,13C π⎛⎫-∈- ⎪⎝⎭所以cos 13C π⎛⎫-= ⎪⎝⎭, 因为()0,C π∈,所以2,333C πππ⎛⎫-∈- ⎪⎝⎭所以03C π-=,即3C π=,又a b =,所以ABC ∆是等边三角形, 故选D 项. 【点睛】本题考查余弦定理解三角形,基本不等式,余弦型函数的性质,判断三角形的形状,属于中档题.13.若两个正实数x ,y 满足142x y +=,且不等式2m 4yx m +<-有解,则实数m 的取值范围是 ( ) A .(1,2)- B .(,2)(1,)-∞-+∞U C .()2,1-D .(,1)(2,)-∞-+∞U【答案】D 【解析】 【分析】将原问题转化为求最值的问题,然后利用均值不等式求最值即可确定实数m 的取值范围. 【详解】 若不等式24y x m m +<-有解,即2()4min ym m x ->+即可, 142x y +=Q,1212x y∴+=, 则121221112121124422482y y x y x x x y y x ⎛⎫⎛⎫+=++=+++≥+=+=+⨯=+= ⎪ ⎪⎝⎭⎝⎭,当且仅当28x y y x=,即2216y x =,即4y x =时取等号,此时1x =,4y =, 即()24min yx +=,则由22m m ->得220m m -->,即()()120m m +->, 得2m >或1m <-,即实数m 的取值范围是()(),12,-∞-⋃+∞, 故选D . 【点睛】本题主要考查基本不等式的应用,利用不等式有解转化为最值问题是解决本题的关键.14.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos b C c B =,则111tan tan tan A B C++的最小值为( ) A.3BCD.【答案】A 【解析】 【分析】先根据已知条件,把边化成角得到B,C 关系式,结合均值定理可求. 【详解】∵2cos cos b C c B =,∴2sin cos sinCcos B C B =, ∴tan 2tan C B =.又A B C π++=, ∴()()tan tan tan A B C B C π=-+=-+⎡⎤⎣⎦22tan tan 3tan 3tan 1tan tan 12tan 2tan 1B C B BB C B B +=-=-=---,∴21112tan 111tan tan tan 3tan tan 2tan B A B C B B B-++=++27tan 36tan B B =+. 又∵在锐角ABC ∆中, tan 0B >,∴27tan 36tan 3B B +≥=,当且仅当tan 2B =时取等号,∴min111tan tan tan 3A B C ⎛⎫++=⎪⎝⎭,故选A. 【点睛】本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.15.已知M 、N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是( )A .17 B.342C .32D .172【答案】A 【解析】 【分析】先作可行域,再根据图象确定MN 的最大值取法,并求结果. 【详解】作可行域,为图中四边形ABCD 及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN 的最大值为BD=21417+=,选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.16.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( ) A .10 B .9C .8D .7【答案】B 【解析】 【分析】由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值. 【详解】 由2x y xy +=得:211x y+=()212222559x y x y x y x y y x ⎛⎫∴+=++=++≥+= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号) 2x y ∴+的最小值为9故选:B 【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.17.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3 B .(),1-∞-C .()1,1-D .()3,1-【答案】C 【解析】 【分析】解一元二次不等式求得M ,然后求两个集合的交集. 【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C. 【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.18.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32B .53 C .74D .95【答案】D 【解析】 【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案; 【详解】当2m n +=时,Q131111212n m n m n ++=++++++ 3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭,当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D 【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.19.已知,a b 都是正实数,则222a ba b a b+++的最大值是( )A .23-B .3-C .1D .43【答案】A 【解析】 【分析】设2,2m a b n a b =+=+,将222a b a b a b+++,转化为2222233a b n ma b a b m n +=--++,利用基本不等式求解. 【详解】设2,2m a b n a b =+=+, 所以22,33m n n ma b --==,所以222222233a b n m a b a b m n +=--≤-=-++, 当且仅当233n mm n=时取等号.所以222a b a b a b +++的最大值是2-. 故选:A 【点睛】本题主要考查基本不等式的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.20.已知变量,x y 满足约束条件121x y x +⎧⎨-⎩剟…,则x y y +的取值范围是( )A.12,23⎡⎤⎢⎥⎣⎦B .20,3⎛⎤ ⎥⎝⎦C .11,3⎛⎤-- ⎥⎝⎦D .3,22⎡⎤⎢⎥⎣⎦【答案】B 【解析】 【分析】作出不等式121x y x +⎧⎨-⎩剟…表示的平面区域,整理得:x y y +1x y =+,利用yx 表示点(),x y 与原点的连线斜率,即可求得113x y -<-…,问题得解. 【详解】将题中可行域表示如下图,整理得:x y y+1xy =+ 易知yk x=表示点(),x y 与原点的连线斜率, 当点(),x y 在()1.3A -处时,yk x=取得最小值-3. 且斜率k 小于直线1x y +=的斜率-1, 故31k -≤<-,则113x y -<-…, 故203x y y +<…. 故选B 【点睛】本题主要考查了利用线性规划知识求分式型目标函数的取值范围,考查转化能力,属于中档题.。

高考数学基本不等式的应用与常见错误评析

高考数学基本不等式的应用与常见错误评析

基本不等式及应⽤是⾼中阶段⼀个重要的知识点;其⽅法灵活,应⽤⼴范。

在学习过程中要求学⽣对公式的条件、形式、结论等要熟练掌握,才能灵活运⽤。

⼀、基本不等式:1.a,b∈R,a2+b2≥2ab,当且仅当a=b等号成⽴,2.a,b∈R+,a+b≥2-,当且仅当a=b等号成⽴。

⼆、问题1:设ab﹤0,则:-+-的取值范围是( )(A)(-∞ -2 ] (B)(-∞ 2] (C)[-2 +∞) (D)[2 +∞)解题辨析:常见错误解法:因为-与-的积为定值,其和有最⼩值,即-+-≥2所以选择答案(D)。

此解法是错的,是因为-﹤0-﹤0并不满⾜不等式:a+b≥2-中字母的条件;正确⽅法是:因ab﹤0,所以(--)>0,(--)>0(--)+(--)≥2,即-+-≤-2,正确答案是(A)问题2:已知x是正实数,求函数y=x2+-的最⼩值?解题辨析:常见错误解法:因x是正实数,y=x2+-≥2-,所以y=x2+-的最⼩值是2-,当且仅当x2=-,即x=-时,等号成⽴;此解法错误的原因是x2与-的积2-并不是定值。

正确结论:对于两个正数a与b,当和为定值,当且仅当a=b时,其积有值;当积为定值,当且仅当a=b时,其和有最⼩值。

正确⽅法是:因x是正实数,y=x2+-=x2+-+-≥3·■=3,当且仅当:x2=-等号成⽴,即x=1时,y=x2+-的最⼩值是3问题3:已知x,y都是正实数,且x+4y=1,求:-+-的最⼩值?解题辨析:常见错误解法:因为x,y都是正实数1=x+4y≥2-即1≥4->0,-+-≥2->0,两式相乘得-+-≥8所以-+-的最⼩值是8,此解法错误的原因是不等式x+4y≥2-取等号的条件是x=4y,⽽不等式-+-≥2-取等号的条件是x=y,⽽这两个条件不可能同时成⽴,因此-+-≥8中的等号不成⽴。

正确⽅法是:x,y都是正实数,且x+4y=1,所以-+-=(-+-)·(x+4y)=1+4+(-+-)≥5+2-=9,当且仅当-=-等号成⽴,即当且仅当x=-,y=-时,-+-取得最⼩值是9问题4:已知x,y,m,n∈R,且x2+y2=2,m2+n2=4,求:xm+yn的值?解题辨析:常见错误解法:xm+yn≤(x2+m2)/2+(y2+n2)/2=(x2+y2+m2+n2)/2=3即:xm+yn的值为3此解法错误的原因是当xm+yn取得值3时,x=m,y=n要同时成⽴,即有x2+y2=m2+n2,⽽这是不可能的。

不等式易考点考向知识点总结分析,不等式高考真题及答案解析

不等式易考点考向知识点总结分析,不等式高考真题及答案解析

考点24 不等关系与一元二次不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景. 2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系. (3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.一、不等关系 1.不等式的概念(1)现实世界与日常生活中,与等量关系一样,不等量关系也是自然界中存在着的基本数量关系.(2)用数学符号“>”“<”“≥”“≤”连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式. 2.两个实数大小的比较(1)作差法:设a ,b ∈R ,则0a b a b >⇔->,a <b ⇔a −b <0. (2)作商法:设a >0,b >0,则a >b ⇔1a b >,a <b ⇔1ab<. 3.不等式的性质(1)实数的大小顺序与运算性质的关系 ①a >b ⇔0a b ->; ②0a b a b =⇔-=; ③a <b ⇔0a b -<. (2)不等式的性质①对称性:a b b a >⇔<;(双向性) ②传递性:a >b ,b >c ⇒a c >;(单向性)③可加性:a >b ⇔a +c >b +c ;(双向性) ④a >b ,c >d ⇒a c b d +>+;(单向性)⑤可乘性:,0a b c ac bc >>⇒>;(单向性) a >b ,c <0⇒ac <bc ;(单向性) ⑥a >b >0,c >d >0⇒ac bd >;(单向性)⑦乘方法则:()0,1n n a b a b n n >>⇒>∈≥N ;(单向性)⑧开方法则:a >b >0>n ∈N ,n ≥2).(单向性)注意:(1)应用传递性时,若两个不等式中有一个带等号而另一个不带等号,则等号无法传递.(2)可乘性中,要特别注意“乘数c ”的符号. 4.必记结论 (1)a >b ,ab >0⇒11a b<. (2)a <0<b ⇒11a b<. (3)a >b >0,0<c <d ⇒a b c d>. (4)0<a <x <b 或a <x <b <0⇒111b x a<<. (5)若a >b >0,m >0,则b b m a a m +<+;b b m a a m->-(b −m >0); a a m b b m +>+;a a m b b m-<-(b −m >0). 二、一元二次不等式及其解法 1.一元二次不等式的概念我们把只含有一个未知数,并且未知数的最高次数是2的不等式称为一元二次不等式,有下列三种形式:(1)一般式:2(0)y ax bx c a =++≠;(2)顶点式:224()(0)24b ac b y a x a a a-=++≠; (3)两根式:12()()(0)y a x x x x a =--≠.2.三个“二次”之间的关系2(,)x +∞12,)x3.一元二次不等式的解法由一元二次不等式与相应的方程、函数之间的关系可知,求一元二次不等式的解集的步骤如下:(1)变形:将不等式的右边化为零,左边化为二次项系数大于零的不等式,即20(0)ax bx c a ++>>或20(0)ax bx c a ++<>;(2)计算:求出相应的一元二次方程(20(0)ax bx c a ++=>)的根,有三种情况:0,0∆,∆∆=0<>;(3)画图:画出对应二次函数的图象的草图;(4)求解:利用二次函数的图象与x 轴的交点确定一元二次不等式的解集.可用程序框图表示一元二次不等式的求解过程,如图.4.一元二次不等式恒成立问题(1)20(0)ax bx c a ++>≠恒成立的充要条件是:0a >且240()b ac x -<∈R .(2)20(0)ax bx c a ++≥≠恒成立的充要条件是:0a >且240()b ac x -≤∈R .(3)20(0)ax bx c a ++<≠恒成立的充要条件是:0a <且240()b ac x -<∈R . (4)20(0)ax bx c a ++≤≠恒成立的充要条件是:0a <且240()b ac x -≤∈R .(5)20ax bx c ++>恒成立的充要条件是:0a b ==且0c >或0a >且240()b ac x -<∈R .(6)20ax bx c ++<恒成立的充要条件是:0a b ==且0c <或0a <且240()b ac x -<∈R .考向一 比较大小比较大小的常用方法:(1)作差法的一般步骤是:作差,变形,定号,得出结论.注意:只需要判断差的符号,至于差的值究竟是什么无关紧要,通常将差化为完全平方式的形式或者多个因式的积的形式.(2)作商法的一般步骤是:作商,变形,判断商与1的大小,得出结论. 注意:作商时各式的符号为正,若都为负,则结果相反. (3)介值比较法:①介值比较法的理论根据是:若a >b ,b >c ,则a >c ,其中b 是a 与c 的中介值. ②介值比较法的关键是通过不等式的恰当放缩,找出一个比较合适的中介值. (4)利用单调性比较大小.(5)函数法,即把要比较的数值通过构造函数转化为该函数的函数值,然后利用函数的单调性将其进一步转化为自变量的大小问题来解决.典例1 若a =2x 2+1,b =x 2+2x ,c =−x −3,试比较a ,b ,c 的大小. 【解析】∵a =2x 2+1,b =x 2+2x ,c =−x −3,∴a −b =(2x 2+1)−(x 2+2x)=x 2−2x +1=(x −1)2≥0,即a ≥b , b −c =(x 2+2x)−(−x −3) =x 2+3x +3=(x +32)2+34>0,即b >c ,综上可得:a ≥b >c .典例2 已知0<a <b <1,则ba ,logb a ,1log ab 的大小关系是A .1log ab <b a <log b a B .1log ab <log b a <baC .log b a <1log ab <ba D .ba <1log ab <log b a【答案】A【解析】因为0<a <b <1,所以001b a a <<=,log log 1b b a b >=,又1a >1,所以1log ab <1log 1a=0. 综上,得1log ab <ba <logb a .故选A.【名师点睛】在用介值法比较时,中介值一般是通过放缩变形,得到一个中间的参照式(或数),其放缩的手段可能是基本不等式、三角函数的有界性等.1.已知,,a b c ∈R ,给出下列条件:①22a b >;②11a b<;③22ac bc >,则使得a b >成立的充分而不必要条件的是 A .① B .② C .③D .①②③考向二 求范围的问题求范围的问题需用到不等式的性质,熟记不等式性质中的条件与结论是基础,灵活运用是关键.在使用不等式的性质时,一定要注意不等式成立的前提条件,特别是不等式两端同时乘以或同时除以一个数、两个不等式相乘、一个不等式两端同时求n 次方时,一定要注意其成立的前提条件,如果忽视前提条件就可能出现错误. 求范围的一般思路是:(1)借助性质,转化为同向不等式相加进行解答; (2)借助所给条件整体使用,切不可随意拆分所给条件; (3)结合不等式的传递性进行求解;(4)要注意不等式同向可乘性的适用条件及整体思想的运用.典例3 设实数x ,y 满足212xy ≤≤,223x y ≤≤,则47x y的取值范围是______.【答案】[]2,27【解析】因为()324272x y x y xy⎛⎫⎪⎝⎭=,()322282714x xy y ⎛⎫≤≤≤≤ ⎪⎝⎭,,所以47827[,][2,27]41x y ∈=.典例4 若二次函数y =f (x )的图象过原点,且)12(1f -≤≤,()314f ≤≤,求f (-2)的取值范围.【解析】方法一:∵二次函数y =f (x )的图象过原点,∴可设2(0())f x ax bx a =+≠.易知()()11f a b f a b =+⎧⎪⎨-=-⎪⎩,∴()()()()11121112a f f b f f ⎧=+-⎡⎤⎣⎦⎪⎪⎨⎪=--⎡⎤⎣⎦⎪⎩.则()2423)()11(f a b f f =---=+.∵)12(1f -≤≤,()314f ≤≤,∴62()10f -≤≤.方法二:由题意设2(0())f x ax bx a =+≠,则f (1)=a +b ,f (-1)=a -b . 令m (a +b )+n (a -b )=f (-2)=4a -2b , ∴42m n m n +=⎧⎨-=-⎩,∴13m n =⎧⎨=⎩.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1).∵)12(1f -≤≤,()314f ≤≤,∴62()10f -≤≤. 【名师点睛】同向不等式只能相加,不能相减.2.已知11x y -≤+≤,13x y ≤-≤,则182yx⎛⎫⋅ ⎪⎝⎭的取值范围是A .82,2⎡⎤⎣⎦B .81,22⎡⎤⎢⎥⎣⎦C .72,2⎡⎤⎣⎦D .71,22⎡⎤⎢⎥⎣⎦考向三 一元二次不等式的解法1.解不含参数的一元二次不等式的方法:(1)若不等式对应的一元二次方程能够因式分解,即能够转化为几个代数式的乘积形式,则可以直接由一元二次方程的根及不等号方向得到不等式的解集.(2)若不等式对应的一元二次方程能够化为完全平方式,不论取何值,完全平方式始终大于或等于零,不等式的解集易得.(3)若上述两种方法均不能解决,则应采用求一元二次不等式的解集的通法,即判别式法. 2.在解答含有参数的一元二次不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,一般从如下三个方面进行考虑:(1)关于不等式类型的讨论:若二次项系数为参数,则应先考虑二次项系数是否为零,以确定不等式是一次不等式还是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(2)关于不等式对应的方程的根的讨论:两根(∆>0),一根(∆=0),无根(∆<0); (3)关于不等式对应的方程根的大小的讨论:121212,,x x x x x x >=<.典例5 解下列不等式: (1)2230x x --+≥. (2)24410x x +≤+.【解析】(1)不等式两边同乘以-1,原不等式可化为2230x x -≤+,即(1)(3)0x x -+≤,则31x -≤≤.故不等式-x 2-2x +3≥0的解集是1{|}3x x ≤≤-.(2)24410x x +≤+,即2(21)0x +≤,则12x =-. 故不等式24410x x +≤+的解集为1{|}2x x =-.典例6 已知函数f(x)=ax 2−(2a +1)x +2. (1)当a =2时,解关于x 的不等式f(x)≤0; (2)若a >0,解关于x 的不等式f(x)≤0.【解析】(1)当a =2时,f (x )≤0⇒2x 2−5x +2≤0,可得(2x −1)(x −2)≤0, ∴12≤x ≤2,∴f (x )≤0的解集为[12,2].(2)不等式f (x )≤0可化为ax 2−(2a +1)x +2≤0,a >0, 即a (x −1a )(x −2)≤0,a >0, ①当0<a <12时,1a >2, 解得12x a≤≤, ②当a =12时,1a =2, 解得x =2.③当a >12时,1a<2,解得12x a≤≤. 综上,当0<a <12时,不等式的解集为1{|2}x x a≤≤; 当a =12时,不等式的解集为{x |x =2 };当a >12时,不等式的解集为1{|2}x x a≤≤.3.已知关于x 的不等式20x ax b -++>.(1)若该不等式的解集为(4,2)-,求a ,b 的值; (2)若1b a =+,求此不等式的解集.考向四 一元二次不等式与二次函数、一元二次方程之间关系的应用一元二次不等式与其对应的函数与方程之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.(1)若一元二次不等式的解集为区间的形式,则区间的端点值恰是对应一元二次方程的根,要注意解集的形式与二次项系数的联系.(2)若一元二次不等式的解集为R 或∅,则问题可转化为恒成立问题,此时可以根据二次函数图象与x 轴的交点情况确定对应一元二次方程的判别式的符号,进而求出参数的取值范围.典例7 已知函数f (x )=−3x 2+a(6−a)x +c . (1)当c =19时,解关于a 的不等式f (1)>0;(2)若关于x 的不等式f (x )>0的解集是(−1,4),求实数a ,c 的值. 【解析】(1)当c =19时,f(x)=−3x 2+a(6−a)x +19, 所以f(1)=−3+a(6−a)+19=−a 2+6a +16, f(1)>0,即a 2−6a −16<0, 解得−2<a <8.(2)依题意:−1,4是方程−3x 2+a(6−a)x +c =0的解,由根与系数的关系可得()63343a a c -⎧=⎪⎪⎨⎪-=-⎪⎩,解得{a =3c =12. 典例8 已知关于x 的不等式2230kx x k -+<.(1)若不等式的解集为{x|x <−3或x >−1},求k 的值; (2)若不等式的解集为∅,求实数k 的取值范围.【解析】(1)由不等式2230kx x k -+<的解集为{x|x <−3或x >−1},可知k <0,−3和−1是一元二次方程2230kx x k -+=的两根,所以()()()()313231k⎧-⨯-=⎪⎨-+-=⎪⎩,解得12k =-. (2)由题意知不等式2230kx x k -+<的解集为∅,若k =0,则不等式为−2x <0,此时x >0,不合题意;若k ≠0,则04430k k k ∆>⎧⎨=-⨯≤⎩,解得3k ≥.综上,实数k 的取值范围为[)3+∞.4.已知二次函数()()21f x kx k x k =--+.(1)若关于x 的不等式()0f x <的解集为R ,求实数k 的取值范围; (2)若关于x 的方程()f x x =有两个不等正实根,求实数k 的取值范围.考向五 一元二次不等式的应用对于分式不等式和高次不等式,它们都可以转化为一元二次不等式或利用一元二次不等式的思想求解.1.分式不等式的解法若()f x 与()g x 是关于x 的多项式,则不等式()0()f xg x >(或<0,或≥0,或≤0)称为分式不等式.解分式不等式的原则是利用不等式的同解原理将其转化为有理整式不等式(组)求解.即()0()0()0()()0()0()0()f x f x f x f x g x g x g x g x ><⎧⎧>⇒⇒⋅>⎨⎨><⎩⎩或;()0()0()0()()0()0()0()f x f x f x f x g x g x g x g x ><⎧⎧<⇒⇒⋅<⎨⎨<>⎩⎩或; ()()0()0()()0()0()0()f x g x f x f x g x f x g x g x ⋅≥⎧≥⇒⇒⋅>=⎨≠⎩或;()()0()0()()0()0()0()f x g x f x f x g x f x g x g x ⋅≤⎧≤⇒⇒⋅<=⎨≠⎩或. 对于形如()()f xg x >a (或<a )的分式不等式,其中a ≠0,求解的方法是先把不等式的右边化为0,再通过商的符号法则,把它转化为整式不等式求解. 2.高次不等式的解法不等式的最高次项的次数高于2的不等式称为高次不等式.解高次不等式常用的方法有两种:(1)将高次不等式()0(0)f x ><中的多项式()f x 分解成若干个不可约因式的乘积,根据实数运算的符号法则,把它等价转化为两个或多个不等式(组).于是原不等式的解集就是各不等式(组)解集的并集. (2)穿针引线法:①将不等式化为标准形式,一端为0,另一端为一次因式(因式中x 的系数为正)或二次不可约因式的乘积;②求出各因式的实数根,并在数轴上标出;③自最右端上方起,用曲线自右向左依次由各根穿过数轴,遇奇次重根穿过,遇偶次重根穿而不过(奇过偶不过);④记数轴上方为正,下方为负,根据不等式的符号写出解集.典例9 不等式()()23310x x x --+>的解集为_________. 【答案】()1,0,33⎛⎫-∞ ⎪⎝⎭【解析】不等式()()23310x x x --+>可转化为x (x −3)(3x +1)<0, 且方程()()3310x x x -+=的根为12310,3,3x x x ===-, 则由穿针引线法可得原不等式的解集为()1,0,33⎛⎫-∞ ⎪⎝⎭.典例10 解关于x 的不等式:2x ax a -- <0(a ∈R ). 【解析】原不等式等价于:(x -a )(x -a 2)<0,其对应方程的两根为x 1=a ,x 2=a 2.2211()x x a a a a -=-=-,分情况讨论如下:①若a <0或a >1,即a 2>a ,则所求不等式的解集为{}2|x a x a <<.②若a =0或a =1,原不等式可化为x 2<0或(x -1)2<0. 此时,所求不等式的解集为x ∈∅.③若0<a <1,即a 2<a ,则所求不等式的解集为{}2|x a x a <<. 综上所述:当a <0或a >1时,原不等式的解集为{}2|x a x a <<;当a =0或a =1时,原不等式的解集为∅;当0<a <1时,原不等式的解集为{}2|x a x a <<.5.已知函数()()2,1ax bf x a b x -=∈-R . (1)若关于x 的不等式20ax b ->的解集为1,2⎛⎫+∞ ⎪⎝⎭,求()0f x <的解集; (2)若12a =,解不等式()0f x >的解集. 考向六 含参不等式恒成立问题的求解策略解决含参不等式恒成立问题的关键是转化与化归思想的运用,从解题策略的角度看,一般而言,针对不等式的表现形式,有如下四种策略:(1)变换主元,转化为一次函数问题. 解决恒成立问题一定要搞清谁是主元,谁是参数.参数和未知数是相互牵制、相互依赖的关系,有时候变换主元,可以起到事半功倍的效果. (2)联系不等式、函数、方程,转化为方程根的分布问题.(3)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.常转化为求二次函数的最值或用分离参数法求最值.即①若()f x 在定义域内存在最大值m ,则()f x a <(或()f x a ≤)恒成立⇔a m >(或a m ≥);②若()f x 在定义域内存在最小值m ,则()f x a >(或()f x a ≥)恒成立⇔a m <(或a m ≤);③若()f x 在其定义域内不存在最值,只需找到()f x 在定义域内的最大上界(或最小下界)m ,即()f x 在定义域内增大(或减小)时无限接近但永远取不到的那个值,来代替上述两种情况下的m ,只是等号均可以取到.(4)转化为两个函数图象之间的关系,数形结合求参数. 在不等式恒成立问题的处理中,若能画出不等式两边相应的函数图象,恒成立的代数问题立即变得直观化,等价的数量关系式随之获得,数形结合可使求解过程简单、快捷.典例11 已知二次函数f(x)=ax 2+bx +c ,且不等式f(x)<2x 的解集为(1,3),对任意的x ∈R 都有f(x)≥2恒成立. (1)求f(x)的解析式;(2)若不等式k f (2x )−2x +1≤0在x ∈[1,2]上有解,求实数k 的取值范围. 【解析】(1)∵f(x)=ax 2+bx +c <2x 的解集为(1,3), ∴方程ax 2−(2−b)x +c =0的两个根是1和3.则243ba c a-==⎧⎪⎪⎨⎪⎪⎩,解得{b =2−4a c =3a.又∵f(x)≥2在x ∈R 上恒成立,∴ax 2+(2−4a)x +3a −2≥0在x ∈R 上恒成立, 则Δ=(2−4a)2−4a(3a −2)≤0,即(a −1)2≤0, 又∵(a −1)2≥0,∴(a −1)2=0, 得a =1,故f(x)=x 2−2x +3.(2)由题意知kf(2x )−2x +1≤0,即k(22x −2⋅2x +3)≤2x −1,∵22x−2⋅2x+3=(2x−1)2+2>0,∴2212223x x x k -≤-⋅+,设t =2x −1∈[1,3],则22tk t ≤+,又∵2122t t t t=≤++t =2t 即t =√2时取得最大值√24, ∴k ≤√24,即实数k的取值范围为⎛-∞ ⎝⎦. 典例12 已知函数()21f x mx mx =--.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5−m 恒成立,求实数m 的取值范围.【解析】(1)因为()210f x mx mx =--<对x ∈R 恒成立,则①m =0时,()10f x =-<恒成立;②240m m m <⎧⎨+<⎩,解得40m -<<. 故实数m 的取值范围为(]4,0-.(2)f (x )<5−m ,即()216m x x -+<.因为210x x -+>,所以m <261x x -+对于x ∈[1,3]恒成立.记g (x )=261x x -+=2613()24x -+,x ∈[1,3],易知()()min 637g x g ==,所以67m <.即实数m 的取值范围为(6,)7-∞.6.若函数2()6(8)f x kx kx k =-++的定义域为R ,求实数k 的取值范围.1.已知集合()(){|140}A x x x =--≤,5{|0}2x B x x -=≤-,则A B = A .{|12}x x ≤≤ B .{|12}x x ≤< C .{|24}x x ≤≤ D .{|24}x x <≤2.下列命题正确的是 A .若>a b ,则11a b< B .若>a b ,则22a b > C .若>a b ,c d <,则>a c b d -- D .若>a b ,>c d ,则>ac bd3.2x >是220x x ->的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.设0.321log 0.6,log 0.62m n ==,则 A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+5.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是 A .[7,26]- B .[1,20]- C .[4,15]D .[1,15]6.三个正整数x ,y ,z 满足条件:x y >,y z >,3xz >,若5z =,则y 的最大值是 A .12 B .13 C .14D .157.若不等式220ax x c ++<的解集是11,,32⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭,则不等式220cx x a ++≤的解集是 A .11,23⎡⎤-⎢⎥⎣⎦B .11,32⎡⎤-⎢⎥⎣⎦C .[−2,3]D .[−3,2]8.关于x 的不等式22(1)(1)10a x a x ----<的解集为R ,则a 的取值范围为 A .315a -<<B .315a -≤≤ C .315a -<≤或1a =- D .315a -<≤ 9.设,a b 是关于x 的一元二次方程2260x mx m -++=的两个实根,则22(1)(1)a b -+-的最小值是 A .494- B .18 C .8D .−610.设正数a ,b 满足2b a -<,若关于x 的不等式()222440a x bx b -+-<的解集中的整数解恰有4个,则a 的取值范围是A .(2,3)B .(3,4)C .(2,4)D .(4,5)11.不等式2260x x --+≥的解集是_____.12.设P Q R ===,,P Q R 的大小顺序是______.13.不等式210x kx -+>对任意实数x 都成立,则实数k 的取值范围是__________. 14.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________. 15.已知函数21()1()f x x a x x a ⎛⎫=-++∈ ⎪⎝⎭R . (1)当12a =时,求不等式()0f x <的解集; (2)若关于x 的不等式()0f x <有且仅有一个整数解,求正实数...a 的取值范围.16.已知函数21()(2)()2f x x m x m =+-∈R . (1)若关于x 的不等式()4f x <的解集为()2,4-,求m 的值; (2)若对任意[0,4],()20x f x ∈+恒成立,求m 的取值范围.1.(2019年高考全国Ⅲ卷文数)已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.(2019年高考全国Ⅰ卷文数)已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .3.(2019年高考天津卷文数)设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.(2019年高考浙江卷)若0,0a b >>,则“4a b +≤”是 “4ab ≤”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件5.(2018年高考天津卷文数)设x ∈R ,则“38x >”是“||2x >”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件6.(2017年高考天津卷文数)设x ∈R ,则“20x -≥”是“|1|1x -≤”的a b c <<a c b <<c a b <<b c a <<A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.(2017年高考山东卷文数)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是 A .p q ∧ B .p q ∧⌝ C .p q ⌝∧ D .p q ⌝∧⌝8.(2017年高考上海卷)不等式11x x->的解集为________. 9.(2018年高考北京文数)能说明“若a ﹥b ,则11a b<”为假命题的一组a ,b 的值依次为_________.10.(2019年高考江苏)函数y =的定义域是 ▲ .1.【答案】C【解析】对于①,由22a b >,得||||a b >,不一定有a b >成立,不符合题意; 对于②,当1,1a b =-=时,有11a b<,但a b >不成立,所以不符合题意; 对于③,由22ac bc >,知c ≠0,所以有a b >成立,当a b >成立时,不一定有22ac bc >,因为c 可以为0,符合题意. 本题选择C 选项.【名师点睛】本题主要考查不等式的性质及其应用,充分条件和必要条件的判定等知识,意在考查学生的转化能力和计算求解能力. 2.【答案】C【解析】令()()()()3x y s x y t x y s t x s t y -=++-=++-,则31s t s t +=⎧⎨-=-⎩,∴12s t =⎧⎨=⎩, ∵13x y ≤-≤,∴()226x y ≤-≤,①又11x y -≤+≤,② ∴①+②得137x y ≤-≤.则371822,22yxx y -⎛⎫⎡⎤⋅=∈ ⎪⎣⎦⎝⎭.故选C .【名师点睛】本题主要考查不等式的性质以及指数函数的性质,意在考查综合运用所学知识解答问题的能力,属于中档题.求解时,利用待定系数法求得()()32x y x y x y -=++-,由11x y -≤+≤,13x y ≤-≤,结合38212yx yx -⎛⎫⋅ ⎪⎝⎭=,从而可得结果.3.【解析】(1)根据题意得()2424ab-=⎧⎨⨯-=-⎩,解得2a =-,8b =.(2)当1b a =+时,()22010x ax b x ax a -++>⇔--+<,即()()110x a x ⎡⎤-++<⎣⎦.当11a +=-,即2a =-时,原不等式的解集为∅; 当11a +<-,即2a <-时,原不等式的解集为()1,1a +-; 当11a +>-,即2a >-时,原不等式的解集为()1,1a -+.【名师点睛】本题考查一元二次不等式解集与对应一元二次方程根的关系以及解一元二次不等式,考查基本应用求解能力.属基本题.(1)根据不等式解集与对应一元二次方程根的关系列方程,解得a ,b 的值; (2)先代入化简不等式,再根据对应一元二次方程根的大小分类讨论不等式解集. 4.【解析】(1)()0f x <,即()210kx k x k --+<,由二次函数知识得00k <⎧⎨∆<⎩,即220(1)40k k k <⎧⎨--<⎩, 解得1k <-.(2)()f x x =,即()21kx k x k x --+=,即()220kx k x k --+=,由二次方程有两个不等正实根知,112212000000x x x x x x ∆>∆>⎧⎧⎪⎪>⇔+>⎨⎨⎪⎪>>⎩⎩,由根与系数间关系得,22(2)402010k k k k⎧-->⎪-⎪<⎨⎪>⎪⎩,解得203k <<.5.【解析】(1)∵不等式20ax b ->的解集为1,2⎛⎫+∞ ⎪⎝⎭, ∴0a >,0a b =>, ∴()()()()210021101a x f x a x x x -<⇔<⇔--<-,∴()0f x <的解集为1,12⎛⎫⎪⎝⎭. (2)12a =时,不等式()()()()00101x bf x f x x b x x ->⇔=>⇔-->-, 1当1b >时,不等式的解集为()(),1,b -∞+∞;2当1b =时,不等式的解集为{}1x x ≠; 3当1b <时,不等式的解集为()(),1,b -∞+∞.【名师点睛】本题考查不等式的求解应用,属于基础题. (1)()()()()210021101a x f x a x x x -<⇔<⇔--<-,然后求解即可.(2)12a =时,不等式()()()()00101x bf x f x x b x x ->⇔=>⇔-->-,然后分类讨论即可.6.【解析】∵f (x )的定义域为R , ∴不等式kx 2﹣6kx +k +8≥0的解集为R. ①k =0时,8>0恒成立,满足题意;②k ≠0时,则()236480>k k k k ⎧⎨∆=-+≤⎩,解得0<k ≤1. 综上得,实数k 的取值范围为[0,1].1.【答案】D【解析】依题意[](]1,4,2,5A B ==,故(]2,4A B =.故选D.2.【答案】C【解析】A.若>a b ,则11a b<,取1,1a b ==-不成立; B.若>a b ,则22a b >,取0,1a b ==-不成立; C.若>a b ,c d <,则>a c b d --,正确;D.若>a b ,>c d ,则>ac bd ,取1,1,1,2a b c d ==-==-不成立. 故选C.【名师点睛】本题考查了不等式的性质,找出反例是解题的关键. 3.【答案】A【解析】由220x x ->解得:0x <或2x >,{}2x x ⊂>≠{}02或x x x <>,因此,2x >是220x x ->的充分不必要条件,故选A.【名师点睛】本题考查充分必要条件的判断,先解不等式220x x ->得出解集,根据集合之间的包含关系得出两条件的充分必要性.一般利用集合的包含关系来判断两条件的充分必要性:(1)A ⊂≠B ,则“x A ∈”是“x B ∈”的充分不必要条件; (2)AB ,则“x A ∈”是“x B ∈”的必要不充分条件;(3)A B =,则“x A ∈”是“x B ∈”的充要条件. 4.【答案】A【解析】0.30.3log 0.6log 10,m =>=2211log 0.6log 10,22n =<=0mn <, 0.60.611log 0.3log 4m n +=+0.60.6log 1.2log 0.61=<=,即1m n mn+<,故m n m n +>. 又()()20m n m n n --+=->,所以m n m n ->+. 故m n m n mn ->+>,所以选A.【名师点睛】本题考查利用作差法、作商法比较大小,考查对数的化简与计算,考查分析计算,化简求值的能力,属中档题.求解时,先判断m ,n 的正负,即可得0mn <;计算11m n+0.6log 1.21=<,化简可得m n m n +>,再通过作差法比较m n -,m n +的大小,即可得结果. 5.【答案】B【解析】令m x y =-,4n x y =-,343n m x n my -⎧=⎪⎪⇒⎨-⎪=⎪⎩,则859,33z x y n m =-=- 552041,,333m m -≤≤-∴≤-≤又884015,333n n -≤≤∴-≤≤,因此80315923z x y n m -=-=-≤≤,故本题选B.【名师点睛】本题考查了利用不等式的性质,求不等式的取值范围问题,利用不等式同向可加性是解题的关键.令m x y =-,4n x y =-,得到关于,x y 的二元一次方程组,解这个方程组,求出9x y -关于,m n 的式子,利用不等式的性质,结合,m n 的取值范围,最后求出9x y -的取值范围. 6.【答案】B【解析】由不等式的性质结合题意有:,5,53xx y y >>>,即,5,15.15x y y x y x >><∴<<,由于,,x y z 都是正整数,故y 的最大值是13. 故选B.【名师点睛】本题主要考查不等式的性质及其应用,不等式的传递性等知识,意在考查学生的转化能力和计算求解能力.由题意结合不等式的性质和不等式的传递性即可确定y 的最大值. 7.【答案】D【解析】因为不等式220ax x c ++<的解集是11,,32⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭,所以0211321132a ac a⎧⎪<⎪⎪-=-+⎨⎪⎪=-⨯⎪⎩,解得122a c =-⎧⎨=⎩,所以不等式220cx x a ++≤可化为222120x x +-≤,即260x x +-≤,解得32x -≤≤. 故选D.【名师点睛】本题主要考查一元二次不等式的解法,熟记三个二次之间的关系即可,属于基础题型.先由题意求出,a c ,再代入不等式220cx x a ++≤求解,即可得出结果. 8.【答案】D【解析】当210a -=时,1a =±,若1a =,则原不等式可化为10-<,显然恒成立;若1a =-,则原不等式可化为210x -<不恒成立,所以1a =-舍去;当210a -≠时,因为()()221110a x a x ----<的解集为R ,所以只需()()222101410a a a ⎧-<⎪⎨∆=-+-<⎪⎩,解得315a -<<; 综上,a 的取值范围为:315a -<≤.故选D.【名师点睛】本题主要考查一元二次不等式恒成立的问题,需要用分类讨论的思想来处理,属于常考题型.分情况讨论,当210a -=时,求出满足条件的a 的值;当210a -≠时,求出满足条件的a 的取值范围,即可得出结果. 9.【答案】C【解析】因为,a b 是关于x 的一元二次方程2260x mx m -++=的两个实根, 所以由根与系数的关系得26a b m ab m +=⎧⎨=+⎩ ,且()2460m m ∆=--≥,所以()()22222224(1)(1)610a b ab b y m a b a m =+-=-+--++=--2349444m ⎛⎫=-- ⎪⎝⎭,且3m ≥或2m ≤-,由二次函数的性质知,当3m =时,函数2349444y m ⎛⎫=-- ⎪⎝⎭取得最小值8, 即22(1)(1)a b -+-的最小值为8. 故选C.【名师点睛】本题考查二次函数的最小值问题,属于一般题.求解时,由根与系数的关系得26a b m ab m +=⎧⎨=+⎩ ,且()2460m m ∆=--≥,则22(1)(1)y a b =-+-可变成2349444y m ⎛⎫=-- ⎪⎝⎭,再求最小值. 10.【答案】C【解析】()222440a x bx b -+-<,即()2222440a x x bx b --+<, ∴()22220a x x b --<,即()()220ax x b ax x b +--+<,∴()()220a x b a x b ⎡⎤⎡⎤+--+<⎣⎦⎣⎦, 由于解集中整数解恰有4个,则a >2,∴122b bx a a -<<<-+,则四个整数解分别为−3,﹣2,﹣1,0. ∴432b a -≤-<--,即342ba <≤-,即3648ab a -<≤-, 又2b a <+,∴362a a -<+,∴4a <, 又a >2,∴a 的取值范围是()2,4. 故选C.【名师点睛】本题考查一元二次不等式的解法,考查不等式的整数解的求法,考查不等式的性质的运用,考查运算能力,属于易错题.求解时,将不等式因式分解可得()()220a x b a x b ⎡⎤⎡⎤+--+<⎣⎦⎣⎦,由于解集中整数解恰有4个,则a >2,则有122b b x a a -<<<-+,且四个整数解分别为−3,﹣2,﹣1,0,则有432b a -≤-<--,结合条件2b a <+,可得a <4,进而得到a 的范围. 11.【答案】32,2⎡-⎤⎢⎥⎣⎦【解析】不等式2260x x --+≥可化为2260x x +-≤,解得322x -≤≤; ∴该不等式的解集是32,2⎡-⎤⎢⎥⎣⎦.故答案为32,2⎡-⎤⎢⎥⎣⎦.【名师点睛】本题主要考查了一元二次不等式的解法,解题时先把不等式化简,再求解集,是基础题.直接利用一元二次不等式的解法求解. 12.【答案】P R Q >>【解析】∵0P R -==>,∴P R >,R Q -=-,而29=+29=+>R Q >,∴P R Q >>,故答案为:P R Q >>.【名师点睛】本小题主要考查作差比较法比较数的大小,属于基础题.求解时,利用作差比较法先比较,P R 的大小,然后比较,R Q 的大小,由此判断出三者的大小关系. 13.【答案】()2,2-【解析】∵不等式210x kx -+>对任意实数x 都成立, ∴240<k ∆=-,∴2-<k <2, 故答案为:()2,2-.【名师点睛】(1)二次函数图象与x 轴交点的横坐标、二次不等式解集的端点值、一元二次方程的解是同一个量的不同表现形式.(2)二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.有关二次函数的问题,利用数形结合的方法求解,密切联系图象是探求解题思路的有效方法. 14.【答案】12(,]23【解析】x 2﹣(a +2)x +2﹣a <0,即x 2﹣2x +1<a (x +1)﹣1,分别令y =x 2﹣2x +1,y =a (x +1)﹣1,易知y =a (x +1)﹣1的图象过定点(﹣1,﹣1), 分别画出两函数的图象,如图所示:∵集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得10120311<a a a -≤⎧⎪-⎨⎪-≤⎩,解得12<a 23≤. 故答案为:(12,23].【名师点睛】本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题.求解时,由x 2﹣(a +2)x +2﹣a <0可得x 2﹣2x +1<a (x +1)﹣1,即直线在二次函数图象的上方的点只有一个整数1,结合图象即可求出. 15.【答案】(1)1,22⎛⎫⎪⎝⎭;(2)12a <≤或112a ≤<.【解析】(1)当12a =时,不等式为25102x x -+<,即22520x x -+<,即(2)(21)0x x --<,所以122x <<, 所以不等式()0f x <的解集为1,22⎛⎫ ⎪⎝⎭.(2)原不等式可化为1()0x a x a ⎛⎫--< ⎪⎝⎭, ①当1a a=,即1a =时,原不等式的解集为∅,不满足题意; ②当1a a >,即1a >时,1,x a a ⎛⎫∈ ⎪⎝⎭,此时101a <<,所以12a <≤; ③当1a a <,即01<a <时,1,x a a ⎛⎫∈ ⎪⎝⎭,所以只需112a <≤,解得112a ≤<;综上所述,12a <≤,或112a ≤<. 【名师点睛】本题主要考查一元二次不等式的解法和解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.求解时,(1)直接解不等式25102x x -+<得解集;(2)对a 分类讨论解不等式分析找到a 满足的不等式,解不等式即得解. 16.【答案】(1)1m =;(2)[0,)+∞.【解析】(1)法一:不等式()4f x <可化为2(42)80x m x ---<,其解集为()2,4-, 由根与系数的关系可知2442m -+=-,解得1m =, 经检验1m =时满足题意.法二:由题意知,原不等式所对应的方程()4f x =的两个实数根为2-和4, 将2-(或4)代入方程计算可得1m =, 经检验1m =时满足题意.(2)法一:由题意可知21(2)22m x x -≤+恒成立, ①若0x =,则02≤恒成立,符合题意. ②若(0,4]x ∈,则12(2)2m x x-≤+恒成立,而1222x x +≥=,当且仅当2x =时取等号, 所以min 12222m x x ⎛⎫-≤+=⎪⎝⎭,即0m ≥.故实数m 的取值范围为[0,)+∞.法二:二次函数21()(2)2f x x m x =+-的对称轴为2x m =-. ①若20m -≤,即2m ≥,函数()f x 在[]0,4上单调递增,()2(0)220f x f +≥+=≥恒成立,故2m ≥;②若024m <-<,即22m -<<,此时()f x 在[]0,2m -上单调递减,在[]2,4m -上单调递增,由22(2)()2(2)2(2)202m f x f m m -+≥-+=--+≥,得04m ≤≤.故02m ≤<;③若24m -≥,即2m ≤-,此时函数()f x 在[]0,4上单调递减, 由1()2(4)216(2)424202f x f m m +≥+=⨯+-⨯+=+≥,得12m ≥-,与2m ≤-矛盾,故m 不存在.综上所述,实数m 的取值范围为[0,)+∞.【名师点睛】本题主要考查一元二次不等式的性质,不等式恒成立中含参问题,意在考查学生的分析能力,计算能力及转化能力,难度较大.(1)不等式()4f x <可化为2(42)80x m x ---<,而解集为()2,4-,可利用根与系数的关系或直接代入即可得到答案;(2)法一:讨论0x =和(0,4]x ∈时,分离参数利用均值不等式即可得到取值范围; 法二:利用二次函数在[0,4]x ∈上大于等于0恒成立,即可得到取值范围.1.【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤, 又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.。

高考数学压轴专题(易错题)备战高考《不等式》解析含答案

高考数学压轴专题(易错题)备战高考《不等式》解析含答案

【高中数学】数学《不等式》高考知识点一、选择题1.已知集合{}2230A x x x =-->,(){}lg 11B x x =+≤,则()R A B =I ð( ) A .{}13x x -≤< B .{}19x x -≤≤C .{}13x x -<≤D .{}19x x -<< 【答案】C【解析】【分析】 解出集合A 、B ,再利用补集和交集的定义得出集合()R A B ⋂ð.【详解】解不等式2230x x -->,得1x <-或3x >;解不等式()lg 11x +≤,得0110x <+≤,解得19x -<≤. {}13A x x x ∴=-或,{}19B x x =-<≤,则{}13R A x x =-≤≤ð,因此,(){}13R A B x x ⋂=-<≤ð,故选:C.【点睛】本题考查集合的补集与交集的计算,同时也考查了一元二次不等式以及对数不等式的求解,考查运算求解能力,属于中等题.2.设a b c ,,为非零实数,且a c b c >>,,则( )A .a b c +>B .2ab c >C .a b 2c +>D .112a b c+> 【答案】C【解析】【分析】取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案.【详解】 ,a c b c >>,故2a b c +>,2a b c +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误;故选:C .【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.3.若,x y 满足约束条件360,60,1,x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则z x y =-的最小值为( )A .4B .0C .2-D .4-【答案】D【解析】【分析】画出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入即可求解.【详解】 由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,目标函数z x y =-,可化为直线y x z =-当直线y x z =-经过A 时,z 取得最小值, 又由3601x y y -+=⎧⎨=⎩,解得(3,1)A -, 所以目标函数的最小值为min 314z =--=-.故选:D .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.4.若实数,x y 满足不等式组2,36,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则3x y +的最小值等于( )A .4B .5C .6D .7【答案】A【解析】【分析】首先画出可行域,利用目标函数的几何意义求z 的最小值.【详解】解:作出实数x ,y 满足不等式组2360x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩表示的平面区域(如图示:阴影部分)由200x y x y +-=⎧⎨-=⎩得(1,1)A , 由3z x y =+得3y x z =-+,平移3y x =-,易知过点A 时直线在y 上截距最小,所以3114min z =⨯+=.故选:A .【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.5.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( )A .(,1)(3,)-∞-+∞UB .(1,3)-C .(1,3)D .(,1)(3,)-∞+∞U 【答案】A【解析】【分析】由0ax b ->的解集,可知0a >及1b a=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集.【详解】由0ax b ->的解集为()1,+?,可知0a >且1b a=, 令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U ,故选:A.【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.6.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122y x⎛⎫⋅ ⎪⎝⎭的最小值为( ) A .116 B .18 C .1 D .2【答案】A【解析】【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解.【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yx x y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值, 所以z 的最小值为min 314z =--=-, 则1222yx x y -⎛⎫⋅= ⎪⎝⎭的最小值为41216-=. 故选:A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.7.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n +的最小值为( ) A .3 B .1 C .2 D .32 【答案】D【解析】【分析】画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n+的最小值. 【详解】 画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()111111515193222323232322n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+⋅=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.8.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( )A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D【解析】【分析】 分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6.故选:D.【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.9.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( )A .[1,)-+∞B .(,1]-∞-C .(1,)-+∞D .(,1)-∞- 【答案】A【解析】【分析】画出约束条件的可行域,利用目标函数的最值,判断a 的范围即可.【详解】作出约束条件表示的可行域,如图所示.因为z ax y =+的最大值为26a +,所以z ax y =+在点(2,6)A 处取得最大值,则1a -≤,即1a ≥-.故选:A【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.10.若,,则( ) A .B .C .D . 【答案】C 【解析】【分析】【详解】 试题分析:用特殊值法,令,,得,选项A 错误,,选项B 错误,,选项D 错误, 因为选项C 正确,故选C .【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.11.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.12.已知107700,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,表示的平面区域为D ,若“(,),2x y x y a ∃+>”为假命题,则实数a 的取值范围是( )A .[5,)+∞B .[2,)+∞C .[1,)+∞D .[0,)+∞ 【答案】A【解析】【分析】作出不等式组表示的可行域,结合目标函数的几何意义可得目标函数最大值,再根据特称命题和全称命题的真假关系得出“(,),2x y x y a ∀+≤”为真命题,由恒等式的思想可得实数a 的取值范围.【详解】绘制不等式组表示的可行域如图中阴影部分(含边界)所示,令2Z x y =+得2y x Z =-+,结合目标函数的几何意义可得目标函数在点A 处取得最大值,联立直线方程10770x y x y -+=⎧⎨--=⎩得点47,33A ⎛⎫ ⎪⎝⎭,所以2Z x y =+的最大值为5, 因为“(,),2x y R x y a ∃∈+>”为假命题,所以“(,),2x y x y a ∀+≤”为真命题,所以实数a 的取值范围是5a ≤,故选:A.【点睛】本题考查线性规划问题的最值,以及特称命题与全称命题的关系和不等式的恒成立思想,属于中档题.13.已知实数,x y 满足线性约束条件1020x x y x y ≥⎧⎪+≥⎨⎪-+≥⎩,则1y x +的取值范围为( ) A .(-2,-1]B .(-1,4]C .[-2,4)D .[0,4] 【答案】B【解析】【分析】作出可行域,1y x+表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,观察可行域可得最小值.【详解】 作出可行域,如图阴影部分(含边界),1y x +表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,(1,3)A ,3(1)410QA k --==-,过Q 与直线0x y +=平行的直线斜率为-1,∴14PQ k -<≤.故选:B .【点睛】 本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1y x+表示动点(,)P x y 与定点(0,1)Q -连线斜率,由直线与可行域的关系可得结论.14.在区间[]0,1内随机取两个数m 、n ,则关于x 的方程20x nx m +=有实数根的概率为( )A .18B .17C .16D .15【答案】A【解析】【分析】根据方程有实根可得到约束条件,根据不等式组表示的平面区域和几何概型概率公式可求得结果.【详解】若方程20x nx m +=有实数根,则40n m ∆=-≥.如图,400101n m m n -≥⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域与正方形0101m n ≤≤⎧⎨≤≤⎩的面积之比即为所求的概率,即111124118S P S ⨯⨯===⨯阴影正方形. 故选:A .【点睛】 本题考查几何概型中面积型概率问题的求解,涉及到线性规划表示的平面区域面积的求解,关键是能够根据方程有实根确定约束条件.15.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r ,则z 的最大值是( )A .2B .3C .4D .5【答案】C【解析】【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可.【详解】 解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r ,可图知当目标函数图象经过点()1,2B 时,z 取最大值, 即24z x y =+=.故选:C.【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.16.已知M、N是不等式组1,1,10,6xyx yx y≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN的最大值是()A17B.342C.32D.172【答案】A【解析】【分析】先作可行域,再根据图象确定MN的最大值取法,并求结果.【详解】作可行域,为图中四边形ABCD及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN的最大值为21417+选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.17.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3B .(),1-∞-C .()1,1-D .()3,1- 【答案】C【解析】【分析】解一元二次不等式求得M ,然后求两个集合的交集.【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C.【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.18.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( )A .①③B .②④C .①②③D .②③④ 【答案】B【解析】【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y x yx y ⎛⎫++=≤ ⎪⎝⎭, 解得224x y +≤(当且仅当222x y ==时取等号),则②正确;将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点,(,(,, 则①和③都错误;由0xy <,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.19.设集合{}20,201x M xN x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】 根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.20.设变量,x y 满足约束条件0211x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则目标函数5z x y =+的最大值为( )A .2B .3C .4D .5【答案】D【解析】【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】 根据约束条件0211x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩画出可行域如图:目标函数z =5x +y 可化为y =-5x +z ,即表示斜率为-5,截距为z 的动直线,由图可知,当直线5z x y =+过点()1,0A 时,纵截距最大,即z 最大,由211x y x y +=⎧⎨+=⎩得A (1,0) ∴目标函数z =5x +y 的最小值为z =5故选D【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.。

2020年高考数学(理)易错考点纠错笔记专题:不等式(全国版含解析)

2020年高考数学(理)易错考点纠错笔记专题:不等式(全国版含解析)
5
谁就是参数.
易错点 4 解含参不等式时不能正确分类导致错误
解不等式
a(x 2) x 1

1(a

R)

【错解】原不等式可化为
a(x 2) x 1
1

0
,即
a(x

2) (x x 1
1)

0

等价于[(a 1)x (2a 1)](x 1) 0 ,即 (x 2a 1)(x 1) 0 , a 1
2ax
b

0
的解集为
1 2
,


,求
f
x ,解不等式 f x 0 的解集.
2
【答案】(1)

1 2
,1
;(2)见解析
【解析】(1)
f
x

2ax b x 1
.
∵不等式
2ax

b

0
的解集为

1 2
,



a

b

4

3
,①+②得:
a 3,
1
②−①得:
b 1.

2
2
由此得 4≤ f (2) =4a−2b≤11,所以 f (2) 的取值范围是[4,11].
【错因分析】错误的主要原因是多次使用同向不等式的可加性而导致了 f (2) 的范围扩大.
【试题解析】解法一:设 f (2) =m f (1) +n f (1) (m、n 为待定系数),则 4a−2b=m(a−b)+n(a+b),即
错点 3 忽略对二次项系数的讨论导致错误
已知关于 x 的不等式 mx2+mx+m-1<0 恒成立,则 m 的取值范围为______________. 【错解】由于不等式 mx2+mx+m-1<0 对一切实数 x 都成立, 所以 m<0 且Δ=m2-4m(m-1)<0, 解得 m<0.故实数 m 的取值范围为(-∞,0). 【错因分析】由于本题中 x2 的系数含有参数,且当 m=0 时不等式不是一元二次不等式,因此必须讨 论 m 的值是否为 0.而错解中直接默认不等式为一元二次不等式,从而采用判别式法处理导致漏解. 【试题解析】由于不等式 mx2+mx+m-1<0 对一切实数 x 都成立, 当 m=0 时,-1<0 恒成立;当 m≠0 时,易知 m<0 且Δ=m2-4m(m-1)<0,解得 m<0. 综上,实数 m 的取值范围为(-∞,0]. 【答案】(-∞,0]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式易错题及错解分析一、选择题:1.设()lg ,f x x =若0<a<b<c,且f(a)>f(b)>f(c),则下列结论中正确的是A (a-1)(c-1)>0B ac>1C ac=1D ac>1错解原因是没有数形结合意识,正解是作出函数()lg f x x =的图象,由图可得出选D. 2.设,,1x y R x y ∈+>则使成立的充分不必要条件是A 1x y +≥B 1122x y >>或 C 1x ≥ D x<-1 错解:选B,对充分不必要条件的概念理解不清,“或”与“且”概念不清,正确答案为D 。

3.不等式(0x -≥的解集是A {|1}x x >B {|1}x x ≥C {|21}x x x ≥-≠且D {|21}x x x =-≥或 错解:选B ,不等式的等价转化出现错误,没考虑x=-2的情形。

正确答案为D 。

4.某工厂第一年的产量为A ,第二年的增长率为a,第三年的增长率为b ,这两年的平均增长率为x,则A 2a b x +=B 2a b x +≤C 2a b x +>D 2a bx +≥ 错解:对概念理解不清,不能灵活运用平均数的关系。

正确答案为B 。

5.已知1324a b a b -<+<<-<且,则2a+3b 的取值范围是A 1317(,)22-B 711(,)22-C 713(,)22-D 913(,)22- 错解:对条件“1324a b a b -<+<<-<且”不是等价转化,解出a,b 的范围,再求2a+3b的范围,扩大了范围。

正解:用待定系数法,解出2a+3b=52(a+b)12-(a-b),求出结果为D 。

6.若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( )A a ≤-21或a ≥21B a <21C -21≤a ≤21D a ≥ 21正确答案:D 错因:学生对一元二次不等式与二次函数的图象之间的关系还不能掌握。

7.已知函数y =㏒21(3x )52+-ax 在[-1,+∞)上是减函数,则实数a 的取值范围( )A a ≤-6B -60<a <-6C -8<a ≤-6 D-8≤a ≤-6正确答案:C 错因:学生忘记考虑定义域真数大于0这一隐含条件。

8.已知实数x 、y 、z 满足x+y+z=0,xy z >0记T=x 1+y 1+z1,则( )A T >0B T=0C T <0D 以上都非正确答案: C 错因:学生对已知条件不能综合考虑,判断T 的符号改为判定 xyz(x1+y 1+z1)的符号。

9.下列四组条件中,甲是乙的充分不必要条件的是( )A . 甲 a >b ,乙a 1 <b1B 甲 ab <0,乙 ∣a+b ∣<∣a -b ∣C 甲 a=b ,乙 a +b=2abD 甲 ⎩⎨⎧<<<<1010b a ,乙 ⎩⎨⎧<-<-<+<2120b a b a正确答案: D 错因:学生对不等式基本性质成立的条件理解不深刻。

10. f(x)=︱2x—1|,当a <b <c 时有f(a)>f(c)>f(b)则( )A a <0,b <0,c <0B a <0,b >0,c >0C 2a -<2cD 22+a c <2 正确答案:D 错因:学生不能应用数形结合的思想方法解题。

11. a,b ∈R ,且a>b ,则下列不等式中恒成立的是( )A.a 2>b 2B.(21) a <(21)bC.lg(a -b)>0D.ba>1 正确答案:B 。

错误原因:容易忽视不等式成立的条件。

12. x 为实数,不等式|x -3|-|x -1|>m 恒成立,则m 的取值范围是( )A.m>2B.m<2C.m>-2D.m<-2正确答案:D 。

错误原因:容易忽视绝对值的几何意义,用常规解法又容易出错。

13.已知实数x 、y 满足x 2+y 2=1,则(1-xy)(1+xy)( )A.有最小值21,也有最大值1 B.有最小值43,也有最大值1 C.有最小值43,但无最大值D.有最大值1,但无最小值正确答案:B 。

错误原因:容易忽视x 、y 本身的范围。

14.若a>b>0,且m b m a ++>ba,则m 的取值范围是( ) A. m ∈R B. m>0 C. m<0 D. –b<m<0 正确答案:D 。

错误原因:错用分数的性质。

15.已知R y R x ∈∈,,则1,1<<y x 是2<-++y x y x 的( )条件A 、充分不必要B 、必要不充分C 、既不充分也不必要D 、充要 正确答案:D错因:不严格证明随便判断。

16.如果2log 3log 2121ππ≥-x 那么x sin 的取值范围是( )A 、⎥⎦⎤⎢⎣⎡-21,21B 、⎥⎦⎤⎢⎣⎡-1,21C 、⎥⎦⎤ ⎝⎛⋃⎪⎭⎫⎢⎣⎡-1,2121,21D 、⎥⎦⎤ ⎝⎛⋃⎪⎪⎭⎫⎢⎣⎡-1,2323,21 正确答案:B错因:利用真数大于零得x 不等于60度,从而正弦值就不等于23,于是就选了D.其实x 等于120度时可取得该值。

故选B 。

17.设,0,0>>b a 则以下不等式中不恒成立....的是 ( ) A .4)11)((≥++ba b a B .2332ab b a ≥+ C .b a b a22222+≥++ D .a b a ≥-||正确答案:B18.如果不等式x a x ≥+(a>0)的解集为{x|m ≤x ≤n},且|m-n|=2a ,则a 的值等于( ) A .1 B .2 C .3 D .4 正确答案:B19.若实数m ,n ,x ,y 满足m 2+n 2=a ,x 2+y 2=b (a ≠b ),则mx+ny 的最大值为( )A 、2b a +B 、abC 、222b a +D 、ba ab +答案:B点评:易误选A ,忽略运用基本不等式“=”成立的条件。

20.数列{a n }的通项式902+=n na n ,则数列{a n }中的最大项是( )A 、第9项B 、第8项和第9项C 、第10项D 、第9项和第10项 答案:D点评:易误选A ,运用基本不等式,求nn a n 901+=,忽略定义域N*。

21.若不等式21--+x x >a 在R x ∈上有解,则a 的取值范围是 ( ) A . ()3,3- B. (]3,3- C . ()3,∞- D .()3,-∞- 错解:D错因:选D 恒成立。

正解:C22.已知21,x x 是方程)(0)53()2(22R k k k x k x ∈=+++--的两个实根,则2221x x +的最大值为( )A 、18B 、19C 、955 D 、不存在 答案:A 错选:B错因:2221x x +化简后是关于k 的二次函数,它的最值依赖于0>∆所得的k 的范围。

23.实数m,n,x,y 满足m 2+n 2=a , x 2+y 2=a , 则mx+ny 的最大值是 。

A 、2b a +B 、abC 、222b a + D 、22b a +答案:B错解:A错因:忽视基本不等式使用的条件,而用2222222ba y n x m ny mx +=+++≤+得出错解。

24.如果方程(x-1)(x 2-2x +m)=0的三个根可以作为一个三角形的三条边长,那么实数m 的取值范围是 ( ) A 、0≤m ≤1 B 、43<m ≤1 C 、43≤m ≤1 D 、m ≥43 正确答案:(B )错误原因:不能充分挖掘题中隐含条件。

二填空题:1.设220,0,12b a b a ≥≥+=,则的最大值为 错解:有消元意识,但没注意到元的范围。

正解:由220,0,12b a b a ≥≥+=得:2212b a =-,且201b ≤≤,原式=求出最大值为1。

2.若,,x y R +∈≤a 的最小值是,2m n +≥≤,≤a 。

3.已知两正数x,y 满足x+y=1,则z=11()()x y xy++的最小值为 。

错解一、因为对a>0,恒有12a a+≥,从而z=11()()x y x y ++≥4,所以z 的最小值是4。

错解二、22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最小值是1)。

错解分析:解一等号成立的条件是11,11,1x y x y x y x y====+=且即且与相矛盾。

解二等号成立的条件是2,xy xy xy ==即104xy <≤相矛盾。

正解:z=11()()x y x y ++=1y xxy xy x y+++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210()24x y t xy +<=≤=,由2()f t t t =+在10,4⎛⎤ ⎥⎝⎦上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值254。

4.若对于任意x ∈R ,都有(m -2)x 2-2(m -2)x -4<0恒成立,则实数m 的取值范围是 。

正确答案:(-2,2) 。

错误原因:容易忽视m =2。

5.不等式ax 2+ bx + c >0 ,解集区间(-21,2),对于系数a 、b 、c ,则有如下结论: ① a >0 ②b >0 ③ c >0 ④a + b + c >0 ⑤a – b + c >0,其中正确的结论的序号是________________________________. 正确答案 2 、3、 4错因:一元二次函数的理解6.不等式(x -2)x 2-2x -3 ≥0的解集是 . 正确答案:{}13x x x =-≥或 7.不等式1x a x 22+>+的解集为(-∞,0),则实数a 的取值范围是_____________________。

正确答案:{-1,1}8.若α,β,γ为奇函数f(x)的自变量,又f(x)是在(-∞,0)上的减函数,且有α+β>0,α+γ>0,β+γ>0,则f(α)+f(β)与f(-γ)的大小关系是:f(α)+f(β) ______________f(-γ)。

正确答案:<9.不等式|x+1|(2x -1)≥0的解集为____________答案:}1{),21[-⋃+∞点评:误填),21[+∞而忽略x=-1。

10.设x>1,则y=x+12-x 的最小值为___________ 答案:122+点评:误填:4,错因:12-+=x x y ≥122-x x ,当且仅当12-=x x 即x=2时等号成立,忽略了运用基本不等式求最值时的“一正、二定、三相等”的条件。

相关文档
最新文档