线性规划的数学模型
线性规划的数学模型

线性规划的数学模型引言线性规划(Linear Programming, LP)是数学规划的一种方法,用于解决一类特殊的优化问题。
线性规划的数学模型可以表示为一个线性的目标函数和一系列线性约束条件。
本文将介绍线性规划的数学模型及其应用。
数学模型线性规划的数学模型可以用以下形式表示:最大化:$$ \\max_{x_1,x_2,...,x_n} Z=c_1x_1+c_2x_2+...+c_nx_n $$约束条件:$$ \\begin{align*} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n&\\leq b_1 \\\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n &\\leq b_2 \\\\ &\\vdots \\\\ a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n&\\leq b_m \\\\ x_1,x_2,...,x_n &\\geq 0 \\end{align*} $$其中,Z为目标函数的值,Z1,Z2,...,Z Z为目标函数的系数,Z1,Z2,...,Z Z为决策变量,Z ZZ为约束条件的系数,Z1,Z2,...,Z Z为约束条件的右侧常数。
线性规划的应用线性规划在实际问题中有广泛的应用,其应用领域包括但不限于以下几个方面:生产计划线性规划在生产计划中的应用是最为常见的。
通过建立适当的数学模型,可以最大化生产线的产能,同时满足客户需求和资源限制。
例如,一个工厂需要决定每个月生产的产品数量,以最大化利润。
这个问题可以通过线性规划来解决。
运输问题线性规划在运输问题中的应用也非常广泛。
运输问题涉及到将特定产品从供应地点运送到需求地点,以满足需求并尽量降低运输成本。
线性规划可以用来决定每个供应地点到每个需求地点的运输量,以最小化总运输成本。
资源分配在资源有限的情况下,线性规划可以用于优化资源的分配。
线性规划模型

j 1
i 1
将目标函数和约束条件放在一起,即得指派问题的数学模型.
第i人花费在第j项工作的时间用cijxij表示,在所有的工作中,第i人干仅干一项工作,
若第i人被分配去干第j0项工作,则当j0≠j时,cijxij=0,所以花费的总时间为T
nn
cij xij
.
i1 j 1
n
n
对于第i人,应有 xij 1 ;对于第j项工作,应有 xij 1 .
cT x
Ax b
A
eq
x beq
l b x u b
Matlab中求解线性规划的命令为:
[x,fval]=linprog(c,A,b,Aeq,beg,lb,ub)
其中,x返回的决策变量x的取值,fvla返回的是目标函数的最优值.
注:若没有某种约束,则相应的系数矩阵赋值为空矩阵,如没有等式约束,则令Aeq=[], beq=[].
(7)模型的分析与评价
在建立线性模型是,总是假定aij,bi,cj都是常数,但实际上这些系数往往是估计值 和预测值,如市场条件一变,aij值就会变化;bi往往因工艺条件的改变而改变;cj是根据 资源投入后的经济效果决定的一种决策选择.因此,这些参数在什么范围内变化时,线 性规划问题的最优解不变.
2.整数规划模型
3. 0-1整数模型
在部分规划问题中,每个需要做的决策只有两种时,可以使用0-1整数规划建模,它的 变量xi仅取值0或1.此类模型可用Lingo和Matlab求解.Matlab中规定0-1整数规划模型中的标准形 式为:
min cT x Ax b
s.t. Aeq x beq
Matlab中求解0-1规划的命令为: [x,fval]=bintprog(c,A,b,Aeq,beq)
线性规划问题及其数学模型

第一章线性规划问题及其数学模型一、问题旳提出在生产管理和经营活动中常常提出一类问题,即怎样合理地运用有限旳人力、物力、财力等资源,以便得到最佳旳经济效果。
例1 某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需旳设备台时及A、B两种原材料旳消耗,如表1-1所示。
表1-1该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应怎样安排计划使该工厂获利最多?这问题可以用如下旳数学模型来描述,设x1、x2分别表达在计划期内产品I、II旳产量。
由于设备旳有效台时是8,这是一种限制产量旳条件,因此在确定产品I、II旳产量时,要考虑不超过设备旳有效台时数,即可用不等式表达为:x1+2x2≤8同理,因原材料A、B旳限量,可以得到如下不等式4x1≤164x2≤12该工厂旳目旳是在不超过所有资源限量旳条件下,怎样确定产量x1、x2以得到最大旳利润。
若用z表达利润,这时z=2x1+3x2。
综合上述,该计划问题可用数学模型表达为:目旳函数 max z =2x 1+3x 2 满足约束条件 x 1+2x 2≤84x 1≤16 4x 2≤12 x 1、x 2≥0例2 某铁路制冰厂每年1至4季度必须给冷藏车提供冰各为15,20,25,10kt 。
已知该厂各季度冰旳生产能力及冰旳单位成本如表6-26所示。
假如生产出来旳冰不在当季度使用,每千吨冰存贮一种季度需存贮费4千元。
又设该制冰厂每年第3季度末对贮冰库进行清库维修。
问应怎样安排冰旳生产,可使该厂整年生产费用至少?解:由于每个季度生产出来旳冰不一定当季度使用,设x ij 为第i 季度生产旳用于第j 季度旳冰旳数量。
按照各季度冷藏车对冰旳需要量,必须满足:⎪⎪⎩⎪⎪⎨⎧++++++33231343221242114144x x x x x x x x x x 。
,,,25201510==== 又每个季度生产旳用于当季度和后来各季度旳冰旳数量不也许超过该季度旳生产能力,故又有⎪⎪⎩⎪⎪⎨⎧++++++33232213121143424144x x x x x x x x x x 。
线性规划问题的数学模型

工地 砖厂
运价
A1
A2
B1
B2
B3
50
60
70
60
110
160
在线才智在线才智在线才智在线才
智在线才智
2
解:设 xi j表示由砖厂Ai 运往工地 Bj 砖的数量(i=1,2; j=1,2,3)
运量
工
地
B1
B2
B3
发量
砖厂
A1
x11
x12
x13
23
A2
x21
x22
x23
27
收量 17 18 15 50
⑵ 存在一定的限制条件,称为约束条件。这些约束条件 都可以用一组线性等式或不等式来表示。
⑶ 都有一个期望达到的目标,并且这个目标可以表示为 决策变量的线性函数(称为目标函数)。按所研究问题的不 同,要求目标函数值最大化或最小化。
我们将具有上述三个特点的最优化问题归结为线性规划问
题,其数学模型称为线性规划问题的数学模型,简称线性规划 数学模型。
智在线才智
15
解:
x2 x1 + x2 = -2
x1
-x1 + x2 =1
没有可行解,当然没有最优解。
在线才智在线才智在线才智在线才
智在线才智
16
第三节 单纯形法
(一)线性规划问题的标准形式
线性规划问题的数学模型有各种不同的形式。为了便于讨论,需要将线性 规划数学模型写成统一格式。
线性规划问题的标准型是:
4.配料问题
5.布局问题
6.分配问题
在线才智在线才智在线才智在线才
智在线才智
1
(二)线性规划问题的数学模型
最新-第三章线性规划数学模型课件-PPT

X1
18
例4、 maxZ=3X1+2X2
X2
-X1 -X2 1
X1 , X2 0
无解
无可行解
-1
0
X1
-1
19
总结
唯一解 有解
无穷多解 无解 无有限最优解
无可行解
20
单纯形法
• 单纯形法(Simplex Method)是美国数学 家但泽(Dantzig)于1947年提出的。基 本思想是通过有限次的换基迭代来求出 线性规划的最优解。
3
线性规划的特点
❖决策变量连续性:求解出的决策变量值 可以是整数、小数;
❖线性函数:目标函数方程和约束条件方 程都是线性方程;
❖单目标:目标函数是单目标,只有一个 极大值或一个极小值;
❖确定性:只能应用于确定型决策问题。
4
例1、生产计划问题
A B 备用资源
煤12
30
劳动日 3 2
60
仓库 0 2
• 利用单纯形法解决线性规划问题,实际上是从 线性规划问题的一个基本可行解转移到另一个 基本可行解,同时目标函数值不减少的过程。
• 对于两个变量的线性规划问题,就是从可行域 的一个端点转移到另一个端点,而使得目标函 数的值不减少。
25
线性规划的扩展
一、整数规划(整数线性规划):部分或 全部的决策变量只能取整数值。
8
一般式
Max(min)Z=C1X1+ C2X2+…+CnXn a11X1+ a12X2+…+ a1nXn (=, )b1 a21X1+ a22X2+…+ a2nXn (=, )b2 ……… am1X1+ am2X2+…+ amnXn (=, )bm Xj 0(j=1,…,n)
线性规划概念与数学模型

约束条件的图解:
每一个约束不等式在平面直角坐标系中都 代表一个半平面,只要先画出该半平面的边 界,然后确定是哪个半平面。
怎么画边界
?
怎么确定 半平面
以第一个约束条件(工时)
x1+2 x2 8 为例 说明约束条件的图解过程。
如果全部的劳动工时都用来生产甲 产品而不生产
乙产品,那么甲产品的最大可能产量为8吨,计算
D
条件的边界--
4
Q4
Q3
直线CD,EF: E
3
F
4x1 =16,4x2 =12
2
Q2 4x2 = 12
1
Q1
0
1
2
3
4
5
6
7
8
9
B
C
x1+4x2 = 8
4x1=16
三个约束条件及非负条件x1,x2 0所代表的公共部分
--图中阴影区,就是满足所有约束条件和非负条件的点的
集合,即可行域。在这个区域中的每一个点都对应着一个可
目标函数值递增的方向, 用箭头标出这个方向。 图中两条虚线 l1和l2就 分别代表 目标函数等值线 2x1+3x2=0 和 2x1+3x2=6, 箭头表示使两种产品的总 利润递增的方向。
5
l3
A4
E
B
3
l1 l2 2
1
1
2
D
F 4x1=12
Q2 4,2
x1+2x2 = 8
A
3
4
5
6
7
8
9
B
4x1=16 C
1 1
1 1
1 1
B1 1
4 , B2 1
线性规划问题及其数学模型

6
例 : min z x1 2 x2 3x3
x1
x2 x3 7 x7
x1
x2 x3 2
3x1 x2 2 x3 7
x1, x2 0, x3无约x束 3 x4 x5
上页 下页 返回
解 :标准形为
max z x1 2x2 3(x4 x5 ) 0x6 0x7
供需平衡
上页 下页 返回
线性规划模型举例
(一) 运输问题 (二) 布局问题 (三) 分派问题 (四) 生产计划问题 (五) 合理下料问题
上页 下页 返回
线性规划模型的条件
• (1)要求解问题的目标函数能用数 值指标来反映,且为线性函数;
• (2)存在着多种方案; • (3)要求达到的目标是在一定约束
• “” 约束:加入非负松驰变量
例: max z 2x1 3x2 0x3 0x4 0x5
x1 2x2 x3
8
4
x1
4 x2
x4 16 x5 12
x1, x2 , x3, x4 , x5 0
上页 下页 返回
• “” 约束: 减去非负剩余变量;
• xk可正可负(即无约束);
x 令 xk Mxak' x xk" xk' , xk" 0
i 1
每人只做一件工作
n xij 1
每人i 对每1,件2工,作只, n有
j 1
做与不做两种情况
xij 0 或 1 i, j 1,2,, n
上页 下页 返回
(四)生产组织与计划问题
(Ⅰ) 生产的机器最多 (Ⅱ) 总的加工成本最低 (Ⅲ)生产存储问题
上页 下页 返回
(四)生产组织与计划问题 应如何分配机
《管理运筹学》02-1线性规划的数学模型及相关概念

03 线性规划的求解方法
单纯形法
1
单纯形法是一种求解线性规划问题的经典算法, 其基本思想是通过不断迭代来寻找最优解。
2
单纯形法的基本步骤包括:建立初始单纯形表格、 确定主元、进行基变换、更新单纯形表格和判断 是否达到最优解。
3
单纯形法在处理大规模线性规划问题时,由于其 迭代次数与问题规模呈指数关系,因此计算量较 大。
06 线性规划的案例分析
生产计划问题
总结词
生产计划问题是一个常见的线性规划应用场景,通过合理安排生产计划,企业可以优化资源利用,降低成本并提 高利润。
详细描述
生产计划问题通常涉及确定不同产品组合、生产数量、生产批次等,以满足市场需求、资源限制和利润目标。线 性规划模型可以帮助企业找到最优的生产计划,使得总成本最低或总利润最大。
最优性条件由单纯形法推导得出,是判断线性规划问题是否达到最优解的 重要依据。
解的稳定性
解的稳定性是指最优解在参数变化时保持相对稳定的能力。
在实际应用中,由于数据的不确定性或误差,参数可能会发生变化。因此,解的稳 定性对于线性规划问题的实际应用非常重要。
解的稳定性取决于目标函数和约束条件的性质,以及求解算法的鲁棒性。在某些情 况下,可以通过敏感性分析来评估解对参数变化的敏感性。
输标02入题
决策变量是问题中需要求解的未知数,通常表示为 $x_1, x_2, ldots, x_n$。
01
03
目标函数是需要最大或最小化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是问题中给定的限制条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$ 或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划的数学模型
线性规划是一种数学模型,被广泛应用于许多领域。
本文将介绍线性规划的数学模型的重要性和应用领域,并简要说明线性规划的定义和基本概念。
线性规划是一种优化问题的数学表述,其目的是在给定的约束条件下,找到使目标函数达到最大或最小的变量值。
线性规划的主要特点是目标函数和约束条件均为线性关系。
线性规划在工程、经济、物流、运输等领域都有广泛的应用。
它可以用来解决资源分配、生产计划、成本最小化、效益最大化等问题。
线性规划的数学模型可以通过建立目标函数和约束条件的数学表达式来表示。
这篇文档将深入探讨线性规划的数学模型,并介绍一些常见的线性规划应用案例。
通过了解线性规划的数学模型,读者可以更好地理解其背后的原理和应用。
希望本文能对读者在研究和实践中解决实际问题时提供帮助和指导。
本文将讨论如何构建线性规划模型,包括确定决策变量、目标函数和约束条件,以及如何将实际问题转化为数学模型。
决策变量
在构建线性规划模型时,首先需要确定决策变量。
决策变量是用来表示决策问题中需要决定的未知量。
它们的取值将影响函数的输出结果。
在确定决策变量时,需要考虑问题的具体情况,并确保决策变量具有明确的定义和可行的取值范围。
目标函数
确定决策变量后,下一步是确定目标函数。
目标函数是线性规划模型中需要最大化或最小化的函数。
它通常与问题的目标密切相关,并且能够量化问题的目标。
在确定目标函数时,需要考虑问题的特点和要求,确保目标函数能够准确地度量问题的目标。
约束条件
除了目标函数,线性规划模型还包括一系列约束条件。
约束条件是对决策变量的限制和要求,用于限定决策变量的取值范围。
约束条件可以是等式或不等式,它们对问题的解产生了限制和约束。
在确定约束条件时,需要将问题的限制条件转化为数学形式,并确保约束条件与实际问题相符合。
实际问题转化为数学模型
最后,将实际问题转化为数学模型是构建线性规划模型的关键
步骤。
这需要理解问题的要求和限制,并将其转化为决策变量、目
标函数和约束条件的数学表达式。
在转化过程中,需要注意将问题
的实际情况准确地反映在数学模型中,保证模型的可行性和有效性。
通过以上步骤,我们可以构建出适用于各种实际问题的线性规
划数学模型。
一个良好的线性规划模型能够准确地描述问题,为解
决问题提供有效的优化方法。
线性规划是一种优化问题的数学建模方法,
它在实际问题中广泛应用。
常见的线性规划求解方法包括:
单纯形法:单纯形法是最早提出的线性规划求解方法之一,通
过不断移动到更优解的顶点来寻找最优解。
它适用于具有有限解集
的问题,并且在实践中被广泛采用。
对偶法:对偶法是线性规划的一种重要方法,它将原问题转化
为对偶问题,并通过对偶问题的求解来得到原问题的最优解。
对偶
法可以提供原问题的最优解的理论界限,并且在一些特殊情况下能
够得到原问题的最优解。
内点法:内点法是一种近年来发展起来的线性规划求解方法,它通过寻找在可行域内的内部点来寻找最优解。
相比于单纯形法,内点法对于大规模问题的求解更为高效。
单纯形法的优点是易于理解和实现,但对于大规模问题求解效率较低。
对偶法的优点是能够提供原问题的理论界限,但在某些情况下可能无法得到原问题的最优解。
内点法在大规模问题求解方面更加高效,但对于特定问题可能需要设定较多的参数。
不同的线性规划求解方法在不同的问题中有各自的适用范围。
根据具体情况来选择合适的求解方法可以提高问题求解的效率和准确性。
不同的线性规划求解方法在不同的问题中有各自的适用范围。
根据具体情况来选择合适的求解方法可以提高问题求解的效率和准确性。