循环变化规律题
小学数学《周期性问题》练习题

小学数学《周期性问题》练习题基本概念:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.阳历中有闰日的年份叫闰年,相反就是平年,平年为365天,闰年为366天. 在公历纪年中,平年的二月为28天,闰年的二月为29天. 闰年的2月29日为闰日.一般的,能被4整除的年份是闰年,不能被4整除的年份是平年.如:1988年2008年是闰年;2005年2006年2007年是平年.但是如果是世纪年(也就是整百年),就只有能被400整除才是闰年,否则就是平年.如:2000年就是闰年,1900年就是平年.数字大排队【例1】除0外的全体自然数如右表排列,请问(1)数43在哪个字母下面?(2)数47在哪个字母下面?(3)数56在哪个字母下面?【例2】(小数报数学竞赛初赛)右图中,任意三个连续的小圆圈内三个数的连乘积都是891,那么B代表多少?【例3】(05希望杯邀请赛)将100个小球放入依次排列的36个盒子中.如果任意相邻的5个盒子中的小球总数均为14,且第1个盒中有2个小球.求第36个盒子中小球的个数.末尾数字的规律【例4】 算式2006123123123...123⨯⨯⨯个的得数的尾数是几?【例5】 求28128-2929的个位数字.圆圈上的数学游戏【例6】 (希望杯数学邀请赛决赛)如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A 、B 、C 三点周围的阴影部分是圆形的水洼。
一只小鸟飞来飞去,四处觅食,它最初停留在0号位,过了一会儿,它跃过水洼,飞到关于A 点对称的1号位;不久,它又飞到关于B 点对称的2号位;接着,它飞到关于C 点对称的3号位,再飞到关于A 点对称的4号位,……,如此继续,一直对称地飞下去。
由此推断,2004号位和0号位之间的距离是多少米?【例7】 (迎春杯刊赛)如右图,有16把椅子摆成一个圆圈,依次编上从1到16的号码.现在有一人从第1号椅子顺时针前进328个,再逆时针前进485个,又顺时针前进328个,再逆时针前进485个,又顺时针前进136个,这时他到了第几号椅子?【例8】 如右图,把1~8八个号码摆成一个圆圈,现有一个小球,第一天从1号开始按顺时针方向前进329个位置,第二天接着按逆时针方向前进485个位置,第三天又顺时针前进329个位置,第四天再逆时针前进485个位置……如此继续下去,问至少经过几天,小球又回到原来的1号位置?【例9】(1)时针如果指在5,那么分针旋转转动2008周后,钟表显示的时间是几时?(2)时钟在下午的时候指在5,那么分针旋转转动2008周后,钟表显示的时间是几时?我来找找星期几【例10】(美国小学数学奥林匹克)一月份有三十一天,如果某年的1月1日星期一,这年的2月22日是星期几?【例11】(国家公务员考试题改编)1999年的元旦是星期五,那么据此你知道2005年的元旦是星期几吗?【例12】(06年华罗庚金杯)奶奶告诉小明:“2006年共有53个星期日.”聪明的小明立刻告诉奶奶:2007年的元旦一定是星期().【例13】某年的10月有5个星期六,4个星期日,问这一年的十月一日是星期几?练习二1.(小学数学奥林匹克初赛)如果时钟现在表示的时间是18点整,那么分针旋转1990圈之后是几点钟?2.除0外的自然数都按右表排列,问:(1)21排在第几列的下面?(2)32排在第几列的下面?(3)54排在第几列的下面?3.2008个数排成一排,其中任意五个相邻数之和都是2008,已知第1个数是1,第9个数是9,第90个数是9,第102个数是3,那么第2008个数是;4.求291+3291的个位数字。
2021年中考数学循环规律必练21道题

2021中考数学----------循环规律必练21道题1.如图,矩形ABCD 的两边BC CD 、分别在x 轴、y 轴上,点C 与原点重合,点()1,2A -,将矩形ABCD 沿x 轴向右翻滚,经过一次翻滚点A 对应点记为1A ,经过第二次翻滚点A 对应点记为2A …以次类推,经过2020次翻滚后点A 对应点2020A 的坐标为( )A .()2524,2B .()2524,1C .()3029,2D .()3029,12.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2 018个点的坐标为( )A .(45,9)B .(45,11)C .(45,7)D .(46,0) 3.在平面直角坐标系中,一蚂蚁从原点出发,按向上、向右、向下的方向依次不断移动,每次移动1个单位,其行走路线如下图,则A 2019的坐标是( )A .(2019,0)B .(504,0)C .(1009,0)D .(1010,0) 4.如图,在平面直角坐标系中,将正整数按箭头所指的顺序排列,则正整数2019所在的点的坐标是( )A .(45)7,B .(45)39,C .(44)6,D .(44)39,5.在平面直角坐标系中,若干个半径为1个单位长度、圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,向右沿这条曲线做上下起伏运动(如图),点P 在直线上运动的速度为每秒1个单位长度,点P 在弧线上运动的速度为每秒π3个单位长度,则2021秒时,点P 的坐标是( )A .(B .(2021,C .2021,22⎛⎫ ⎪ ⎪⎝⎭D .2021,22⎛⎫- ⎪ ⎪⎝⎭6.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2 7.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2019次运动后,动点P 的坐标是( )A .(2018,1)B .(2018,0)C .(2019,2)D .(2019,1) 8.如图,在平面直角坐标系中,()1,1A ,()1,1B -,()1,2C --,()1,2D -,把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A →→→→⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .()1,0-B .()1,2-C .()1,0D .()0,2-9.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2016次运动后,动点P的坐标是()A.(2016,1)B.(2016,0)C.(2016,2)D.(2017,0)10.如图,直线y=x+1与x轴和y轴分别交于B0,B1两点,将B1B0绕B1逆时针旋转135°得B1B0′,过点B0'作y轴平行线,交直线y=x+1于点B2,记△B1B0B2的面积为S1;再将B2B1绕B2逆时针旋转135°得B2B1',过点B1'作y轴平行线,交直线y=x+l于点B3,记△B2B1'B3的面积为S2…以此类推,则△B n B n﹣1'B n+1的面积为S n=()A.)n B.)n﹣1C.2n D.2n﹣111.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,… 组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是().A .(2014,0)B .(2015,-1)C .(2015,1)D .(2016,0) 12.如图,在平面直角坐标系中,有若干个横坐标,纵坐标均为整数的点,其顺序按图中“→”方向依次排列:(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→ 根据这个规律,第2020个点的坐标为( )A .(45,5)B .(45,6)C .(45,7)D .(45,8)13.如图,已知直线:l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ,…,按此作法继续下去,则点2020A 的坐标为( )A .()0,2020B .()0,4040C .()20200,2D .()20200,4 14.如图,平面直角坐标系中,一蚂蚁从A 点出发,沿着···A B C D A →→→→循环爬行,其中A 点的坐标为()2,2-,B 点的坐标为()2,2--,C 点的坐标为()2,6-,D 点的坐标为()2,6,当蚂蚁爬了2020个单位时,蚂蚁所处位置的坐标为( )A .()2,2--B .()2,2-C .()2,6-D .()0,2-15.如图,平面直角坐标系中,边长为1的正方形1OAP B 的顶点A 、B 分别在x 轴、y 轴上,点1P 在反比例函数(0)k y x x=>的图象上,过1P A 的中点1B 作矩形112B AA P ,使顶点2P 落在反比例函数的图象上,再过21P A 的中点2B 作矩形2123B A A P ,使顶点3P 落在反比例函数的图象上,…,依此规律,作出矩形18171819B A A P 时,落在反比例函数图象上的顶点19P 的坐标为( )A .18181(2,)2B .18181(,2)2C .15151(2,)2D .15151(,2)2 16.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,依此方式,绕点O 连续旋转2019次得到正方形OA 2019B 2019C 2019,如果点A 的坐标为(1,0),那么点B 2019的坐标为( )A .(1,1)B .(0C .(,0)D .(-1,1)17.在平面直角坐标系中,解析式为1y =+的直线a ,解析式为3y x =的直线b ,如图所示,直线a 交y 轴于点A ,以OA 为边作一个等边三角形OAB ∆,过点B 作y 轴的平行线交直线a 于点1A ,以1A B 为第二个等边三角形11A BB ∆,…顺次这样做下去,第2020个等边三角形的边长是( )A .20192B .20202C .4038D .404018.在平面直角坐标系中,直线l :y=x -1与x 轴交于点A 1,如图所示依次作正方形A 1B 1C 1O ,正方形A 2B 2C 2C 1,……正方形A n B n C n C n -1,使得点A 1,A 2,A 3,……在直线l 上,点C 1,C 2, C 3,……在y 轴正半轴上,则点B n 的横坐标是( )A.2n-1B.2n C.2n+1D.2n-119.如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),……依次扩展下去,则P2018的坐标为()A.(﹣503,503)B.(504,504)C.(﹣506,﹣506)D.(﹣505,﹣505)20.如图,动点P在平面直角坐标系xOy中,按图中箭头所示方向运动,第1次从原点运动到点(1,2),第2次接着运动到点(2,0),第3次接着运动到点(3,1),第4次接着运动到点(4,0),……,按这样的运动规律,经过第27次运动后,动点P的坐标是()A.(26,0)B.(26,1)C.(27,1)D.(27,2)21.如图所示,一只电子跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→>(0,1)→(1,1)→>(1,0)→…]且每秒跳动一个单位,那么第45秒时跳蚤所在位置的坐标是( )A.(5,6)B.(6,0)C.(6,3)D.(3,6)。
一起学奥数-周期问题(五年级)

例2、将100个小球放入依次排列的36个盒子中,如果任意相邻的5个盒子中的小球均为14,且第1个盒子中有2 个小球。求第36个盒子中小球的个数。
……
【分析】任意相邻的5个盒子中的小球数均为14,把36个盒子依次按5个一组分组
因为 36÷5=7……1
所以36个盒子可以分成7组,余1个。
一起学奥数-周期问题(五年级)
ቤተ መጻሕፍቲ ባይዱ
教育目标
了解许多事物的变化都有周期性 掌握事物变化的周期,并能灵活运用周期变化规律解决实际问题 通过对周期问题的探究并总结出利用数学思想解决实际周期问题
教育重点
掌握周期的规律,并能解决简单的周期问题
教育难点
采用什么样的手段得到周期的循环数
第一课 基础部分
例1、把2/7化为循环小数,问小数点后第2014个数字是几?这2014个数字和是多少? 【分析】把分数2/7化为小数是0.285●714 ● 这是一个循环小数,循环节为285714,六个数字。 2014÷6=335……4,即小数点后的2014个数字,由335个循环节和一个循环节的前4个数字组成。 所以,第2014个数字是7。这2014个数字和为: 335×(2+8+5+7+1+4)+(2+8+5+7)=9067
日
一
二
三
四
五
六
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
专题08规律题方法总结与例题专训(原卷版)

专题08 规律题方法总结与例题专训【知识点睛】常见规律题类型❖周期性循环特点:常以3个或4个数据为一周期,以此循环往复;总数比较大,常和年份结合考察处理方法步骤:1.找出第一周期的几个数,确定周期数2.算出题目中的总数和待求数3.用总数÷周期数=m……n(表示这列数中有m个整周期,最后余n个)4.最后余几,待求数就和每周期的第几个一样;❖周期性递变循环特点:常以2个或3个一周期,后边的每组,周期数不变,但是数据的大小会以相同的关系递增或递减;处理方法:同周期性循环基本一致,最后一步需要加入递变的关系❖递变增减型特点:分以此递增和以此递减,通常是数据之间的直接变化,偶尔借助图形;常和年份结合考察处理方法:熟记单独数据规律,直接应用于考察问题;❖算式类比性特点:常给出几个算式或等式,先算简单的,再从简单的类比到复杂题目的计算处理办法:1.正确计算出前面简单算式的答案2.找出数字间的规律3.将简单数字间的关系推导到字母n的关系中❖常见数字间固定规律识记:1.裂项相消法:将一项拆分成多项,前后保持相等,然后利用某些项相消的原则简化运算;2.错位相减法:适用于两个式子间有相同项的题目,两式相减直接抵消掉中间项,剩余首项、尾项再计算;3.倒序求和发:如:计算1+2+3+......+50,可以设S=1+2+3+......+50,则亦有S=50+49+48+ (1)∴2S=51×50,∴S=51×25=…裂项法公式:kn n k n n k +-=+11)(【类题训练】1.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a ,b 的值分别为( )A .16,257B .16,91C .10,101D .10,1612.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这组数的第2022个数是( ) A .B .C .D .3.一只小球落在数轴上的某点P 0,第一次从P 0向左跳1个单位到P 1,第二次从P 1向右跳2个单位到P 2,第三次从P 2向左跳3个单位到P 3,第四次从P 3向右跳4个单位到P 4……若按以上规律跳了100次时,它落在数轴上的点P 100所表示的数恰好是2021,则这只小球的初始位置点P 0所表示的数是( ) A .1971B .1970C .﹣1971D .﹣19704.有一列数a 1,a 2,a 3,…,a n ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a 1=2,则a 2022为( ) A .B .2C .﹣1D .20225.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数﹣2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数﹣2022将与圆周上的哪个数字重合( )A .0B .1C .2D .36.观察图中正方形四个顶点所标的数字规律,可知数2022应标在( )A.第506个正方形的右上角B.第506个正方形的左下角C.第505个正方形的右上角D.第505个正方形的左下角7.等边三角形(三条边都相等的三角形是等边三角形)纸板ABC在数轴上的位置如图所示,点A、B 对应的数分别为2和1,若△ABC绕着顶点逆时针方向在数轴上连续翻转,翻转第1次后,点C所对应的数为0,则翻转2023次后,点C所对应的数是()A.﹣2021B.﹣2022C.﹣2023D.﹣20248.下列图形都是由圆和几个黑色围棋子按一定规律组成,图①中有4个黑色棋子,图②中有7个黑色棋子,图③中有10个黑色棋子,…,依次规律,图中黑色棋子的个数是()A.6067B.6066C.6065D.60649.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形武(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位、千位、十万位数用横式表示;“0”用空位来代替,以此类推例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.10.根据图中数字的排列规律,在第⑦个图中,a﹣b﹣c的值是()A.﹣190B.﹣66C.62D.6411.已知整数m1,m2,m3,m4,…满足下列条件:m1=0,m2=﹣|1+m1|,m3=﹣|2+m2|,m4=﹣|3+m3|,…,以此类推,m2020=.12.在2020个“□”中依次填入一列数字m1,m2,m3…,m2020,使得其中任意四个相邻的“□”中所填的数字之和都等于15.已知m3=2,m6=7,则m1+m2020的值为.27…13.有一数值转换器,原理如图所示,若开始输入x的值是1,可发现第一次输出的结果是4,第二次输出的结果是2,……,请你探索第2021次输出的结果是.14.如图,数字都是按一定规律排列的,其中x的值是.15.观察图,找出规律.,则的值为.16.观察以下等式:第1个等式:×(2﹣)=1+;第2个等式:×(2﹣)=1+;第3个等式:×(2﹣)=1+;第4个等式:×(2﹣)=1+;第2021个等式:.17.请你观察:,,;…+=+=1﹣=;++=++=1﹣=;…以上方法称为“裂项相消求和法”.请类比完成:(1)+++=;(2)++++…+=;(3)计算:的值.18.先阅读下列内容,然后解答问题.因为.所以.请解答:(1)应用上面的方法计算:….(2)类比应用上面的方法计算:….19.观察以下图案和算式,解答问题:(1)1+3+5+7+9=;(2)1+3+5+7+9+…+19=;(3)请猜想1+3+5+7+……+(2n﹣1)=;(4)求和号是数学中常用的符号,用表示,例如,其中n=2是下标,5是上标,3n+1是代数式,表示n取2到5的连续整数,然后分别代入代数式求和,即:=3×2+1+3×3+1+3×4+1+3×5+1=46请求出的值,要求写出计算过程,可利用第(2)(3)题结论.20.从2开始,连续的偶数相加,它们的和的情况如表:加数m的个数和S12=1×222+4=6=2×332+4+6=12=3×442+4+6+8=20=4×552+4+6+8+10=30=5×6(1)按这个规律,当m=6时,和为;(2)从2开始,m个连续偶数相加,它们的和S与m之间的关系,用公式表示出来为:=.(3)应用上述公式计算:①2+4+6+ (200)②202+204+206+ (300)21.观察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52;……(1)请根据你发现的规律填空:7×9+1=()2;(2)用含n的等式表示上面的规律:;(3)用找到的规律解决下面的问题:计算:22.(1)①观察一列数1,2,3,4,5,…,发现从第二项开始,每一项与前一项之差是一个常数,这个常数是;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=,a n =;②如果欲求1+2+3+4+…+n的值,可令S=1+2+3+4+…+n❶,将①式右边顺序倒置,得S =n+…+4+3+2+1❷,由❷式+❶式,得2S=;∴S=;由结论求1+2+3+4+…+55=;(2)①观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=,a n=;②为了求1+3+32+33+…+32018的值,可令M=1+3+32+33+…+32018❶,则3M=3+32+33+…+32019❷,由❷式﹣❶式,得3M﹣M=32019﹣1,∴M=,即1+3+32+33+...+32018=.仿照以上推理,计算1+5+52+53+ (551)。
中考数学重难点突破专题一:规律探索型问题试题(含答案)

精品基础教育教学资料,仅供参考,需要可下载使用!专题一 规律探索问题类型1 数字规律1.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2020时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是__337__分.解析:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n 个数为1+3(n -1)=3n -2,3n -2=2020,则n =674,甲报出了674个数,一奇一偶,所以偶数有674÷2=337个,得337分.2.如图,给正五边形的顶点依次编号为1,2,3,4,5,若从某一顶点开始,沿五边形的边顺时针行走,顶点编号是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”,则他所处顶点的编号为__3__.3.(2017·六盘水)计算1+4+9+16+25+…的前29项的和是__8555__.解析:12+22+32+42+52+…+292+…+n 2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n -1)n +n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n -1)n]=n (n +1)2+{13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+13(3×4×5-2×3×4)+…+13[(n -1)·n·(n +1)-(n -2)·(n -1)·n]}=n (n +1)2+13[(n -1)·n·(n +1)]=n (n +1)(2n +1)6, ∴当n =29时,原式=29×(29+1)×(2×29+1)6=8555. 类型2 图形规律4.(2017·天水)观察下列的“蜂窝图”则第n 个图案中的“”的个数是__3n +1__.(用含有n 的代数式表示)5.(2017·临沂)将一些相同的“○“按如图所示摆放,观察每个图形中的“○“的个数,若第n 个图形中“○“的个数是78,则n 的值是( B )A .11B .12C .13D .14解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n 个图形有1+2+3+…+n =n (n +1)2个小圆;∵第n 个图形中“○“的个数是78,∴78=n (n +1)2,解得:n 1=12,n 2=-13(不合题意舍去).6.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为( C )A .121B .362C .364D .729解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,类型3 坐标变化规律7.在平面直角坐标系中,对于平面内任一点(a ,b),若规定以下三种变换:①△(a ,b)=(-a ,b);②○(a ,b)=(-a ,-b);③Ω(a ,b)=(a ,-b),按照以上变换例如:△(○(1,2))=(1,-2),则○(Ω(3,4))等于__(-3,4)__.8.(2017·衢州)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经一次翻滚后得到△A 1B 1O ,则翻滚3次后点B的对应点的坐标是__(5,3)__,翻滚2017次后AB 中点M 经过的路径长为 (134633+896)π .解析:如图作B 3E ⊥x 轴于E ,易知OE =5,B 3E =3,∴B 3(5,3),观察图象可知三次一个循环,一个循环点M 的运动路径为120·π·3180+120π·1180+120π·1180=(23+43)π,∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672·(23+43)π+233π=(134633+896)π.9.(2017·菏泽)如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y =-33x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y =-33x 上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为__(-9-93,9+33)__.解:观察图象可知,O 12在直线y =-33x 时,OO 12=6·OO 2=6(1+3+2)=18+63, ∴O 12的横坐标=-(18+63)·cos30°=-9-93,O 12的纵坐标=12OO 12=9+33,∴O 12(-9-93,9+33). 10.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( C )A .2B .3C .4D .5解析:如图,∵到直线l 1的距离是l 的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离为2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上,∴“距离坐标”是(1,2)的点是M 1,M 2,M 3,M 4,一共4个.11.(2017·绍兴模拟)在平面直角坐标系中,对图形F 给出如下定义:如图形F 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度.例如,图中的矩形ABCD 的坐标角度是90°.现将二次函数y =ax 2(1≤a ≤3)的图象在直线y =1下方的部分沿直线y =1向上翻折,则所得图形的坐标角度α的取值范围是( B )A .30°≤α≤60°B .60°≤α≤90°C .90°≤α≤120°D .120°≤α≤150°12.(2017·昆山二模)赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x 轴和y 轴,大正方形的顶点B 1,C 1,C 2,C 3,…,C n 在直线y =-12x +72上,顶点D 1,D 2,D 3,…,D n 在x 轴上,则第n 个阴影小正方形的面积为__(23)2n -2__.解:设第n 个大正方形的边长为a n ,则第n 个阴影小正方形的边长为55a n,当x =0时,y =-12x +72=72,∴72=55a 1+52a 1,∴a 1= 5.∵a 1=a 2+12a 2,∴a 2=235,同理可得:a 3=23a 2,a 4=23a 3,a 5=23a 4,…,∴a n =(23)n -1a 1=5(23)n -1,∴第n 个阴影小正方形的面积为(55a n )2=[(23)n -1]2=(23)2n -2.。
苏科版 初二物理 上学期 第二章 物态变化 第五节 水循环 巩固练习题之填空

苏科版初二物理上学期第二章物态变化第五节水循环巩固练习题之填空20190726手动选题组卷3一、填空题(本大题共22小题,共44.0分)1.在水循环的过程中,江河湖海,土壤,植物中的水,通过______变成水蒸汽.升入天空,水蒸气在高空遇冷时有的______成小水珠,有的______成小冰晶,形成千姿百态的云,云中的小水滴也会______成小冰晶,云中的小水滴长大到一定程度后,降落到地面,这就是雨.云中的小冰晶长大到一定程度后,降落到高山,地面,这就是雪.冰山上的积雪______直接变成水蒸气,升入天空.积雪______后变成水,汇入江河,流入大海.(填物态变化名称)2.如图是大自然中水循环现象的示意图。
江、河、湖、海以及大地表面层中的水不断______变成水蒸气,这一过程要吸热。
当含有很多水蒸气的空气升入高空时,水蒸气的温度降低凝成小水滴或小冰晶,这就形成了云,云是水蒸气液化或______形成的,在一定条件下,云中小水滴和小冰晶越来越大,就会下落,在下落过程中,小冰晶又变成了小水滴,与原来的水滴一起落到地面,就形成了雨,小冰晶的熔化过程需______热。
3.下列物体:霜、雪、雹、雾、露、冰、雨中,属于固体状态的是______ .4.写出物态变化名称:雾______,露______,霜______,白气______,冰花______在玻璃______侧。
5.阅读下面的短文,回答问题:向天取水地球上,水的三种状态在不断地相互转化.水的物态变化,形成了海洋、陆地、大气间的水循环.地球上水的储量虽然很多,但是淡水资源非常紧张,仅占全球总水量的百分之二点七.在干旱地区可通过人工降雨的方法向天取水,其中一种人工降雨的方法是把干冰(固态二氧化碳)播撒到冷云中,使其周围环境温度降低,空气中的水蒸气迅速凝结成小水滴或小冰晶,导致降雨.水是生命之源,人类一直重视水资源的利用和保护.建造水库便是重要措施之一.(1)自然界中水的一个循环包含的物态变化有______ .(2)请根据“干冰降雨”的过程提出一个物理问题并回答.问题:______ 简答:______ .(3)水库大坝建造成上窄下宽,是由于______ .6.图中箭头表示水的物三态变化方向。
水文学原理试题及答案

水文学原理试题及答案一、选择题1. 水文学是研究水在地球上的分布、循环和变化规律的科学。
以下不属于水文学研究范围的是:A) 水在地表的径流过程B) 水在土壤中的渗透过程C) 水在大气中的降水过程D) 水中的物理性质测量答案:D) 水中的物理性质测量2. 水的地表径流指的是:A) 水从雨滴降落到地面的过程B) 水从地下渗透到地表的过程C) 水在地表流动的过程D) 水从地表蒸发到大气的过程答案:C) 水在地表流动的过程3. 下列哪个因素对水文循环没有直接的影响?A) 气温B) 大气压力C) 风速D) 地形答案:D) 地形4. 下列哪种环境因素可能导致土壤水分过剩?A) 高温B) 高湿度C) 高风速D) 高海拔答案:B) 高湿度5. 下列哪种降水类型属于辐合性降水?A) 对流降水B) 层状云降水C) 局地性暴雨D) 暴雨答案:A) 对流降水二、判断题1. 地下水的补给主要来自于降水和地表径流的入渗。
答案:正确2. 水文循环是指水在地球上不断循环流动的过程,包括蒸发、降水、径流等环节。
答案:正确3. 地球上的水资源分布极为均匀,每个国家和地区都能够充分利用。
答案:错误4. 对流降水是在辐合性天气系统作用下形成的,一般雨量较小。
答案:错误5. 雨水在地表流动时,会受到地形、土壤类型和植被覆盖等因素的影响。
答案:正确三、问答题1. 解释水文学的研究对象和意义。
水文学研究的对象是地球上的水,包括水的分布、循环和变化规律。
水文学的研究对于水资源的科学开发利用、洪水预测和防灾减灾等方面具有重要意义。
通过对水文学原理的研究,可以更好地理解和预测水文过程,为水资源管理和自然灾害防治提供科学依据。
2. 地下水和地表水有什么区别?它们之间是否存在相互转化的过程?地下水指的是位于地下土壤和岩石孔隙中的水,主要补给源是通过降水和地表径流的入渗。
地表水指的是位于地表的水,包括河流、湖泊、地表湿地等。
地下水和地表水之间存在相互转化的过程,地下水可以通过泉眼、井等方式向地表流出,同时地表水也可以通过渗漏和倒灌等方式进入地下。
小学六年级奥数周期循环与数表规律问题专项强化训练题(中难度)

小学六年级奥数周期循环与数表规律问题专项强化训练题(中难度)例题1:某数表如下所示:1, 4, 7, 10, ...若数表继续按照规律进行下去,请写出数表的第20项是多少。
解析:观察数表可知,每一项与前一项的差都是3。
因此,可以得出数表的通项公式为:a(n) = a(n-1) + 3其中,a(n)表示数表的第n项。
根据通项公式,可以得到数表的第20项为:a(20) = a(19) + 3= a(18) + 3 + 3= a(17) + 3 + 3 + 3= ...= a(1) + 3 + 3 + ... + 3 (共19个3)= 1 + 3 * 19= 1 + 57= 58因此,数表的第20项为58。
专项练习题:1:某数表如下所示:2, 5, 8, 11, ...若数表继续按照规律进行下去,请写出数表的第15项是多少。
2:某数表如下所示:10, 13, 16, 19, ...若数表继续按照规律进行下去,请写出数表的第12项是多少。
-1, 4, 9, 14, ...若数表继续按照规律进行下去,请写出数表的第25项是多少。
4:某数表如下所示:3, 8, 13, 18, ...若数表继续按照规律进行下去,请写出数表的第10项是多少。
5:某数表如下所示:-2, 1, 4, 7, ...若数表继续按照规律进行下去,请写出数表的第30项是多少。
6:某数表如下所示:0, 4, 8, 12, ...若数表继续按照规律进行下去,请写出数表的第18项是多少。
7:某数表如下所示:20, 17, 14, 11, ...若数表继续按照规律进行下去,请写出数表的第22项是多少。
8:某数表如下所示:-5, -1, 3, 7, ...若数表继续按照规律进行下去,请写出数表的第16项是多少。
9:某数表如下所示:100, 96, 92, 88, ...若数表继续按照规律进行下去,请写出数表的第24项是多少。
10:某数表如下所示:-12, -8, -4, 0, ...若数表继续按照规律进行下去,请写出数表的第28项是多少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点三:循环排列规律
循环排列规律是运动着的规律,我们只要根据题目的已知部分分析出图案或数据每隔几个图暗就会循环出现,看看最后所求的与循环的第几个一致即可。
1、(2007广东佛山)观察下列图形,并判断照此规律从左向右第2007个图形是()
A.B.C.D.
考点:规律型:图形的变化类.
专题:规律型.
分析:本题的关键是要找出4个图形一循环,然后再求2007被4整除后余数是3,从而确定是第3个图形.
解答:解:根据题意可知笑脸是1,2,3,4即4个一循环.所以2007÷4=501…3.所以是第3个图形.故选C.
点评:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.
2、下列一串梅花图案是按一定规律排列的,请你仔细观察,
在前2012个梅花图案中,共有个“”图案.
考点:规律型:图形的变化类.
专题:规律型.
分析:注意观察图形中循环的规律,然后进行计算.
解答:解:观察图形可以发现:依次是向上、右、下、左4个一循环.所以2013÷4=503余1,则共有503+1=504个.
3、观察下列图形的排列规律(其中.若第一个图形是三角形,则第18个图形是(填图形名称)
【解析】主要的是要看清只有三个基本的图形来组成一个规律,三个一组,而且五角星都在最后,前边两个相邻组之间它两的位置互换,三个一组,恰好18个是6组,第18个刚好是第6组最后一个,五角星。
【答案】五角星
【点评】主要考查考生的观察能力和细心程度,要素简单,但要很快找出规律,也要细心揣摩。
此题不难。
4、如图,如图所示的图案是按一定规律排列的,照此规律,在第1至第2012个图案中“”,共
▲ 个.
【答案】503。
【考点】分类归纳(图形的变化类)。
【分析】由图知4个图形一循环,因为2012
被4
整除,从而确定是共有第503♣。
5、
(2012
云南省,14
,3
分)观察下列图形的排列规律
(其中
正方形、五角星)
.若第一个图形是三角形,则第
18个图形是
(填图形名称)
【解析】主要的是要看清只有三个基本的图形来组成一个规律,三个一组,而且五角星都
在最后,前边两个相邻组之间它两的位置互换,三个一组,恰好18
个是6
组,第18个刚
好是第
6组最后一个,五角星。
【答案】五角星
【点评】主要考查考生的观察能力和细心程度,要素简单,但要很快找出规律,也要细心揣摩。
此题不难。
6、(2011辽宁盘锦3分)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点. 若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为 A. 1 B. 2 C. 3 D. 5 【答案】C 。
【考点】分类归纳(图形的变化)。
【分析】寻找规律:,可见除第一次外,跳三次一个循环2,1,3。
∵(2011-1)÷3=670除尽,∴青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为3。
故选C 。
52132−−−
→−−−→−−−→−−−→→⋅⋅⋅⋅⋅⋅第1次第2次第3次第4次
4. (2012广东梅州3分)如图,连接在一起的两个正方形的边长都为1cm,一个微型机器人由点A开始按ABCDEFCGA…的顺序沿正方形的边循环移动.①第一次到达G点时移动了▲ cm;②当微型机器人移动了2012cm时,它停在▲ 点.
【答案】7;E。
【考点】分类归纳(图形的变化类)。
【分析】①由图可知,从A开始,第一次移动到G点,共经过AB、BC、CD、DE、EF、FC、CG七条边,所以共移动了7cm;
②∵机器人移动一圈是8cm,而2012÷8=251…4,
∴移动2012cm,是第251圈后再走4cm正好到达E点。
7、(2006•无锡)探索规律:根据下图中箭头指向的规律,从2004到2005再到2006,箭头的方向是()
A.B.C.D.
4.分析:本题根据观察图形可知箭头的方向每4次重复一遍,2004=4=501.因此2004所在的位置即为图中的4所在的位置.
解答:解:依题意得:图中周期为4,2004÷4=501为整数.因此从2004到2005再
到2006的箭头方向为:故选A.
7、(江苏省常州市2010年2分)如图,圆圈内分别有0,1,2,3,4,…,11这12个数字。
电子跳蚤每跳一次,可以从一个圆圈跳到相邻的圆圈,现在,一只电子跳蚤从标有数字“0”
的圆圈开始,按逆时针方向跳了2010次后,落在一个圆圈中,该圆圈所标的数字是▲ 。
【答案】6。
【考点】分类归纳(图形的变化类)。
【分析】寻找规律,根据题意可知是0,1,2,3,4,…,11即12个数是一个循环:若余数为0,圆圈所标的数字是0;
若余数为1,圆圈所标的数字是11;
若余数为2,圆圈所标的数字是10;
若余数为3,圆圈所标的数字是9;
…;
若余数为11,圆圈所标的数字是1。
∵2010除12余数为6,∴该圆圈所标的数字是6。
8、(2011山东日照)观察图中正方形四个顶点所标的数字规律,可知数2011应标在()
A.第502个正方形的左下角B.第502个正方形的右下角
C.第503个正方形的左上角D.第503个正方形的右下角
2.分析:观察发现:正方形的左下角是4的倍数,左上角是4的倍数余3,右下角是4的倍数余1,右上角是4的倍数余2.
解答:解:通过观察发现:正方形的左下角是4的倍数,左上角是4的倍数余3,右下角是4的倍数余1,右上角是4的倍数余2
∵2011÷4=502…3,
∴数2011应标在第503个正方形的左上角.
故选C.
9、(2011内蒙古乌兰察布3分)将正方体骰子(相对面上的点数分别为 1 和 6 、 2 和 5 、 3 和 4 )放置于水平桌面上 ,如图 ① .在图 ② 中,将骰子向右翻滚 90 ,然后在桌面上按逆时针方向旋转 90, 则完成一次变换.若骰子的初始位置为图①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是
A . 6
B . 5 C. 3 D . 2 【答案】B 。
【考点】分类归纳(图形变化类)。
【分析】寻找规律:
可知,按上述规则连续完成3次变换后,骰子回到初始位置,因此连续完成10次变换后,骰子与完成1次变换的状态相同。
故选B 。
10、(2014•遵义16.(4分))有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是 3 .
11、.(2011辽宁盘锦3分)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点. 若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为 A. 1 B. 2 C. 3 D. 5
【答案】C 。
【考点】分类归纳(图形的变化)。
【分析】寻找规律:,可见除第一次外,跳三次一个循环2,1,3。
∵(2011-1)÷3=670除尽,∴青蛙从5这点开始跳,则经2011
次跳后它停在的点所对应的数为3。
故选C 。
12、(2012江苏无锡2分)如图的平面直角坐标系中有一个正六边形ABCDEF ,其中C .D 的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x 轴向右滚动,则在滚动过程中,这个六边形的顶点A .B .C .D .E 、F 中,会过点(45,2)的是点 ▲ .
【答案】B 。
【考点】分类归纳(图形的变化类),坐标与图形性质,正多边形和圆,旋转的性质。
【分析】由正六边形ABCDEF 中C .D 的坐标分别为(1,0)和(2,0),得正六边形边长为1,周长为6。
∴正六边形滚动一周等于6。
如图所示。
当正六边形ABCDEF 滚动到位置1,2,3,4,5,6,7时,顶点A .B .C .D .E 、
F 的纵坐标为2。
位置1时,点A 的横坐标也为2。
又∵(45-2)÷6=7…1,
∴恰好滚动7周多一个,即与位置2顶点的纵坐标相同,此点是点B 。
∴会过点(45,2)的是点B 。
52132−−−
→−−−→−−−→−−−→→⋅⋅⋅⋅⋅⋅第1次第2次第3次
第4次。