惠安广海中学2015初一下方程提高练习
惠安广海中学13-14学年度七、八、九年级1班历次考试成绩汇总表

134 122 134 115 130 115 131 122
28 61 22 21 150 148 147 148
139 109 142 132 119 108 137 112
81 60 80 61 148 149 142 145
89 69 84 89 89 73 85 87
46 34 27 40 89 96 89 98 89 83 91 97 99 100 90 100
685 682 698 694 1 3 19 2
8 37 2 21 33 36 17 27
51 49 54 53 1 2 1 1
166 544 72 383 488 539 282 442
691 696 697 702 1 2 3 4
112 76 128 100 86 96 106 112
99 81 93 89 142 137 144 138
90 93 93 94 97 95 100 98
57 69 39 67 100 97 98 98
95 90 90 90 94 90 100 91
83 95 78 81 99 97 97 98
92 63 95 95 96 84 98 95
86 74 91 90 92 76 94 87
惠安广海中学13-14年度上学期七、八、九年级1班历次考试成绩汇总表 姓 名 考试次数 七(上)第一阶段考试 七(上)期中考考试 七(上)第二阶段考试 七(上)期末考考试 七(下)第一阶段考试 七(下)期中考考试 七(下)第二阶段考试 七(下)期末考考试 八(上)第一阶段考试 八(上)期中考考试 八(上)第二阶段考试 八(上)期中考考试 八(下)第一阶段考试 八(下)期中考考试 八(下)第二阶段考试 八(下)期中考考试 九(上)第一阶段考试 九(上)期中考考试 九(上)第二阶段考试 九(上)期中考考试 九(下)第一阶段考试 九(下)期中考考试 九(下)第二阶段考试 九(下)期中考考试 等级 8A 7A0B0C0D 6A1B0C0D 6A1B0C0D 7A0B0C0D 3A3B1C0D 5A1B0C1D 2A2B2C1D 3A2B1C1D 全科排序 语数英排序 语文 全科 语数英 等级排序 850 450 班次 段次 班次 段次 班次 段次 150 657 279 2 12 2 14 2 11 86 727 355 5 163 5 117 5 172 118 762.5 397.5 4 140 3 123 4 124 116 783 396 5 156 4 116 5 185 124 565 665 621.5 672 226 317 302.5 330 24 35 35 39 356 552 556 586 24 24 36 29 356 402 565 509 35 29 39 32 447 461 590 523 66 84 89 104
2014-2015学年度七年级数学同步提高(含参的一元一次不等式)

2014-2015学年度七年级数学同步提高(含参不等式的问题)1. (1)关于x 的一元一次不等式组⎩⎨⎧>+<-202m x m x 有解,求m 的取值范围(2)关于x 的一元一次不等式组⎩⎨⎧>+<-202m x m x 无解,求m 的取值范围 (3)关于x 的一元一次不等式组⎩⎨⎧>+<-202m x x 有唯一负整数解,求m 的取值范围2. 不等式()m m x ->-331的解集为1>x ,求m 的取值3. 若不等式组⎩⎨⎧≤+≥-002a x b x 的解集为43≤≤x ,则不等式0<+b ax 的解集为_______4. 不等式组⎩⎨⎧->-≥+2210x x a x 有解,则a 的取值范围_______5. 若关于x,y 的方程组⎩⎨⎧-=++=+134123m y x m y x 的解满足y x <,则m 的取值范围是________6. 若关于x 的不等式组⎩⎨⎧->-≥-1230x a x 有5个整数解,则a 的取值范围________7. 已知不等式组⎪⎩⎪⎨⎧-<-+>-a a a a 237121)1(315的整数解a 满足方程组⎩⎨⎧=+-=-43272y x y ax ,求代数式()()22y xy x y x +-+的值8. 已知2=x 是关于x 的不等式128+-<-x a 的解,求关于y 的不等式1456+<+y ay 的解集9. 已知关于x,y 的方程组⎩⎨⎧-=++=+t y x t y x 13133的解满足3-<-y x ,求t 的取值范围10.已知不等式()()1645253+-<++x x x 成立,化简x x 2112---11.已知关于x 的方程()a x 37223+=-+的解不大于()232515+=+x a x a 得解,求a 的取值范围12.已知不等式()()716825+-<+-x x 的最小整数解是方程42=-ax x 的解,求a 的值13.若关于x 的不等式组⎩⎨⎧>--≥-0125a x x 无解,则a 的取值范围14.若关于x 的不等式组⎩⎨⎧-<+<m x m x 712的解集为12+<m x ,则m 的取值范围15.若关于x 的不等式组⎩⎨⎧>->-0023a x x 的整数解共有6个,则a 的取值范围16.若点()m m M -+3,12关于y 轴的对称点M '在第二象限,求m 的取值范围17. 已知()03<-a a ,若a b -=2,则b 的取值范围是________18.关于x 的方程121-=-+x ax 的解是正数,则a 的取值范围_______若关于x 的不等式组()⎪⎩⎪⎨⎧+>++-<a x x x x 4231332有4个整数解,求a 的取值范围19.。
泉州市惠安县2014-2015年七年级下期末数学试卷含答案解析

①△ABC 的边 BC 与 DE 是否会相交?请说明理由. ②当以 B、C、D 为顶点的三角形是等腰三角形时,请用含 α 页(共 21 页)
A.53° B.55° C.57° D.60° 7.已知等腰三角形的一个外角等于 140°,则这个三角形的三个内角的度数分别是( )
第 1 页(共 21 页)
(1)如图 2,设 AC 与 BE 交于点 G,当 α=25°时,求∠CGE 的度数;
(2)若 DE=2BD,
,则在△ABC 旋转过程中,
2014-2015 学年福建省泉州市惠安县七年级(下)期末数学试卷
一、选择题 1.方程 5﹣x=3 的解是( )
A.x=2 B.x=﹣2 C.x=1 D.x=﹣1
2.把不等式 x≥﹣1 的解集在数轴上表示出来,则正确的是( )
A.
B.
C.
D.
3.如图,已知△ABC≌△ADE,∠D=59°,∠AED=78°,则∠C 的大小是( )
A.43° B.53° C.59° D.78° 4.下列几种形状的瓷砖中,只用一种不能够铺满地面的是( ) A.正六边形 B.正五边形 C.正方形 D.正三角形
5.用“加减法”将方程组
中的 x 消去后得到的方程是( )
A.3y=2 B.7y=8 C.﹣7y=2D.﹣7y=8 6.如图,将一块含有 30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么 ∠2 的度数为( )
华师大版七年级数学下册暑假提高练习6-方程专题.docx

一、二元一次方程组解的情况二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ①当212121c c b b a a ==时,方程组有无数多解。
(理由是:两个方程等效) ②当212121c c b b a a ≠=时,方程组无解。
(理由是:两个方程是矛盾的) ③当2121b b a a ≠时,方程组有唯一的解: 例1、选择一组a ,c 值使方程组⎩⎨⎧=+=+cy ax y x 275,①无数多解, ②无解, ③有唯一的解练习:1、如果方程组⎩⎨⎧=-=+1293y x y ax 无解,则a 为( ) A.6 B.-6 C.9 D.-9二、二元一次方程组的解1、已知两个方程组⎩⎨⎧-=-=+452by ax y x 和 ⎩⎨⎧=+=-232645by ax y x 有公共解,求a,b 的值.三、换元法解方程组解方程组 ⎪⎪⎩⎪⎪⎨⎧=-++=--+6174)(36111y x y x y x y x四、特殊方程的解法例1、若()4360,2700,x y z x y z xyz --=+-=≠求代数式222222522310x y z x y z+---的值练习1、23427x y y z z x x y z +++⎧==⎪⎨⎪++=⎩ (2)199519975989199719955987x y x y +=⎧⎨+=⎩ (3)323231112x y z x y z x y z -+=⎧⎪+-=⎨⎪++=⎩五、不定方程例1、 m 取何整数值时,方程组⎩⎨⎧=+=+1442y x my x 的解x 和y 都是整数?例2、(古代问题)用100枚铜板买桃,李,榄橄共100粒,己知桃,李每粒分别是3,4枚铜板,而榄橄7粒1枚铜板。
问桃,李,榄橄各买几粒?练习1、方程72=+y x 的正整数解有 组,分别为 。
2、把一张面值50元的人民币换成10元、5元的人民币,共有_____种换法3、一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( )A .4种B .3种C .2种D .1种4、小王只带2元和5元两种面值的人民币,他学习用品要支付27元,则付款的方式有( )A 、1种B 、2种C 、3种D 、4种5、星期天,小明和七名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完.(1)有几种购买方式?每种方式可乐和奶茶各多少杯?(2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式?初中数学试卷桑水出品。
2015年惠安初中学业质量测查

2015年惠安县初中学业质量测查数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题3分,共21分)1.A 2.C 3.C 4.B 5.B 6.D 7.B二、填空题(每小题4分,共40分)8.3 9.x (x -4) 10.x ≠-4 11.1<x ≤3 12.120°13. 410- 14.1:4 15.5 16.10 17(1)5, (2)1≤x ≤3三、解答题(共89分)18.(本小题9分)解:原式=3+2×21-1……………………………8分 =3 …………………………………9分 19.(本小题9分) 解:原式2214445x x x x =-+-+=-+………6分当2x =-时, 原式=532+ …………9分 20.(本小题9分)证明:∵AB=AC ,∴∠B=∠C ……………………3分在△ABD 与△ACE 中,AB=AC ,∠B=∠C ,BD=CE .∴ △ABD ≌△ACE (S,A,S ) ……………7分∴ AD=AE. ………………………………9分21.(本小题9分) 解:由直方图得,车速为50千米/时的有2辆,车速为51千米/时的有5辆,车速为52千米/时的有8辆,车速为53千米/时的有6辆,车速为54千米/时的有4辆,车速为55千米/时的有2辆,车辆总数为27.……………………3分∴这些车辆行驶速度的平均数为:271(50×2+51×5+52×8+53×6+54×4+55×2)≈52.4.……………………5分∵将这27个数据按从小到大的顺序排列,其中第14个数是52,∴这些车辆行驶速度的中位数是52. ……………………7分 ∵在这27个数据中,52出现了8次,出现的次数最多,∴这些车辆行驶速度的众数是52; ……………………9分 ∴这些车辆行驶速度的平均数为52.4,中位数为52,众数为52.22.(本小题9分)(2)方法1:∵ 去甲超市购物摸一次奖获10元礼金券的概率是P (甲)4263==, ………………………5分 去乙超市购物摸一次奖获10元礼金券的概率是P (乙)2163==, ………………………6分∴ 我选择去甲超市购物. ………………………9分方法2:∵ “两红”的概率是61,“两白”的概率是61,“一红一白”的概率是46=32, ………………………6分∴ 在甲商场获礼金券的平均收益是:61×5+32×10+61×5=325; ………………………7分在乙商场获礼金券的平均收益是:61×10+32×5+61×10=320. ………………………8分∴ 我选择到甲商场购物. ………………………9分23.(本小题9分)解:(1)如图:;……………………3分(2)根据题意,列方程得3121010+=x x ……………………6分 解这个方程,得x =15 ……………………7分经检验,x =15是原方程的根且符合题意所以,x =15 ……………………8分答:骑车同学的速度为每小时15千米。
人教版数学七年级下册第九章不等式组提高练习

一元一次不等式组提高练习1、解不等式252133x -+-≤+≤-2、 求下列不等式组的整数解2(2)83373(2)82x x x x x x +<+⎧⎪-≥-⎨⎪-+>⎩3、解不等式:(1) 0)2)(1(<+-x x (2)0121>+-x x4、对于1x ≥的一切有理数,不等式()12x a a -≥都成立,求a 的取值范围。
5、已知1x =是不等式组()()352,23425x x a x a x -⎧≤-⎪⎨⎪-<+-⎩的解,求a 的取值范围.6、如果35x a =-是不等式()11233x x -<-的解,求a 的取值范围。
7、若不等式组841,x x x m +<-⎧⎨>⎩的解集为3x >,求m 的取值范围。
8、如果不等式组237,635x a b b x a-<⎧⎨-<⎩的解集为522x <<,求a 和b 的值。
9、不等式组⎪⎩⎪⎨⎧<-<-622131m x m x 的解集是36+<m x ,求m 的取值范围。
10、已知关于x 的不等式()12a x ->的解在2x <-的范围内,求a 的取值范围。
11、已知关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,求a 的取值范围。
12、已知关于x 的不等式组0321x a x -≥⎧⎨-≥-⎩的整数解共有5个,求a 的取值范围。
13、若关于x 的不等式组2145,x x x a ->+⎧⎨>⎩无解,求a 的取值范围。
14、设关于x 的不等式组22321x m x m ->⎧⎨-<-⎩无解,求m 的取值范围15、若不等式组⎩⎨⎧<->ax a x 无解,那么不等式⎩⎨⎧<+>-11a x a x 有没有解?若有解,请求出不等式组的解集;若没有请说明理由?16、若不等式组372,x x a a -≤⎧⎨-≥⎩有解,求a 的取值范围。
七年级数学实际问题与一元一次方程提高题.doc
七年级数学实际问题与一元一次方程提高题一、选择题1、某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x天,则下列方程正确的是()A.+ =1 B.+=1C.+ =1 D.+=12、王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33 825元.设王先生存入的本金为元,则下面所列方程正确的是()A.B.C.D.3、在2013年10月2日晚进行的2013亚冠联赛半决赛第二回合较量中,广州恒大队主场以4:0狂胜日本的柏太阳神队(第一回合柏太阳神队以1:4败于广州恒大队),最终以总比分8:1(总净胜球数为8-1=7)晋级决赛.下面是亚冠联赛半决赛的另两支球队的比分情况:第一回合:首尔FC队以2:0胜德黑兰独立队;第二回合德黑兰独立队以2:2战平首尔FC队,则德黑兰独立队在亚冠半决赛两场比赛中的总净胜球数为()A、-4B、-2C、0D、24、某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A.赚16元B.赔16元C.不赚不赔D.无法确定5、三个正整数的比是,它们的和是,那么这三个数中最大的数是( )A.56B.48C.36D.12二、简答题6、7、8、某地出租汽车收费标准:起步价10元,可乘3千米,3千米到5千米,每千米1.8元,5千米以后,每千米是2.7元。
若某人乘坐了x(x>5)千米的路程,请写出他应该支付的费用。
若他支付的费用是19元,请你算出他乘坐的路程。
9、某地为了打造风光带,将一段长为360 的河道整治任务交给甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 ,乙工程队每天整治16 .求甲、乙两个工程队分别整治了多长的河道.10、.摄制组从A市到B市有一天的路程,计划上午比下午多走100千米到C市吃午饭。
人教版七年级初一数学第二学期第八章 二元一次方程组单元达标提高题学能测试试卷
人教版七年级初一数学第二学期第八章 二元一次方程组单元达标提高题学能测试试卷一、选择题1.已知关于x ,y 的两个方程组 48312ax by x y -=-⎧⎨+=⎩ 和 35180516ax by x y +=⎧⎨+=⎩具有相同的解,则a ,b 的值是( )A .=202a b -⎧⎨=⎩B .=202a b ⎧⎨=-⎩C .=202a b ⎧⎨=⎩D .=202a b -⎧⎨=-⎩2.方程()()218235m n m x n y ---++=是二元一次方程,则( )A .23m n =⎧⎨=⎩B .23m n =-⎧⎨=-⎩C .23m n =⎧⎨=-⎩D .23m n =-⎧⎨=⎩3.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( ) A .449x y y x y x-=+⎧⎨-=+⎩B .449x y y x y x -=+⎧⎨-=-⎩C .449x y y x y x-=-⎧⎨-=+⎩D .449x y y x y x -=-⎧⎨-=-⎩4.已知559375a b a b +=⎧⎨+=⎩,则-a b 等于( )A .8B .83C .2D .15.如果3m 2n n m 3x 4y 120---+=是关于,x y 的二元一次方程,那么,m n 的值分别为( ) A .m=2, n=3B .m=2, n=1C .m=-1, n=2D .m=3, n=46.用一块A 型钢板可制成2块C 型钢板、3块D 型钢板;用一块B 型钢板可制成1块C 型钢板、4块D 型钢板.某工厂现需14块C 型钢板、36块D 型钢板,设恰好用A 型钢板x 块,B 型钢板y 块,根据题意,则下列方程组正确的是( ) A .2143436x y x y +=⎧⎨+=⎩B .3214436x y x y +=⎧⎨+=⎩C .2314436x y x y +=⎧⎨+=⎩D .2144336x y x y +=⎧⎨+=⎩7.已知方程组()21119x y kx k y +=⎧⎨+-=⎩的解满足 x +y =3,则 k 的值为( )A .k =-8B .k =2C .k =8D .k =﹣28.12312342345345145125x x x a x x x a x x x a x x x ax x x a ++=⎧⎪++=⎪⎪++=⎨⎪++=⎪++=⎪⎩,其中1a ,2a ,3a ,4a ,5a 是常数,且12345a a a a a >>>>,则1x ,2x ,3x ,4x ,5x 的大小顺序是( )A .12345x x x x x >>>>B .42135x x x x x >>>>C .31425x x x x x >>>>D .53142x x x x x >>>>9.已知方程组3{ 5x y mx y +=-=的解是方程x ﹣y=1的一个解,则m 的值是( )A .1B .2C .3D .410.已知实数a 、m 满足a >m ,若方程组325x y a x y a-=+⎧⎨+=⎩的解x 、y 满足x >y 时,有a >-3,则m 的取值范围是( ) A .m >-3B .m≥-3C .m≤-3D .m <-3二、填空题11.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种.12.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生A 的妻子是__________.13.方程组31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩的解是________.14.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天.15.解放碑某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为80%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,7小时车库恰好停满:如果开放3个进口和2个出口,4小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨7点开始经过_______小时车库恰好停满. 16.某科技公司推出一款新的电子产品,该产品有三种型号.通过市场调研后,按三种型号受消费者喜爱的程度分别对A 型、B 型、C 型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个季度的经营后,发现C 型产品的销量占总销量的37,且三种型号的总利润率为35%.第二个季度,公司决定对A 型产品进行升级,升级后A产品的成本提高了25%,销量提高了20%;B 、C 产品的销量和成本均不变,且三种产品在二季度成本基础上分别加价20%,30%,45%出售,则第二个季度的总利润率为______.17.若关于x 、y 的二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,则关于x 、y 的二元一次方程组3()()162()()15x y m x y x y n x y ++-=⎧⎨++-=⎩的解是__.18.如图,在长方形ABCD 中,放入六个形状,大小相同的长方形(即空白的长方形),AD =12cm ,FG =4cm ,则图中阴影部分的总面积是 __________2cm .19.若是满足二元一次方程的非负整数,则的值为___________.20.有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.三、解答题21.对x ,y 定义一种新运算T ,规定()22,ax by T x y a y +=+(其中a ,b 是非零常数且0x y +≠),这里等式右边是通常的四则运算.如:()223193,1314a b a b T ⨯+⨯+==+,()24,22am bT m m +-=-. (1)填空:()4,1T =_____(用含a ,b 的代数式表示); (2)若()2,02T -=-且()5,16T -=. ①求a 与b 的值;②若()()310,33,310T m m T m m --=--,求m 的值. 22.平面直角坐标系中,A (a ,0),B (0,b ),a ,b 满足2(25)220a b a b +++-=,将线段AB 平移得到CD ,A ,B 的对应点分别为C ,D ,其中点C 在y 轴负半轴上.(1)求A,B两点的坐标;(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求BE OEOC的值;(3)如图2,点F,G分别在CD,BD的延长线上,连结FG,∠BAC的角平分线与∠DFG 的角平分线交于点H,求∠G与∠H之间的数量关系.23.用如图1所示的,A B两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A纸板70张,B型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A型纸板较为充足,B型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B型纸板用完)(3)经测量发现B型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽高分别为2,,2a a a),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,可以各做多少个(假设没有边角消耗,没有余料)?24.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况. 25.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、CA 至A 1、B 1、C1,使得A 1B =2AB ,B 1C =2BC ,C1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1,求S 1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以11∆∆=A BC B CA S S =11∆∆=A BC C AB S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题.(1)直接写出S 1= (用含字母a 的式子表示). 请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P 为△ABC 内一点,连接AP 、BP 、CP 并延长分别交边BC 、AC 、AB 于点D 、E 、F ,则把△ABC 分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC 的面积.(3)如图4,若点P 为△ABC 的边AB 上的中线CF 的中点,求S △APE 与S △BPF 的比值. 26.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元. (1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】联立不含a 与b 的方程组成方程组,求出方程组的解得到x 与y 的值,代入剩下的方程计算即可求出a 与b 的值. 【详解】联立得:312516x y x y +=⎧⎨+=⎩,解得:26x y =⎧⎨=⎩,将26x y =⎧⎨=⎩代入得:124530a b a b -=-⎧⎨+=⎩,解得:202a b =⎧⎨=⎩,故选:C . 【点睛】本题考查了同解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.2.D解析:D 【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程. 【详解】由题意得21181m n ⎧-=⎨-=⎩且2030m n -≠⎧⎨+≠⎩,解得2m =-,3n =, 故选D . 【点睛】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.3.D解析:D【分析】根据题设老师今年x岁,小红今年y岁,根据题意列出方程组解答即可.【详解】解:老师今年x岁,小红今年y岁,可得:449x y yx y x,故选:D.【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.4.C解析:C【分析】把两个方程的左右两边分别相减,求出a-b的值是多少即可.【详解】解:559 375 a ba b+⎧⎨+⎩=①=②①-②,可得2(a-b)=4,∴a-b=2.故选:C.【点睛】此题主要考查了解二元一次方程组,关键是注意观察,找出解决问题的简便方法.5.D解析:D【分析】根据二元一次方程的概念可得关于m、n的方程组,解方程组求得m、n即可.【详解】由题意得3211m nn m-=⎧⎨-=⎩,解得34mn=⎧⎨=⎩,故选D.【点睛】本题考查了二元一次方程的概念,解二元一次方程组,熟练掌握相关知识是解题的关键. 6.A解析:A【分析】根据“用一块A 型钢板可制成2块C 型钢板、3块D 型钢板;一块B 型钢板可制成1块C 型钢板、4块D 型钢板及A 、B 型钢板的总数”可得 【详解】设恰好用A 型钢板x 块,B 型钢板y 块, 根据题意,得:2143436x y x y +=⎧⎨+=⎩,故选:A . 【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.7.C解析:C 【分析】方程组两方程相减表示出x+y ,代入已知方程计算即可求出k 的值. 【详解】解:()21119x y kx k y +=⎧⎪⎨+-=⎪⎩①②,②-①得:()()2218k x k y -+-=,即()()218k x y -+=, 代入x+y=3得:k-2=6, 解得:k=8, 故选:C . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8.C解析:C 【分析】本方程组涉及5个未知数1x ,2x ,3x ,4x ,5x ,如果直接比较大小关系很难,那么考虑方程①②,②③,③④,④⑤,⑤①均含有两个相同的未知数,通过12345a a a a a >>>>可得1x ,2x ,3x ,4x ,5x 的大小关系.【详解】方程组中的方程按顺序两两分别相减得1412x x a a -=-,2523x x a a -=-,3134x x a a -=-,4245x x a a -=-.∵12345a a a a a >>>>∴14x x >,25x x >,31x x >,42x x >, 于是有31425x x x x x >>>>.故选C.【点睛】本题要注意并不是任何两个方程都能相减,需要消去两个未知数,保留两个未知数的差,这才是解题的关键.9.C解析:C【解析】根据方程组的解与x-y=1的解相同,可知x+y=3与x-y=1组成的方程组的解即为它们的公共解,因此可求得x=2,y=1,代入mx-y=5,可得m=3.故选:C.10.C解析:C【解析】解:325x y ax y a-=+⎧⎨+=⎩①②,①+②得,3x=6a+3,得到:x=2a+1③,把③代入①得,2a+1-y=a+3,解得y=a﹣2,所以,方程组的解是212x ay a=+⎧⎨=-⎩,∵x>y,∴2a+1>a﹣2,解得a>﹣3.∵a>-3,a>m,∴m≤-3,故选C.点睛:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.二、填空题11.6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设8解析:6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得3202x y=-,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设80分的邮票购买x张,120分的邮票购买y张,0.8x+1.2y=16,解得3202x y =-, ∵x 、y 都是正整数,∴当y=2、4、6、8、10、12时, x=17、14、11、8、5、2, ∴共有6种购买方案, 故答案为:6. 【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题.12.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且与有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合和 解析:c【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x y +与x y -有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合9x y -=和7x y -=的情况即可进行解答. 【详解】设一对夫妻,丈夫买了x 件商品,则钱数为2x ,妻子买了y 件商品,则钱数为2y ,依题意有x 2-y 2=48,即()()48x y x y +-=, ∵x 、y 都是正整数,且x y +与x y -有相同的奇偶性, 又∵x y x y +>-,48=24×2=12×4=8×6, ∴242x y x y +=⎧⎨-=⎩或124x y x y +=⎧⎨-=⎩或86x y x y +=⎧⎨-=⎩,解得13x =,11y =或8x =,4y =或7x =,1y =, 符合9x y -=的只有一种,可见A 买了13件商品,b 买了4件, 同时符合7x y -=的也只有一种,可知B 买了8件,a 买了1件, ∴C 买了7件,c 买了11件.由此可知三对夫妻的组合是:A 、c ;B 、b ;C 、a . 故答案为:c . 【点睛】本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x 、y 的不定方程是解答此题的关键.13.【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可.【详解】解:①+③解得:2x=10,即x=5;将x=5代入②得y=3;将x=5,y=3代解析:532x y z =⎧⎪=⎨⎪=⎩【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可.【详解】解:31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩①②③①+③解得:2x=10,即x=5;将x=5代入②得y=3;将x=5,y=3代入③可得z=2.故答案为532x y z =⎧⎪=⎨⎪=⎩.【点睛】本题考查了解三元一次方程组,观察方程组、寻找各方程的特点、运用整体思想代入消元是解答本题的关键.14.24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃解析:24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃y 天,列出方程,把关于a 、b 的代数式代入即可得解.【详解】解:设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据题意得:969620606030a b x a b x +⎧⎨+⎩== 解得:b=103x ,a=1600x , 当有70头牛吃时,设可以吃y 天,则 a+yb=70xy ,把b=103x ,a=1600x 代入得:y=24(天). 故答案为:24.【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,把握牛吃青草的同时草也在生长是解答此题的关键.15.【分析】先设1个进口1小时开进辆车,1个出口1小时开出辆车,车位总数是根据已知条件如果开放2个进口和3个出口,7小时车库恰好停满,可列出方程根据已知条件如果开放3个进口和2个出口,4小时车库 解析:358【分析】先设1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a 根据已知条件如果开放2个进口和3个出口,7小时车库恰好停满,可列出方程7(23)80%x y a -=根据已知条件如果开放3个进口和2个出口,4小时车库恰好停满,可列出方程4(32)80%x y a -=方程组可求得x 、y 关于a 的关系式题中所求空置率变为60%,只能开放2个进口和1个出口时,几个小时停满,60%(2)a x y ÷-将x 、y 关于a 的关系式代入即可求解.【详解】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a7(23)80%4(32)80%x y a x y a-=⎧⎨-=⎩ 解得:131752175a x a y ⎧=⎪⎪⎨⎪=⎪⎩ 1323560%(2)0.6(2)1751758a a a x y a ÷-=÷⨯-=(小时)故答案为:35 8【点睛】本题解题关键是可以设出1个进口1小时开进x辆车,1个出口1小时开出y辆车,车位总数是a,根据已知条件便可列出方程组,得出x、y关于a的关系式,求解的问题同列方程组思路相同.16.34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意解析:34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B 型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意列出方程组,解得13x zy z⎧=⎪⎨⎪=⎩;第二个季度A产品成本为(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,则第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=34%.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意得:20%ax30%ay45%az35%a(x y z)3(x y z)z7++=++⎧⎪⎨++=⎪⎩,解得:13x zy z⎧=⎪⎨⎪=⎩,第二个季度A产品的成本提高了25%,成本为:(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,∴第二个季度的总利润率为:5620%30%45%455645a x ay az a x ay az ⨯⨯++⨯++=0.30.30.451.5x y z x y z ++++ =10.30.30.45311.53z z z z z z ⨯++⨯++=34%, 故答案为:34%.【点睛】本题考查了利用二元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.17.【解析】分析:令x+y=a ,x-y=b ,根据已知,比较后得出a ,b 的值,从而得出结论. .详解:令x+y=a ,x-y=b ,则关于x 、y 的二元一次方程组变为:.∵二元一次方程组的解是,解析:52x y =⎧⎨=⎩【解析】分析:令x +y =a ,x -y =b ,根据已知,比较后得出a ,b 的值,从而得出结论. .详解:令x +y =a ,x -y =b ,则关于x 、y 的二元一次方程组316215x y m x y x y n x y ++-=⎧⎨++-=⎩()()()()变为:316215a mb a nb +=⎧⎨+=⎩.∵二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,∴73a b =⎧⎨=⎩,∴73x y x y +=⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 点睛:本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法,本题要注意整体思想的运用.18.48【解析】设小长方形的长为x cm ,宽为y cm ,根据图形可得①-②得4y =8,所以y =2,代入②得x =6,因此阴影部分总面积=12×10-6×2×6=48.故答案:48.【方法点睛】本解析:48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得3124x yx y+=⎧⎨-=⎩,①,②①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=482cm.故答案:48.【方法点睛】本题目是一道二元一次方程组的问题,找出等量关系是解决问题的关键. 19.0或6【解析】由2x+3y=12得y=12-2x3,因为x、y都是非负整数,所以x=0,y=4或x=3,y=2或x=6,y=0,所以xy为0或6.解析:0或6【解析】由2x+3y=12得y=,因为x、y都是非负整数,所以x=0,y=4或x=3,y=2或x=6,y=0,所以xy为0或6.20.100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,解析:100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.三、解答题21.(1)163a b +;(2)①11a b =⎧⎨=-⎩;②53m = 【分析】(1)把(4,-1)代入新运算中,计算得结果;(2)①根据新运算规定和T (-2,0)=-2且T (5,-1)=6,得关于a 、b 的方程组,解方程组即可;②把①中求得的a 、b 代入新运算,并对新运算进行化简,根据T (3m-10,m )=T (m ,3m-10)得关于m 的方程,求解即可.【详解】 解:(1)224(1)16(4,1)413a b a b T ⨯+⨯-+-==-; 故答案为:163a b +; (2)①∵()2,02T -=-且()5,16T -=, ∴42,225 6.4a ab ⎧=-⎪⎪-⎨+⎪=⎪⎩ 解得:1,1.a b =⎧⎨=-⎩②∵a=1,b=1-,且x+y≠0, ∴22()()(,)x y x y x y T x y x y x y x y -+-===-++.∴()310,33103610T m m m m m --=-+=-,()3,3103310610T m m m m m --=--+=-+∵()()310,33,310T m m T m m --=--,∴610610m m -=-+, 解得:53m =. 【点睛】本题考查了解一元一次方程、二元一次方程组的解法及新运算等相关知识,理解新运算的规定并能运用是解决本题的关键 22.(1)(40),(03)A B -,,;(2)1BE OE OC-=;(3)G ∠与H ∠之间的数量关系为2180G H ∠=∠-︒.【分析】(1)根据非负数的性质和解二元一次方程组求解即可;(2)设(0,),(0,)C c E y ,先根据平移的性质可得(43)D c +,,过D 作DP x ⊥轴于P ,再根据三角形ADP 的面积得出8(3)44(3)222c y y c +++=+,从而可得32c y +=,然后根据线段的和差可得BE OE c OC -=-=,由此即可得出答案;(3)设AH 与CD 交于点Q ,过H ,G 分别作DF 的平行线MN ,KJ ,设,BAH CAH DFH GFH αβ∠=∠=∠=∠=,由平行线的性质可得180(),1802()QHF DGF αβαβ∠=︒-+∠=︒-+,由此即可得出结论.【详解】(1)∵2(25)0a b ≥++≥,且2(25)0a b ++= ∴250220a b a b ++=⎧⎨+-=⎩解得:43a b =-⎧⎨=⎩则(40),(03)A B -,,; (2)设(0,),(0,)C c E y∵将线段AB 平移得到CD ,(40),(03)A B -,, ∴由平移的性质得(43)D c +,如图1,过D 作DP x ⊥轴于P∴4,3,,AO OP DP c OE y OC c ===+==-∵ADP AOE OEDP SS S =+梯形 ∴()222AP DP OA OE OE DP OP ⋅⋅+⋅=+ 即8(3)44(3)222c y y c +++=+ 解得32c y +=∴()232BE OE BO OE OE BO OE y c -=--=-=-=- ∴1BE OE c OC c--==-;(3)G ∠与H ∠之间的数量关系为2180G H ∠=∠-︒,求解过程如下:如图2,设AH 与CD 交于点Q ,过H ,G 分别作DF 的平行线MN ,KJ∵HD 平分BAC ∠,HF 平分DFG ∠∴设,BAH CAH DFH GFH αβ∠=∠=∠=∠=∵AB 平移得到CD∴//,//AB CD BD AC∴BAH AQC FQH α∠=∠=∠=,180BAC ACD BDC ACD ∠+∠=︒=∠+∠ ∴2BAC BDC FDG α∠=∠=∠=∵//MN FQ∴,MHQ FQH NHF DFH αβ∠=∠=∠=∠=∴180180()QHF MHQ NHF αβ∠=︒-∠-∠=︒-+∵//KJ DF∴2,2DGK FDG DFG FGJ αβ∠=∠=∠=∠=∴1801802()DGF DGK FGJ αβ∠=︒-∠-∠=︒-+∴2180DGF QHF ∠=∠-︒.【点睛】本题属于一道较难的综合题,考查了解二元一次方程组、平移的性质、平行线的性质等知识点,较难的是题(3),通过作两条辅助线,构造平行线,从而利用平行线的性质是解题关键.23.(1)制作甲24个,乙22个.(2)最多可以制作甲,乙纸盒24个.(3)制作甲6个,乙4个.【分析】(1)设制作甲x 个,乙y 个,则需要A ,B 型号的纸板如下表:(2)设制作甲m 个,乙k 个,则需要A ,B 型号的纸板如下表:(3)由1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,通过列方程求方程的正整数解得到答案.【详解】解:(1)设制作甲x 个,乙y 个,则34160270x y x y +=⎧⎨+=⎩, 解得:2422x y =⎧⎨=⎩ , 即制作甲24个,乙22个.(2)设制作甲m 个,乙k 个,则23430m k n m k +=⎧⎨+=⎩, 消去k 得,465m n =-, 因为:,m n 为正整数,所以:10152, 6.63n n m m k k ==⎧⎧⎪⎪==⎨⎨⎪⎪==⎩⎩综上,最多可以制作甲,乙纸盒24个.(3)因为1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,设制作甲c 个,乙d 个,则4 4.542c d +=,因为,c d 为正整数,所以6,4c d ==,即可以制作甲6个,乙4个.【点睛】此题考查了二元一次方程组的应用.二元一次方程(组)的正整数解,解题关键是弄清题意,找出题目蕴含的等量关系,列出方程或方程组解决问题.24.(155)a b +;23a b =⎧⎨=⎩;28.3吨;a 的值上调了0.4时b 的值上调了0.6或者a 的值上调了0.6时b 的值上调了0.1.【分析】(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为15a ,超过15吨的费用为(2015)5b b -=,故总费用155a b +;(2)依题意列方程组1564815105270a b a b +=⎧⎨++⨯=⎩,可求解; (3)在第(2)题的条件下,正好25吨时,所需费用60(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求.【详解】解:(1)小王家今年3月份用水20吨,要交消费为155a b +,故答案为:(155)a b +;(2)根据题意得,1564815105270a b a b +=⎧⎨++⨯=⎩, 解得:23a b =⎧⎨=⎩; (3)在第(2)题的条件下,当正好25吨时,可得费用15210360⨯+⨯=(元),由交水费76.5元可知,小王家用水量超过25吨,即:超过25吨的用水量(76.560)5 3.3=-÷=吨,合计本月用水量 3.32528.3=+=吨(4)设a 上调了x 元,b 上调了y 元,根据题意得:1569.6x y +=,52 3.2x y ∴+=,,x y 为整数角线(没超过1元),∴当0.6x =时,0.1y =元,当0.4x =时,0.6y =元,∴a 的值上调了0.4时,b 的值上调了0.6;a 的值上调了0.6时,b 的值上调了0.1.【点睛】本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.25.(1)19a ;(2)315;(3)23. 【解析】【分析】(1)首先根据题意,求得S △A1BC =2S △ABC ,同理可求得S △A1B1C =2S △A1BC ,依此得到S △A1B1C1=19S △ABC ,则可求得面积S 1的值;(2)根据等高不等底的三角形的面积的比等于底边的比,求解,从而不难求得△ABC 的面积;(3)设S △BPF =m ,S △APE =n ,依题意,得S △APF =S △APC =m ,S △BPC =S △BPF =m .得出23APE BPF S S ∆∆=,从而求解.【详解】解:(1)连接A 1C , ∵B 1C=2BC ,A 1B=2AB ,∴122BCA ABC SS a ==,122BCA ABC S S a ==,1112A B C BCA S S =, ∴1144A B C ABC SS a ==, ∴1166A B B ABC S S a ==,同理可得出:11116A AC CB C S S a ==,∴S 1=6a+6a+6a+a=19a ;故答案为:19a ;(2)过点C 作CG BE ⊥于点G ,设BPF S x ∆=,APE S y ∆=,1·702BPC S BP CG ∆==;1·352PCES PE CG ∆==, ∴1·7022135·2BPCPCE BP CG S S PE CG ∆∆===. ∴2BP EP=,即2BP EP =. 同理,APB APE S BP S PE∆∆=. 2APB APE S S ∆∆∴=.842x y ∴+=.①8440APB BPD S AP x S PD ∆∆+==,3530APC PCD S AP y S PD ∆∆+==, ∴84354030x y ++=.② 由①②,得5670x y =⎧⎨=⎩, 315ABC S ∆∴=.(3)设BPF S m ∆=,APE S n ∆=,如图所示.依题意,得APF APC S S m ∆∆==,BPC BPF S S m ∆∆==.PCE S m n ∆∴=-.BPC APB APE PCE S S BP S S PE∆∆∆∆==, ∴2m m n m n=-. 2()m m n mn ∴-=,0m ≠,22m n n ∴-=. ∴23n m =. ∴23APE BPF S S ∆∆=. 【点睛】此题考查了三角形面积之间的关系.(2)的关键是设出未知三角形的面积,然后根据等高不等底的三角形的面积的比等于底边的比列式求解.26.(1) 甲内存卡每个20元,乙内存卡每个50元;(2) 有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件,其中方案二费用最低;(3) 共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.【解析】【分析】(1)设甲内存卡每个x 元,乙内存卡每个y 元,依据“买2个甲内存卡和1个乙内存卡共用了90元,买了3个甲内存卡和2个乙内存卡用了160元”列出方程组并解答;(2)设小亮准备购买A 甲内存卡a 个,则购买乙内存卡(10-a )个,根据关系式列出一元一次不等式方程组.求解再比较两种方案.(3)设老板一上午卖了c 个甲内存卡,d 个乙内存卡,根据“甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元”列出方程组,并解答.【详解】(1)解:设甲内存卡每个x 元,乙内存卡每个y 元,则29032160x y x y +⎧⎨+⎩=,=, 解得2050x y ⎧⎨⎩== . 答:甲内存卡每个20元,乙内存卡每个50元(2)解:设小亮准备购买A 甲内存卡a 个,则购买乙内存卡(10﹣a )个,则 ()()205010300205010350a a a a ⎧+-≥⎪⎨+-≤⎪⎩,解得5≤a≤623,根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元;方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元;∵350>320∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低(3)解:设老板一上午卖了c个甲内存卡,d个乙内存卡,则10c+15d=100.整理,得2c+3d=20.∵c、d都是正整数,∴当c=10时,d=0;当c=7时,d=2;当c=4时,d=4;当c=1时,d=6.综上所述,共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.【点睛】此题考查二元一次方程组及一元一次不等式方程组的应用,解题关键是读懂题意,找到关键描述语,找到所求的量的大小关系.。
七下第十章 二元一次方程提高题
二元一次方程的定义1、以下方程中,是二元一次方程的是〔 〕 A .3x -2y=4z B .6xy+9=0 C .1x +4y=6 D .4x=24y -2、方程14-=-x y ax 是二元一次方程,那么a 的取值为〔 〕A 、a ≠0B 、a ≠-1C 、a ≠1D 、a ≠23、如果方程x m+1+y n-1=5是二元一次方程,那么m=_____,n=______ 4、方程2m -1n -8(m-2)x+(n+3)y =5是二元一次方程,那么mn= 。
5、假设()1321=+--y xa a 是二元一次方程,那么a = 。
二元一次方程组的定义在方程组⎩⎨⎧+==-1312z y y x 、⎩⎨⎧=-=132x y x 、⎩⎨⎧=-=+530y x y x 、⎩⎨⎧=+=321y x xy 、 ⎪⎩⎪⎨⎧=+=+1111y x y x 、⎩⎨⎧==11y x 中,是二元一次方程组的有〔 〕A 、2个B 、3个C 、4个D 、5个二元一次方程的解1、假设⎩⎨⎧=-=21y x 是方程3x + ay=1的一个解,那么a 的值是__________. 2、以⎩⎨⎧==13y x 为解建立一个二元一次方程组,不正确的选项是〔 〕 A 、543=-y x B 、031=-y x C 、32-=+y x D 、65322=-y x 3、假设的一个解是方程02=+⎩⎨⎧==y x by ax ,()b a a ,,0则≠的符号为〔 〕A 、b a ,同号B 、b a ,异号C 、b a ,可能同号可能异号D 、0,0=≠b a4、如果方程10=+by ax 的两组解为⎩⎨⎧==⎩⎨⎧=-=51,01y x y x ,那么a = ,b = 。
含字母的方程〔组〕变形1、二元一次方程4x-3y+5=0时,用含x的代数式表示y,那么,用含y的代数式表示x,那么x= .2、在01321=--yx中,用含y的代数式表示x,可得x=____________。
广海镇初中2018-2019学年七年级下学期数学第一次月考试卷
广海镇初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)方程2x+3y=15的正整数解有()A.0个B.1个C.2个D.无数个【答案】C【考点】二元一次方程的解【解析】【解答】解:方程2x+3y=15,解得:x= ,当y=3时,x=3;当y=1时,x=6,∴方程2x+3y=15的正整数解有2个,故答案为:C.【分析】将方程用含y的代数式表示x,再根据原方程的正整数解,因此分别求出当y=3时;当y=1时的x的值,就可得出此方程的正整数解的个数。
2.(2分)下列是方程组的解的是()A.B.C.D.【答案】D【考点】解二元一次方程组【解析】【解答】解:根据代入消元法,把2x-y=-5变形为y=2x+5,把其代入方程x+2y=5,解得x=-1,代入y=2x+5=3,所以方程组的解为.故答案为:D.【分析】利用代入消元法,将方程组中的②方程变形为用含x的式子表示y得出③方程,再将③方程代入原方程组中的①方程消去y即可求出x的值,再将x的值代入③方程进而算出y的值,从而得出原方程组的解。
3.(2分)在表示某种学生快餐营养成分的扇形统计图中,如图所示,表示维生素和脂肪的扇形圆心角的度数和是()A. 54°B. 36°C. 64°D. 62°【答案】A【考点】扇形统计图【解析】【解答】解:由图可知,维生素和脂肪占总体的百分比为:5%+10%=15%,故其扇形圆心角的度数为15%×360°=54°.故答案为:A【分析】先根据扇形统计图得出维生素和脂肪占总体的百分比,然后乘以360°可得对应的圆心角的度数.4.(2分)计算=()A. -8B. 2C. -4D. -14【答案】A【考点】实数的运算【解析】【解答】原式=-5-3=-8.故答案为:A【分析】负数的绝对值是正数,再根据实数的运算性质计算即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.以下变形正确的是( )
A. 方程3x+6=x, 移项得3x-x=6
B. 方程3x=-2, 把系数化为1,得x=-2
3 C. 方程3(x+2)=6, 去括号得3x+3=6 D. 方程6-2(x-3)=x, 去括号得6-2x-3=x 2.解方程
13
3
x 2x =--,下面去分母正确的是( )
. A.1)3(=--x x B. 1)3(23=--x x C.6)3(32=--x x D. 6)3x (2x 3=--
3. k 取何值时,代数式
31
k +值比2
13+k 的值小1。
4.小华在做简单的电脑编程时,设计如图所示的流程图. 若输出y=8,则小华输入的x 是( ).
A .3 ;
B .6;
C .3或6 ;
D .-10或6
5. 若规定一种新运算“△”即m △ n =m+2n ,例如3 △ 5=3+2×5=13, 则4 △ (2x+1)=x 中x 的值是多少?
6.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是-=-
y y 2
1
212 ,怎么办呢?
35
-=y .很快补好了这个常数,这个常数应是
( ).
A .1
B .2
C .3
D .4
7.如图1,给出的是2015年某月份的日历,任意圈出一竖列上相邻
的三个数,请运用方程的思想来研究,你发现这三个数的和不可能
是( )
A 、27
B 、40
C 、54
D 、72
8.关于x 的方程4x+2m=3x+1与方程3x+2m=6x+1的解相同,求m 的值
9.某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A 、B 以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l (厘米)与时间t (秒)满足关系:l=t+6(t≥0),乙以4厘米/秒的速度匀速运动,半圆的长度为21厘米. (1)甲运动4s 后的路程是________厘米。
(2)甲、乙从开始运动到第一次相遇时,它们运动了_________ 秒。
(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?
10.某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:
现在公司收购了140吨蔬菜,已知该公司每天最多只能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).
(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:
(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?
11.某班将举行“庆祝建党90周年知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时
与班长的对话情境:
请根据上面的信息,解决问题:
(1)试计算两种笔记本各买了多少本?
(2)请你解释:小明为什么不可能找回68元?
12.如图7,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a 厘米)0(>a .设半圆形条钢的总个数为x (x 为正整数),护栏总长度为y 厘米. (1)当50=a ,2=x 时,护栏总长度y 为________厘米;
(2)当60=a 时,用含x 的代数式表示护栏总长度y (结果要化简);
(3)在第(2)题的条件下,若要使护栏总长度保持不变,而把a 改为50,就要共用)8(+x 个半圆形条
钢,请求出x 的值.
13.某高校外国语学院为了丰富英语系和阿拉伯语系共120名同学的课外活动,特组织同学去观看CBA 篮球
1400元,问: (1)如果两班联合起来,作为一个团体购票,可省__________元。
(2)两班各有多少学生?
1.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米. (1)当两人同时同地背向而行时,经过几秒钟两人首次相遇?
(2)两人同时同地同向而行时,经过几秒钟两人首次相遇
2.仔细观察下图,认真阅读对话。
根据对话内容,求出该件商品的进价多少元? 解:
3.广海中学有A 、B 两台复印机,用于印刷学习资料和考试试卷。
学校举行期末考试,数学试卷如果用复印机A 、B 单独复印,分别需要90分钟和60分钟。
在考试时为了保密需要,不能过早提前印刷试卷,学校决定在考试前由两台复印机同时复印。
(1)两台复印机同时复印,共需_________分钟才能印完.
(2)在复印30分钟后B 机出了故障,暂时不能复印,此时离发卷还有13分钟。
①请你算一下,如果由A 机单独完成剩下的复印任务,会不会影响按时发卷考试? ②B 机经过紧急抢修,9分钟后修好恢复使用,请你再算算,学校能否按时发卷考试?
4.某市百货商店元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按9折优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元, 问:(1)此人两次购物时,如果将其物品不打折,值_________元 (2)在此活动中,他节省了多少钱?
(3)若此人两次购物的钱合起来购相同的商品,是更节省还是更浪费,说明你的理由。
5. 学校篮球比赛,初一(1)班和初一(2)班到自选超市去买某种品牌的纯净水,自选超市对某种品牌的纯净水按以下方式销售:购买不超过30瓶,按零售价每瓶3元计算;购买超过30瓶但不超过50瓶,享受零售价的八折优惠;购买超过50瓶,享受零售价的六折优惠,一班一次性购买了纯净水70瓶,二班分两天共购买了纯净水70瓶(第一天多于第二天)两班共付出了309元。
(1)购买了纯净水70瓶,初一(1)班需要_______元, 初一(2)班需要_______元 (2) 初一(2)班第一天、第二天分别购买了纯净水多少瓶?
6.如图,正方形ABCD 的边长是1cm ,E 为CD 的中点.P 为正方形边上的一个动点,动点P 从A 出发沿A →B →C →E 运动,最终到达点E ,若点P 经过的路程为x cm . (1)直接写出ΔADE 的面积。
(2)当x =1cm 时,求△APE 的面积; (3)若△APE 的面积为3
1
,求x 的值.
A
D
C
B
E
备用图
A D
C
B E
P x
二、整数解有关问题
例2. k 取什么整数值时,下列等式中的x 是整数? x=1
6
-k _____________________________. x=
k
k 3
2+ _____________________________.
例3.是否存在整数k ,使关于x 的方程(k-5)x+6=1-5x 在整数范围内有解,并求出各个解.
练习5.已知关于x 的方程917x kx -=的解为整数,且k 也为整数,则k=_______________.
练习6. 已知关于x 的方程:
且a 为某些自然数时,方程的解为自然数,试求自然数a 的最小值.
练习7.方程2x+3y=18的正整数解_________________________________________.
练习8.若m 为正整数,方程组 ⎩
⎨⎧=+=-10y 2m x 0
2y 3x 有整数解,即x 、y 均为整数,求m 的值。