备考2013中考数学考试试题考点解析《探索规律型问题》
2013探索规律问题

中考专项:探索规律问题探索规律分成三种类型,即一次函数型,二次函数型和指数函数型。
有变化周期等问题。
一、一次函数型,特点:相邻的两个数之间的差都是相同的。
解决方法:这个差是“a ”,则就用“an ”表示,然后通项公式为a1+(n-1)a 。
得到公式。
1、图8是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成. -2. (2012山东烟台3分)一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是【 】A .3B .4C .5D .63、 (2012青海省2分)观察下列一组图形:它们是按一定规律排列的,依照此规律,第n 个图形中共有 ▲ 个★.4、(2009年梅州市)如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.5、(2009年龙岩)观察下列一组数:21,43,65,87,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .二、二次函数型特点:相邻两个数之间的差是递增的。
解决办法:适用二次函数类型,一般都和n 2有关,可以尝试用n 2±1或者n 2±n 来表示;如果尝试失败,可以设二次函数关系式用三点代入求值。
例:1.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .2.(2009武汉)14.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.3. (2012贵州铜仁4分)如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是【 】A .54B .110C .19D .1094. (2012湖南岳阳3分)图中各圆的三个数之间都有相同的规律,据此规律,第n 个圆中,m= ▲ (用含n 的代数式表示).5. (2012重庆市4分)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为【 】A .50B .64C .68D .72第1个图形第2个图形第3个图形第4个图形…第1个图形 第2个图形第3个图形 第4个图形… … 第1幅 第2幅 第3幅 第n 幅 图5(1)(2)(3)……三、指数函数型特点:增长的速度特别快,一般都和图形规律有关1、(2012四川乐山3分)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…,∠A n﹣1BC的平分线与∠A n﹣1CD的平分线交于点An.设∠A=θ.则:(1)∠A1= ▲;(2)∠A n= ▲.2、(2012广东湛江4分)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作笫三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,a n,则a n= ▲ .3、(2012辽宁阜新3分)如图,△ABC的周长是32,以它的三边中点为顶点组成第2个三角形,再以第2个三角形的三边中点为顶点组成的第3个三角形,…,则第n个三角形的周长为▲ .4、(2012辽宁本溪3分)如图,下图是一组由菱形和矩形组成的有规律的图案,第1个图中菱形的面积为S(S为常数),第2个图中阴影部分是由连接菱形各边中点得到的矩形和再连接矩形各边中点得到的菱形产生的,依此类推……,则第n个图中阴影部分的面积可以用含n的代数式表示为▲ _。
中考数学复习考点解密 第三讲 规律探索性问题.docx

中考数学复习考点解密第三讲规律探索性问题【专题诠释】规律探索型题是根据已知条件或题T•所提供的若T•特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。
这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。
其目的是考查学生收集、分析数据,处理信息的能力。
所以规律探索型问题备受命题专家的青睞,逐渐成为中考数学的热门考题。
|【解题策略】I规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.【解法精讲】它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.【考点精讲】考点一:通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。
例1. (2017内江)观察下列等式:第个筹式:=U3X2+2X 22 2+1 ~22H第二个等式:"l+SX 2^2X(22)2 *22*1 23H第三个等式: 1 1a323^2X(23)2 *23*1 24H第四个等式:24 1 1^H-SX "z4+l 2®H按上述规律,回答下列问题:(2)用含n 的代数式表示第n 个等式:喩E f 宁云(3) 时葩+斫(得出最简结果);(4)计算:ai+a 2+•••+a n .【考点】37:规律型:数字的变化类.【分析】(1)根据已知4个等式可得;利用所得等式的规律列出算式,然后两两相消,计算化简后的算式即可得;【解答】解:⑴rh 题意知,斫看走而产丙_尹亍(2) 根据已知等式得出答案;(3) (4) 根据己知等式规律,列项相消求解可得.故答案为: -------- 3 --------- g~ R3X 2%2X(2B ) 27+12n 1 [l«x 2n t2X (211)2 2n H 2^+1乂合杀为 H3X 2tt t2X(2n )2 2n +l 2^1+1(3)原式二莎 林応_ 1 _1_14故答案为:孕*;22H * 22+1 23+l * 2j +l 24+l * 24+l 2B 41 ' 2B +1⑷原式二页_ 1 1 2H2n +l2叫23(2^+1)考点二;点阵变化规律在这类有关点阵规律中,我们需要根据点的个数,确定下一个图中哪些部分发生了变化, 变化的的规律是什么,通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.例2:(2017内蒙古赤峰)在平面直角坐标系中,点P (x, y)经过某种变换后得到点P' (・y+l, x+2),我们把点P'(・y+l, x+2)叫做点P (x, y)的终结点.己知点Pi的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P】、P2、卩3、P"…几、…,若点Pl的坐标为(2, 0),则点P2曲的坐标为(2, 0).【考点】D2:规律型:点的坐标.【分析】求得点P2、P3、Pl. P5的值,即可发现其中规律,即可解题.【解答】解:B坐标为(2, 0),则P2坐标为(1, 4), P3坐标为(-3, 3), Pl坐标为(-2,・1),巳坐标为(2, 0),・•・代的坐标为(2, 0), (1, 4),(・3, 3),(・2,・1)循环,72017=2016+1=4X504+1,A P201?坐标与Pl点重合,故答案为(2, 0).考点三:图形生长变化规律探索图形生长的变化规律的题目常受到小考命题人的青睐,其原因是简单、直观、易懂. 从一些基本图形开始,按照生长的规律,变化出一系列有趣而美丽的图形.因此也引起了应试人的兴趣,努力揭示内在的奥秘,从而使问题规律清晰,易于找出它的一般性结论.例3 (2017山东聊城)如图,在平面直角坐标系中,直线1的函数表达式为尸x,点E的坐标为(1, 0),以。
2013年中考数学规律探索型问题

2013年中考数学规律探索型问题12.(2012山东省滨州,12,3分)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S ﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为( )A .52012﹣1B .52013﹣1C .D .【解析】设S=1+5+52+53+…+52012,则5S=5+52+53+54+…+52013, 因此,5S ﹣S=52013﹣1,S=.【答案】选C .【点评】本题考查同底数幂的乘法,以及类比推理的能力.两式同时乘以底数,再相减可得s的值.(2012广东肇庆,15,3)观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ .【解析】通过观察不难发现,各分数的分子与分母均相差1,分子为连续偶数,分母为连续奇数.【答案】122 k k【点评】本题是一道规律探索题目,考查了用代数式表示一般规律,难度较小.18. ( 2012年四川省巴中市,18,3)观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2012个数是___________ 【解析】观察知: 下列面一列数中,它们的绝对值是连续正整数,第2012个数的绝对值是2012,值偶数项是负数,故填-2012. 【答案】-2012【点评】本题是找规律的问题,确定符号是本题的难点.20.(2012贵州省毕节市,20,5分)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 个小正方形。
解析:观察图案不难发现,图案中的正方形按照从上到下成奇数列排布,写出第n 个图案的正方形的个数,然后利用求和公式写出表达式,再把n=10代入进行计算即可得解.答案:解:第1个图案中共有1个小正方形,第2个图案中共有1+3=4个小正方形,第3个图案中共有1+3+5=9个小正方形,…,第n 个图案中共有1+3+5+…+(2n-1)=2)121(-+n n =n2个小正方形,所以,第10个图案中共有102=100个小正方形.故答案为:100.点评:本题是对图形变化规律的考查,根据图案从上到下的正方形的个数成奇数列排布,得到第n 个图案的正方形的个数的表达式是解题的关键.18.(2012贵州六盘水,18,4分)图7是我国古代数学家杨辉最早发现的,称为“杨辉三角形”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角形”中有许多规律,如它的每一行的数字正好对应了()na b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数.例如222()2a b a ab b +=++展开式中的系数1、2、1恰好对应图中第三行的数字;再入,33223()33a b a a b ab b +=+++展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出4()a b +的展开式.4()a b += ▲ .分析:该题属规律型,通过观察可发现第五行的系数是:1、4、6、4、1,再根据例子中字母的排列规律即得到答案.解答:解:由题意,4432234()464a b a a b a b ab b +=++++, 故填432234464a a b a b ab b ++++.点评:本题考查了数字的变化规律,从整体观察还要考虑字母及字母指数的变化规律,从而得到答案.17. (2012山东莱芜, 17,4分) 将正方形ABCD 的各边按如图所示延长,从射线AB 开始,分别在各射线上标记点321,,A A A ….,按此规律,则点A2012在射线 上.【解析】根据表格中点的排列规律,可以得到点的坐标是每16个点排列的位置一循环, 2012=16×125+12,所以点A2012所在的射线和点12A 所在的直线一样。
2013年各地中考题类型规律探究题、开放探究题

规律探究题,开放探究题一、选择题1.(2013湖北十堰,8,3分)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()2.(2013湖北武汉,8,3分)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点答案:C解析:两条直线的最多交点数为:12×1×2=1,三条直线的最多交点数为:12×2×3=3,四条直线的最多交点数为:12×3×4=6,所以,六条直线的最多交点数为:12×5×6=15,二、填空题3.(2013湖南娄底,18,4分)如图,是用火柴棒拼成的图形,则第n个图形需2n+1根火柴棒.4.(2013绥化,8,3分)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O 后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC上.5.(2013湖北恩施州,16,3分)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171.6.(2013牡丹江,26,8分)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=CB,过程如下:过点C作CE⊥CB于点C,与MN交于点E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB.(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=时,则CD=2,CB=+1.BE=CBBE=CBBD=AB=BE=CBAB=DH=BH=BD=×=1CH=,CB=CH+BH=上一动点,设PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.(1)证明:△PCE是等腰三角形;(2)EM、FN、BH分别是△PEC、△AFP、△ABC的高,用含x和k的代数式表示EM、FN,并探究EM、FN、BH之间的数量关系;(3)当k=4时,求四边形PEBF的面积S与x的函数关系式.x为何值时,S有最大值?并求出S的最大值.CM=CPCM=CP=,tanC=k=tanA=,tanA=EM+FN=﹣x(×难点.。
2013年全国中考数学试题分类解析汇编专题56探索规律型问题(数字类)-推荐下载

a2 | a1 1| = 1 ,
D. 2012
郑州郭氏数学内部资料;更多学习资料及学习方法、考试技巧请郭氏数学公益教学博 客。…,
∴当
∴
a2012
n
是奇数时,
=
2012 2
=
an
=
1006
n
1 2
。故选
,
n
3. (2012 四川自贡 3 分)一质点 P 从距原点 1 个单位的 M 点处向原点方向跳动,第一次
22 1
同理第二次从 M3 点跳动到 M2 处,即在离原点的( )2 处,
2 1
同理跳动 n 次后,即跳到了离原点的 处。故选 D。
2n
4. (2012 山东滨州 3 分)求 1+2+22+23+…+22012 的值,可令 S=1+2+22+23+…+22012,则
2S=2+22+23+24+…+22013,因此 2S﹣S=22013﹣1.仿照以上推理,计算出 1+5+52+53+…+52012
C. ( 1 )n1 2
an
=
4
n 2
。
1
D.
2n
郑州郭氏数学内部 B.126 C.135 D.144
【答案】D。
【考点】分类归纳(数字的变化类),一元二次方程的应用。
【分析】由日历表可知,圈出的 9 个数中,最大数与最小 | a3 3 | ,…,依次类推,则 a2012 的值为【 】
A. 1005
【答案】B。 【考点】分类归纳(数字的变化类)
13年中考数学探究规律

n 1/16……如此继续下去,到第n次这样作出的三角形的面积为 (1/4)
。
四 归纳总结
如何从探索型问题中探索规律?
首先,观察此类题的排列规律或顺序规律,或 用几何定理将条件转化为有用的数据 然后用代数式,方程,函数,不等式等数学模型 表示 最后总结出变化规律.
五 中考预测
规律探索型问题
一 复习导入
• 什么叫规律探索型问题? 给出一组具有某种特定关系的数,式,图形, 或是给出与图形有关的操作变化过程,观察 分析推理,探究其中蕴涵的规律,进而归纳或 猜想出一般性的结论的问题. • 规律探索型问题常见的类型有哪些?
数、式间的规律 图形中的规律
二 合作探究
观察一列数3,8,13,18,23,28……依此规律,在此数列 中第N个数是
5n-2
。
谁能帮 我将左 边的问 题分类
观察等式:2×4=32-1; 3×5=42-1 4×6=52-1;…;
n(n+2)=(n+1)2-1 (n≥2的正整数).
10×12=112-1;…第N个式子
按如下规律摆放三角形:
14 则第(4)堆三角形的个数为_____________;
第(n)堆三角形的个数为_____________ 3n+2
三 达标演练
1、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的 50 规律确定第8个数为 . 2、试观察下列各式的规律,然后填空:
中考数学复习指导:探索规律型问题归类解析

探索规律型问题归类解析探索规律型问题是历年中考数学试题中的重要题型之一,其特点是给出一组变化了的数字、式子、表格、图形等,要求学生通过观察、归纳、猜想、验证、类比,探求其内在规律.1.通用的解题策略解答规律型问题一般要从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论.这种“特殊——一般——特殊”的解题模式,体现了总结归纳的数学思想,也正是人们认识新事物的一般过程.具体来说,就是先写出开头几个数式的基本结构,然后通过横比或纵比找出各部分的特征,写出符合要求的结果.例1 如图1,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色“L”形由3个正方形组成,第2个黑色“L”形由7个正方形组成,…那么组成第6个黑色“L”形的正方形个数是( )(A)22 (B)23 (C)24 (D)25解析从特例入手:如图1.纵比正方形的个数3,7,11,15中,后一个数比前一个大4(即相邻两数的差为4),猜想与4有关.横比3与1,7与2,11与3,15与4之间有何关系?联想到与4有关,故改写为:3=4×1-1,7=4×2-1.11=4×3-1,15=4×4-1.猜想组成第6个黑色L形的正方形个数是4 ×6-1=23个.故选B.点评考察相邻两数的差(或商)是探究数字规律的常用手段.常见的类型有:相邻两数的差(或商)相等或成倍数关系,相邻两数的差相等与商相等交替出现等.2.关注特殊数列(1)斐波那契数列:1,1,2,3,5,8,13,21…(其规律为:从第三项开始,每一项都等于前两项之和);(2)平方数数列:1,4,9,16,25,36…(其规律为:n2,即每一项都等于项数的平方).例2 有一组数:1,2,5,10,17,26…请观察这组数的构成规律,用你发现的规律确定第8个数为_______.解析规律为:n2+1(n=0,1,2…).答案:50.点评此类题要注意n2,n2+1,n2-1等(3)三角形数列:1,3,6,10,15,21,…(其规律为1+2+3+…+n)例3 世界上著名的莱布尼茨三角形如图2所示,则排在第10行从左边数第3个位置上的数是:( )(A)(B)(C)(D)解析从第3行起,从左边数第3位置上的数分别为,,,,…它们的分母可分别改写为:1×3,3×4,6×5,10×6,15×7,21×8,…,而1,3,6,10,15,21,…,正是三角形数,故答案为:.选B.(4)杨辉三角形,杨辉三角形斜边上1以外的各数,都等于它“肩上”的两数之和,如图3.(5)与等差等比数列有关的数列.如例1中3,7,11,15…就是一个等差数列.例4 数字解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,……观察并猜想第六个数应是_______.解析第二个加数1,2,4,8…规律为2n(为一等比数列,也要关注这一数列),第一个加数2,3,5,9…比第二个加数大1.所以第六个数为(25+1)+25=65.例5 一组按规律排列的数:…请你推断第9个数是________.解析这列数的分母为2,3,4,5,6…的平方数,分子形成二阶等差数列,依次相差2,4,6,8…故第9个数分子为1+2+4+6+8+10+12+14+16=73,分母为100,故答案为.(6)与循环有关的问题例6 让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a3;第三步:算出a2的各位数字之和得n3,再计算n32+1得a3;……依此类推,则a2008=_______.解析根据题意可算出a1=26,a2=65,a3=122,a4=26,a5=65,a6=122,…发现每3个数就出现一次循环.所以由2008=669×3+1,可得a2008=a1=26.点评一列数由某m个数循环出现组成,可依据同余等值(由n=p·m+r得a n=a r)实施转换.(7)分奇数项偶数项的问题例7 一组按规律排列的式子:,…(a b≠0),其中第7个式子是________,第n个式子是_(n为正整数).解析6的指数2,5,8,11…,相邻两数差为3,是等差数列,其规律为3n-1;再注意到奇数项为负,偶数项为正,则第n个式子为第七个式子为3.特殊数列的迁移例8 把数字按如图4所示排列起来,从上开始,依次为第一行、第二行、第三行、…,中间用虚线围的一列,从上至下依次为1.5.13.25.…,则第10个数为_______.解析1 中间框出的一列数的规律为:第n个数为1+4+8+12+…+4(n-1).所以第10个数为1+4+8+12+…+36=.解析2 用虚线圈出的一列数1,5,13,25可改写为:02+12,12+22,22+32,32+42,猜想第10个数为92+102=181.点评此列数可看成是平方数数列的迁移.例9 图5中是与杨辉三角有类似性质的三角形数垒.a,b,c,d是相邻两行的前四个数,那么当a=8时,c=_______,d=_______.解析除两边外,中间的每个数等于肩上两数的和.答案:9;32.点评此列数可看成是杨辉三角形的迁移.4.关注中考新题型例10 观察图6所示表格,依据表格数据排列的规律,数2008在表格中出现的次数共有_______次.解析从特例入手,通过扩充表格可得:数1,2,3,4,5,6,7,8,9,10出现次数分别为1,2,2,3,2,4,2,4,3,4.出现的次数恰为给定数的所有因数的个数,而2008的因数为1,2,4,8,251,502,1004,2008等8个.故答案为8.点评本例中新产生的数为自然数的倍数,因此,其出现的次数与其因数的多少有关,仔细观察便会发现,其出现次数就是给定数所有因数的个数,本题规律的隐蔽性较强,因而有一定的难度.。
中考数学《规律探索》专题复习试题含解析

中考数学《规律(Lv)探索》专题复习试题含解析一(Yi)、选择题1. 如图,将一张等边(Bian)三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按(An)同样方式再剪成4个小三(San)角形,共得到7个小(Xiao)三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得(De)到10个小三角形,称为第三次操(Cao)作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.50【考点】规律型:图形的变化类.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选:B.2.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分(Fen)析】根据图形中对应的数字和各个(Ge)数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本(Ben)题得以解决.【解(Jie)答】解(Jie):∵2016÷4=504,又(You)∵由题目中给出的几个(Ge)正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在(Zai)右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.3.(2016.山东省临沂市,3分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【考点】规律型:图形的变化类.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每(Mei)个图中三角形个数比图形的编号的(De)4倍(Bei)少(Shao)3个三角形,即可(Ke)得出结果.【解(Jie)答】解:第(Di)①是(Shi)1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l:y=-x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x 轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A 3,…,按此做法进行下去,点A2016的坐标为 .【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】由直线l:y=-x的解析式求出A1B1的长,再根据勾股定理,求出OB1的长,从而得出A2的坐标;再把A2的横坐标代入y=-x的解析式求出A2B2的长,再根据勾股定理,求出OB2的长,从而得出A3的坐标;…,由此得出一般规律.【解(Jie)答】解(Jie):∵点(Dian)A1坐(Zuo)标为(-3,0),知(Zhi)O A1=3,把(Ba)x=-3代入(Ru)直线(Xian)y=-x中,得y= 4 ,即A1B1=4.根据勾股定理,OB1===5,∴A2坐标为(-5,0),O A2=5;把x=-5代入直线y=-x中,得y=,即A2B2=.根据勾股定理,OB2====,∴A3坐标为(-3512,0),O A3=3512;把x=-3512代入直线y=-x中,得y=,即A3B3=.根据勾(Gou)股定理,OB 3====,∴A 4坐标(Biao)为(-3523,0),O A 4=3523;……同理(Li)可得(De)A n 坐(Zuo)标为(-,0),O A n =3521--n n ;∴A 2016坐(Zuo)标为(-,0)故(Gu)答案为:(− 3520142015,0)【点(Dian)评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征. 解题时,要注意数形结合思想的运用,总结规律是解题的关键. 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-2012全国各地中考数学试题分考点解析汇编探索规律型问题一、选择题1.(2011重庆4分)下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为A、55B、42C、41D、29【答案】【考点】分类归纳(图形的变化类)。
【分析】找出规律:∵图②平行四边形有5个=1+2+2,图③平行四边形有11个=1+2+3+2+3,图④平行四边形有19=1+2+3+4+2+3+4,∴图⑥的平行四边形的个数为1+2+3+4+5+6+2+3+4+5+6=41。
故选C。
2.(2011重庆綦江4分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2011个格子中的数为A、3B、2C、0D、﹣1【答案】A。
【考点】分类归纳(数字的变化类)。
【分析】首先由已知和表求出a、b、c,再观察找出规律求出第2011个格子中的数.已知其中任意三个相邻格子中所填整数之和都相等,则,3+a+b=a+b+c,a+b+c=b+c ﹣1,解得a=﹣1,c=3,按要求排列顺序为,3,﹣1,b,3,﹣1,b,…,结合已知表得b=2,所以每个小格子中都填入一个整数后排列是:3,﹣1,2,3,﹣1,2,…,其规律是每3个数一个循环。
∵2011÷3=670余1,∴第2011个格子中的数为3。
故选A。
3.(2011重庆江津4分)如图,四边形ABCD中,AC=a,BD=b,且AC丄BD,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是4a b+ ④四边形AnBnCnDn 的面积是12n ab +.A 、①②B 、②③C 、②③④D 、①②③④ 【答案】C 。
【考点】分类归纳,三角形中位线定理,菱形的判定和性质,矩形的判定和性质。
【分析】首先根据题意,找出变化后的四边形的边长与四边形ABCD 中各边长的长度关系规律,然后对以下选项作出分析与判断:连接A2 C2,B2 D2,可以证明,四边形A1B1C1D1是矩形,A2 C2=A1B1=12AC =12a ,B2 D2=A1D1 =12BD =12b 。
∴A2 C2≠B2 D2。
即四边形A2B2C2D2的对角线不相等。
∴四边形A2B2C2D2不是矩形。
故本选项错误。
连接A1C1,B1D1,∵在四边形ABCD 中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,∴A1D1∥BD ,B1C1∥BD ,C1D1∥AC ,A1B1∥AC 。
∴A1D1∥B1C1,A1B1∥C1D1。
∴四边形ABCD 是平行四边形。
∴B1D1=A1C1(平行四边形的两条对角线相等)。
∴A2D2=C2D2=C2B2=B2A2(中位线定理)。
∴四边形A2B2C2D2是菱形。
∴同理,四边形A4B4C4D4是菱形。
故本选项正确。
根据中位线的性质易知,A5B5=12A3B3=12×12A1B1=12×12×12AC=18a,B5C5=12B3C3=12×12B1C1=12×12×12BC=18b,∴四边形A5B5C5D5的周长是()1284a ba b +⨯+=。
故本选项正确;④∵四边形ABCD 中,AC=a ,BD=b ,且AC 丄BD ,∴S 四边形ABCD=12a b ;由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形AnBnCnDn 的面积是12×2nab =12n ab+。
故本选项正确。
综上所述,②③④正确。
故选C 。
4.(2011浙江舟山、嘉兴3分)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是 (A )2010 (B )2011 (C )2012 (D )2013【答案】D 。
【考点】分类归纳。
【分析】从图中知,该纸链是5的倍数,中间截去的是剩下3+5n ,从选项中数减3为5的倍数者即为所求。
∵2013-3被5整除,故选D 。
5.(2011浙江省3分)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A2比图A1多出2个“树枝”, 图A3比图A2多出4个“树枝”, 图A4比图A3多出8个“树枝”,……,照此规律,图A6比图A2多出“树枝” A.28 B.56 C.60 D. 124【答案】C 。
【考点】分类归纳。
【分析】经观察可以发现:图A3比图A2多出4个“树枝”; 图A4比图A3多出8个“树枝”, 比图A2多出4+8=12个“树枝”; 图A5比图A4多出16个“树枝”, 比图A2多出4+8+16=28个“树枝”; 图A6比图A5多出32个“树枝”, 比图A2多出4+8+16+32=60个“树枝”。
故选C 。
6.(2011广西桂林3分)如图,将边长为a 的正六边形A1A2A3A4A5A6在直线l 上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为A 、aB 、aC 、aD 、a【答案】A 。
【考点】正多边形的性质,旋转的性质,解直角三角形,特殊角的三角函数值,弧长的计算。
【分析】连接A1A5,A1A4,A1A3,作A6C ⊥A1A5,如图,∵六边形A1A2A3A4A5A6为正六边形, ∴A1A4=2a ,∠A1A6A5=120°,∴∠CA1A6=30°,∴A6C=12a,A1C=。
∴。
当A1第一次滚动到图2位置时,顶点A1所经过的路径分别是以A6,A5,A4,A3,A2为圆心,以a,2aa,a为半径,圆心角都为60°的五条弧,∴顶点A1所经过的路径的长=6060222180180a aaππ⋅⋅⋅⋅⋅++=。
故选A。
7.(2011广西百色3分)相传古印度一座梵塔圣殿中,铸有一片巨大的黄铜板,之上树立了三米高的宝石柱,其中一根宝石柱上插有中心有孔的64枚大小两两相异的一寸厚的金盘,小盘压着较大的盘子,如图,把这些金盘全部一个一个地从1柱移到3柱上去,移动过程不许以大盘压小盘,不得把盘子放到柱子之外。
移动之日,喜马拉雅山将变成一座金山。
设h(n) 是把n个盘子从1柱移到3柱过程中移动盘子知最少次数n=1时,h(1)=1n=2时,小盘2柱,大盘3柱,小盘从2柱3柱,完成。
即h(2)=3。
n=3时,小盘3柱,中盘2柱,小盘从3柱2柱。
即用h(2)种方法把中、小两盘移到2柱,大盘移到3柱;再用h(2)种方法把中、小两盘从2柱3柱,完成我们没有时间去移64个盘子,但你可由以上移动过程的规律,计算n=6时,h(6)=A.11B.31C.63D.127【答案】C。
【考点】分类归纳。
【分析】找出规律:n=1时,h(1)=1;n=2时,h(2)=3;n=3时,h(3)= 2h(2)+1=7;n=4时,h(4)= 2h(3)+1=15;n=5时,h(5)= 2h(4)+1=31;n=6时,h(6)= 2h(5)+1=63。
故选C。
8.(2011广西玉林、防城港3分)一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…按照这种倒水的方法,倒了10次后容器内剩余的水量是A、1011升B、19升C、110升D、111升【答案】D。
【考点】分类归纳(数字的变化类)。
【分析】根据题意,第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…第10次倒出的水量是110升的111,倒了10次后容器内剩余的水量是:11111111223341011--⨯-⨯-⋯⋯-⨯。
∵111111n n n n ⨯=-++, ∴111111111111111122334101122334101111⎛⎫⎛⎫⎛⎫--⨯-⨯-⋯⋯-⨯=-----⋯⋯--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。
故选D 。
9.(2011湖南永州3分)对点(x ,y )的一次操作变换记为P1(x ,y ),定义其变换法则如下:P1(x ,y )=(y x +,y x -);且规定)),((),(11y x P P y x P n n -=(n 为大于1的整数).如P1(1,2 )=(3,1-),P2(1,2 )= P1(P1(1,2 ))= P1(3,1-)=(2,4),P3(1,2 )= P1(P2(1,2 ))= P1(2,4)=(6,2-).则P2011(1,1-)=( ) A .(0,21005 ) B .(0,-21005 ) C .(0,-21006) D .(0,21006) 【答案】D 。
【考点】分类归纳,求函数值。
【分析】根据题目提供的变化规律,找到点的坐标的变化规律并按此规律求得P2011(1,-1)的值即可:P1(1,-1)=(0,2),P2(1,-1)=(2,-2),P3(1,-1)=(0,4),P4(1,-1)=(4,-4),P5(1,-1)=(0,8),P6(1,-1)=(8,-8),……,当n 为奇数时,Pn (1,-1)=(0,122n +),∴P2011(1,-1)应该等于(0,21006)。
故选D 。
10.(2011湖南娄底3分)如图,自行车的链条每节长为2.5cm ,每两节链条相连接部分重叠的圆的直径为0.8cm如果某种型号的自行车链条共有60节,则这根链条没有安装时的总长度为A 、150cmB 、104.5cmC 、102.8cmD 、102cm【答案】C 。
【考点】分类归纳(图形的变化类)。
【分析】∵根据图形可得出:两节链条的长度为:2.5×2﹣0.8;3节链条的长度为:2.5×3﹣0.8×2;4节链条的长度为:2.5×4﹣0.8×3。
∴60节链条的长度为:2.5×60﹣0.8×59=102.8。
故选C 。
11.(2011江苏南京2分)甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束;②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为 ▲ . 【答案】4。