线性规划法
线性规划图解法

图解法 线性规划问题求解的 几种可能结果 由图解法得到的启示
上页
下页 继续
返回
例1的数学模型
目标函数 Max Z = 2x1 + 3x2 约束条件 x1 + 2x2 8 4x1 16 4x2 12 x 1、 x 2 0
上页
下页
返回
图解法
9— 8—
x1+ 2x2=8 4x1 =16
4x1 16
C 4 x2 16
4 —B
3— 2— 1—
最优解 (4, 2)
D
x1 + 2x2 8
| 6 | 7 | 8 | 9 | 4
A
0
| 1
| 2
| 3
E
| 5
x1 下页 返回
上页
图解法求解步骤
• 由全部约束条件作图求出可行域; • 作目标函数等值线,确定使目标函数最
(d)无可行解
Max Z = 2x1 + 3x2 x1 +2 x2 8 4 x1 16 4x2 12 -2x1 + x2 4 x 1、 x 2 0
可行域为空集
上页 下页 返回
图解法的几点结论:
(由图解法得到的启示)
– 可行域是有界或无界的凸多边形。 – 若线性规划问题存在最优解,它一定可以在
优的移动方向; • 平移目标函数的等值线,找出最优点, 算出最优值。
上页
下页
返回
线性规划问题求解的 几种可能结果
(a) 唯一最优解
x2
6— 5— 4— 3— 2— 1— | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | x 9 1
线性规划PPT课件

线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义
线性规划(图解法)

D
max Z
可行域
(7.6,2) , )
34.2 = 3X1+5.7X2
X1 + 1.9X2 = 3.8(≥) X1 - 1.9X2 = 3.8 (≤) L0: 0=3X1+5.7X2
oபைடு நூலகம்
x1
图解法
min Z=5X1+4X2 x2
X1 + 1.9X2 = 10.2 (≤)
Page 18
43=5X1+4X2 8=5X1+4X2 此点是唯一最优解 (0,2) , )
图解法
线性规划问题的求解方法 一般有 两种方法 图解法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
Page 1
适用于任意变量、 适用于任意变量、但必需将 一般形式变成标准形式
下面我们分析一下简单的情况—— 下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题, 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。 性规划基本原理和几何意义等优点。
• 有效与无效 紧与松)约束:与最优解相关的约束为有效 有效与无效(紧与松 约束 紧与松 约束: (紧)约束。 紧 约束 约束。 • 最优解:总是在可行域的边界上,一般由可行域的顶 最优解:总是在可行域的边界上, 点表示。 点表示。 • 可行域:由约束平面围起来的凸多边形区域,可行域 可行域:由约束平面围起来的凸多边形区域, 个可行解。 内的每一个点代表一 个可行解。
20
无可行解(即无最优解 无可行解 即无最优解) 即无最优解
10
O
10
线性规划知识点总结

线性规划知识点总结线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在各个领域都有广泛的应用,包括经济学、工程学、管理学等。
本文将对线性规划的基本概念、模型构建、求解方法以及应用领域进行详细介绍。
一、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。
目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为系数,xi为决策变量。
2. 约束条件:线性规划的决策变量需要满足一系列线性约束条件,常用形式为a1x1 + a2x2 + ... + anxn ≤ b,其中ai为系数,b为常数。
3. 可行解:满足所有约束条件的决策变量取值称为可行解。
4. 最优解:在所有可行解中,使目标函数取得最大值或者最小值的解称为最优解。
二、模型构建1. 决策变量:根据具体问题确定需要优化的变量,通常用xi表示。
2. 目标函数:根据问题要求确定目标函数的系数,进而确定是最大化还是最小化。
3. 约束条件:根据问题中给出的条件,建立约束条件方程。
4. 非负约束:决策变量通常需要满足非负约束条件,即xi ≥ 0。
三、求解方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。
首先绘制约束条件的直线,然后确定可行域,最后在可行域内找到目标函数的最优解。
2. 单纯形法:对于多维线性规划问题,常使用单纯形法进行求解。
单纯形法通过不断迭代,逐步接近最优解。
它基于线性规划的基本定理,即最优解一定在可行解的顶点上。
3. 整数规划:当决策变量需要取整数值时,可以使用整数规划方法进行求解。
整数规划问题通常更加复杂,求解时间较长。
四、应用领域1. 生产计划:线性规划可以用于确定最佳的生产计划,使得生产成本最小化或者利润最大化。
2. 运输问题:线性规划可以用于确定最佳的运输方案,使得运输成本最小化。
3. 资源分配:线性规划可以用于确定最佳的资源分配方案,使得资源利用率最高。
运筹学基础-线性规划(方法)

线性规划问题通常由三个基本部分组成,即决策变量、约束条件 和目标函数。决策变量是问题中需要求解的未知数,约束条件是 限制决策变量取值的条件,目标函数是要求最大或最小的函数。
线性规划的应用领域
01
02
03
04
生产计划
在制造业中,线性规划可以用 于制定最优的生产计划,以最 大化利润或最小化成本。
02
线性规划的基本概念
线性方程组
线性方程组是由多个线性方程组成的数学模型,描 述了多个变量之间的线性关系。
线性方程组可以用矩阵和向量表示,通过矩阵运算 和代数方法求解。
线性方程组有多种解法,如高斯消元法、LU分解、 迭代法等。
约束条件与目标函数
02
01
03
约束条件是限制变量取值的条件,通常表示为变量的 上界、下界或等式约束。
目标函数是描述问题目标的数学表达式,通常是最小 化或最大化的线性或非线性函数。
约束条件和目标函数共同构成了线性规划问题的数学 模型。
线性规划的解
线性规划的解是指满足 所有约束条件并使目标 函数取得最优值的变量 取值。
线性规划问题可能有多 个解,也可能无解或无 界解。
最优解的性质包括最优 性、可行性和唯一性。
最优解可以通过求解线 性方程组或使用专门的 优化软件获得。
03
线性规划的求解方法
单纯形法
01
基本概念
单纯形法是一种求解线性规划问题的迭代算法,通过 不断迭代寻找最优解。
02 1. 初始化 选择一个初始可行解,并确定初始基可行解。
03
2. 迭代
根据目标函数系数和约束条件系数,计算出单纯形表 格,然后进行迭代更新。
运筹学基础-线性规划(方法)
线性规划的定义及解题方法

线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
线性规划的标准化及图解法

2
线性规划的问题
• 某工厂生产两种型号的电机(记为A和B),每台 A型电机需用原料2个单位,4个工时,每台B型电 机需用原料3个单位,2个工时,工厂共有原料 100个单位,120个工时,A、B型电机的每台利 润分别为600元和400元,问两种电机各生产多少 可使利润最大?
设A、B型电机各生产x1,x2台,x1,x2称为决策变量。
解:第一个约束引入松弛变量x4, 第二个约束引入剩余变量x5
18
将线性规划化成标准形式
于是,我们可以得到以下标准形式的线性 规划问题:
19
将线性规划化成标准形式
3. 变量无符号限制的问题:
在标准形式中,必须每一个变量均有非负 约束。当某一个变量xj没有非负约束时, 可以令 xj = xj’- xj” 其中 xj’≥0,xj”≥0 即用两个非负变量之差来表示一个无符号 限制的变量,当然xj的符号取决于xj’和xj” 的大小。
3 . Min
S x1 x 2
4 . Min
S 2 x1 3 x 2
x1 x 2 1 s .t . x2 2 x , x 0 1 2
x1 2 x 2 2 2 x x 3 1 2 s .t . x2 4 x1 , x 2 0
该问题可推广到m个产地,n个销地的运输 问题。
7
线性规划的应用模型
某饲养场使用甲,乙,丙,丁四种饲料,每种饲料的 的维生素A,B,C含量及单位价格和所需的维生素 如下表,要求配制一个混合饲料,每单位混合饲料 的维生素A、B、C的需要量为3,5,10. 甲 A B C 单价 0.2 0.8 1.2 5 乙 0.8 0.3 0.9 6 丙 1.2 0.9 0.7 6 丁 0.6 0.7 1.5 7 需要量 3 5 10
线性规划问题的四种求解方法

可画出直线
l0
:y
=-
2 3
x
,
把直线
l0
向右上方
平移 , 当经过可行域上点 B 时 , 直线的截距最
大 .此时 z = 12x +18y 取最大值 .解方程组
z =6x +3y +5[ 300 -(x +y)] +5(200 -x ) +9(450 -y)+6(100 +x +y)=2 x -5y +
解 设每天生产甲 、乙产品的件数分别是
维生素 B (单位 / 千克) 800 400 500
成本(单位 / 千克) 11 9 4
某食物营养所想用 x 千克甲种食物 , y 千 克乙种食物 , z 千克丙种食物配成 100 千克混合 物 , 并使混合物至少含有 56000 单位维生素 A 和 63000 单位维生素 B
问题的最优解具有十分重要的现实意义 .现介
二 、等值线法
绍几种求解线性规划问题的最优解的策略 .
所谓等值线是指直线上任一点的坐标(x ,
一 、截距法
y )都使 F(x , y)=Ax +By 取等值C 的直线l :
例 1 某厂需从国外引进两种机器 .第一 Ax +By = C(A 、B 不同时为零).通过比较等
7150 作出以上不等式组所表示的平面区域即可
x +2y 4x +y
=13得 =24
B(5 , 4).故当
x
=5, y
=4
行域 .令 z = 0 , 则可画出 直线 l 0 :2x -5y + 7150 =0 .画出一组与 l 0 平行的等值线 , 比较等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划法
线性规划法(Linear Programming)是一种数学模型和优化方法,用于解决线性约束条件下的最优决策问题。
线性规划法被广泛应用于经济、管理、工程等领域中的决策问题,可以帮助决策者在有限的资源条件下,实现最优的目标。
线性规划法的核心思想是将问题转化为数学模型,即线性规划模型。
该模型包括目标函数、决策变量和约束条件三个要素。
目标函数是决策问题的数学表达,用于衡量达到最优目标的程度。
通常,目标函数是一个线性函数,可用代数式表示。
决策变量是决策问题中可以被决策者调整的变量,根据实际情况选取。
决策变量的取值会直接影响目标函数的结果。
约束条件是决策问题中各种限制条件,例如资源约束、技术约束等。
约束条件可以是等式约束或不等式约束,也可以是单个约束或多个约束。
线性规划法的基本思路是通过优化算法,对线性规划模型进行求解,找到使目标函数取得最大(或最小)值的决策变量取值。
常见的线性规划求解算法有单纯形法、对偶单纯形法、内点法等。
在应用线性规划法解决实际问题时,需要经过以下步骤:
1. 建立数学模型:根据实际问题的特点和需求,确定目标函数和约束条件,制定出线性规划模型。
2. 求解线性规划模型:根据所选的求解算法,对线性规划模型进行求解。
通常,求解算法会根据目标函数和约束条件的特点,进行适当的优化,减少计算量。
3. 分析和解释结果:对求解结果进行分析和解释,评估结果的合理性和可行性。
如果结果满足实际需求,则可以进行下一步决策;如果不满足,则需要根据实际情况,对模型进行优化或修改。
线性规划法的优点在于能够在有限的资源条件下,寻找到最优的决策解。
它可以帮助决策者进行定量分析和优化决策,提高决策的效果和效率。
同时,线性规划法的应用范围广泛,可以应用于各种实际问题中。
然而,线性规划法也存在一些局限性。
首先,线性规划法只适用于具有线性目标函数和线性约束条件的问题,对于非线性问题不适用;其次,线性规划法只能得到局部最优解,无法保证找到全局最优解;此外,线性规划法会受到数据误差、模型假设等因素的影响,需要进行敏感性分析和可行性分析。
总之,线性规划法是一种重要的数学模型和优化方法,可以帮助决策者在复杂的决策问题中做出最优的决策。
通过合理的建模和求解,线性规划法能够指导实践,提高资源利用效率和经济效益。
然而,线性规划法也需要在实践中不断优化和改进,以适应不断变化的实际需求。