硫化氢腐蚀机理和防护的研究现状及进展
HS腐蚀研究进展

H S腐蚀研究进展As a person, we must have independent thoughts and personality.H2S腐蚀研究进展摘要近年来我国发现的气田均含有硫化氢、二氧化碳等腐蚀性气体,特别是我们四川盆地,含硫化氢天然气分布最广泛。
众所周知,硫化氢腐蚀是井下油套管的主要腐蚀类型之一。
本文简述了硫化氢的物性,研究了硫化氢腐蚀的机理和影响因素,并在此基础上介绍了采用缓蚀剂、涂镀层管材、根据国际标准合理选材、电化学保护等几种国内外常用的防腐措施,并指出了各种方法的优缺点,最后还探讨了硫化氢油气田腐蚀研究的热点问题及发展方向。
关键词:硫化氢腐蚀,腐蚀机理,防腐技术ABSTRACTIn recent years, the gas fields found in our country contain hydrogen sulfide, carbon dioxide and other corrosive gases, especially in the Sichuan basin, with the most extensive distribution of hydrogen sulfide gas. It is well known that the hydrogen sulfide corrosion is one of the main corrosion typesof the oil casing in the well. Properties of hydrogen sulfideis described in this paper to study the hydrogen sulfide corrosion mechanism and influencing factors, and on this basis, introduces the corrosion inhibitor, coating tubing, accordingto international standard and reasonable material andelectrochemical protection at home and abroad, several commonly used anti-corrosion measures, and points out the advantages and disadvantages of each method, and finally discusses the hotissues and development direction of the research on oil and gas fields of hydrogen sulfide corrosion by.Key word s :hydrogen sulfide corrosion, corrosion mechanism, corrosion protection technology.前言随着各国经济的发展,对石油及天然气需求进一步增加,易开采的油气资源已趋于枯竭,油井的发展趋势向着高技术方向发展,钻探区域势必转移向内陆、沙漠等环境恶劣的地区。
HS腐蚀研究进展

H S腐蚀研究进展Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】H2S腐蚀研究进展摘要近年来我国发现的气田均含有硫化氢、二氧化碳等腐蚀性气体,特别是我们四川盆地,含硫化氢天然气分布最广泛。
众所周知,硫化氢腐蚀是井下油套管的主要腐蚀类型之一。
本文简述了硫化氢的物性,研究了硫化氢腐蚀的机理和影响因素,并在此基础上介绍了采用缓蚀剂、涂镀层管材、根据国际标准合理选材、电化学保护等几种国内外常用的防腐措施,并指出了各种方法的优缺点,最后还探讨了硫化氢油气田腐蚀研究的热点问题及发展方向。
关键词:硫化氢腐蚀,腐蚀机理,防腐技术ABSTRACTIn recent years, the gas fields found in our country contain hydrogen sulfide, carbon dioxide and other corrosive gases, especially in the Sichuan basin, with the most extensive distribution of hydrogen sulfide gas. It is well known that the hydrogen sulfide corrosion is one of the main corrosion typesof the oil casing in the well. Properties of hydrogen sulfideis described in this paper to study the hydrogen sulfide corrosion mechanism and influencing factors, and on this basis, introduces the corrosion inhibitor, coating tubing, accordingto international standard and reasonable material andelectrochemical protection at home and abroad, several commonly used anti-corrosion measures, and points out the advantages and disadvantages of each method, and finally discusses the hotissues and development direction of the research on oil and gas fields of hydrogen sulfide corrosion by.Key word s :hydrogen sulfide corrosion, corrosion mechanism, corrosion protection technology.前言随着各国经济的发展,对石油及天然气需求进一步增加,易开采的油气资源已趋于枯竭,油井的发展趋势向着高技术方向发展,钻探区域势必转移向内陆、沙漠等环境恶劣的地区。
油气田硫化氢腐蚀浅析

油气田硫化氢腐蚀浅析摘要:在油气田生产运输的过程中,H2S会对管线设备等金属材料造成严重的腐蚀,从而导致管线设备的磨损和报废,造成重大的经济损失。
此外,由于管线设备受到严重腐蚀而使H2S泄漏,容易引起人员伤亡。
本文从油气田硫化氢腐蚀现状出发,对硫化氢腐蚀机理及防护进行浅析。
关键词:硫化氢腐蚀机理影响因素防腐1.硫化氢腐蚀机理研究国外包括Keddamt等建立的H2S水中铁溶解的反应模型;Armstrong和Henderson对电极反应分两步进行的理论描述; Bai和Conway对一种产物到另一种产物进行的还原反应机理进行了系统的研究;Sardiseo,Wright和Greeo研究了30℃时H2S—CO2—H2O系统中中碳钢的腐蚀,说明了H2S在两种分压下金属表面形成的不同硫化物膜及腐蚀速率随H2S浓度和溶液pH的影响。
Hausler 等人研究表明腐蚀中的速率控制步骤是通过硫化物膜的电荷的传递。
Ramanarayanan和Smith研究了4130钢在220℃含Cl-的饱和H2S溶液中的腐蚀,发现生成以Fe1-xS为主的硫化物膜,总的腐蚀速率控制步骤是铁离子通过不断增长的Fe1-xS膜,最终硫化物膜增长与溶解速率达到稳定。
Sardiseo和pitts观察到溶液在不同pH时金属表面形成了不同的硫化物膜。
Petelotetal研究表明了金属浸入含H2S溶液中硫化铁膜的增长随时间变化的情况。
另外Tewari和Campbell也有类似的研究。
Iofa等提出了H2S溶液中铁的腐蚀反应式依次为化学吸附反应(l.1式)和阳极放电反应(1.2式)。
Fe+H2S+H2O→FeSH-ads+H3O+ (1.1) FeSH-ads →FeSH-ads +2e- (1.2)Shoesmith则给出了FeSH-ads+继反应(1.2)后的不同转变情况:FeSH-ads →FeS+H+ (1.3) FeSH-ads +H3O+→Fe+2+H2S+H2O (l.4)H.Maetal得出H2S抑制腐蚀的反应式:Fe+H2S+H2→FeSH-ads +H3O+ (1.5)FeSH-ads →FeSHads +e - (1.6) FeSHads →FeSH++e -(1.7)Bolmer认为在H2S环境中阴极反应机理为: 2H2S+2e→H2+2HS- (1.8)在国内张学元先生研究硫化氢腐蚀机理反应式:H2S→H++HS- (1.9) HS-→H++S2- (1.10)2.硫化氢腐蚀的影响因素影响H2S腐蚀的因素主要可分为材料因素、环境因素。
硫化氢-H2S的腐蚀原理与防护技术的研究

硫化氢-H2S的腐蚀原理与防护技术的研究(特别是对金属材料)文金属腐蚀基础知识1.腐蚀的定义金属与周围介质发生化学或电化学作用而导致的变质和破坏。
金属材料和环境介质共同作用的体系。
腐蚀速度的定义:单位时间内单位质量的物质金属腐蚀的分类2.1 按腐蚀机理:(1) 化学腐蚀—金属与周围介质直接发生化学反应而引起的变质和损坏的现象。
如钢铁在高温下的氧化脱皮现象。
这是一种氧化-还原的纯化学变化过程,即腐蚀介质中的氧化剂直接同金属表面的原子相互作用而形成腐蚀产物。
腐蚀过程中,电子的传递是在金属与介质间直接进行的,因而没有腐蚀微电流的产生。
按腐蚀形态:钢材1. 全面腐蚀:腐蚀作用发生在整个金属表面上,它可能是均匀的,也可能是不均匀的。
其特征是腐蚀分布在整个金属表面,结果使金属构件截面尺寸减小,直至完全破坏。
2.局部腐蚀: 腐蚀集中在金属的局部区域,而其它部分几乎没有腐蚀或腐蚀很轻微。
局部腐蚀是设备腐蚀破坏的一种重要形式,工程中的重大突发腐蚀事故多是由于局部腐蚀造成的。
8种腐蚀形态即:电偶腐蚀、孔蚀(点蚀)、缝隙腐蚀、沿晶腐蚀、选择性腐蚀、应力腐蚀开裂、腐蚀疲劳、磨损腐蚀。
三、硫化氢(H2S)的特性及来源1.硫化氢的特性硫化氢的分子量为34.08,密度为1.539mg/m3。
而且是一种无色、有臭鸡蛋味的、易燃、易爆、有毒和腐蚀性的酸性气体。
H2S在水中的溶解度很大,水溶液具有弱酸性,如在1大气压下,30℃水溶液中H2S饱和浓度大约是300mg/L,溶液的pH值约是4。
3. 石化工业中的来源石油加工过程中的硫化氢主要来源于含硫原油中的有机硫化物如硫醇和硫醚等,这些有机硫化物在原油加工过程进行中受热会转化分解出相应的硫化氢。
干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性。
五、硫化氢引起氢损伤的腐蚀类型反应产物氢一般认为有两种去向,一是氢原子之间有较大的亲和力,易相互结合形成氢分子排出;另一个去向就是由于原子半径极小的氢原子获得足够的能量后变成扩散氢[H]而渗入钢的内部并溶入晶格中,溶于晶格中的氢有很强的游离性,在一定条件下将导致材料的脆化(氢脆)和氢损伤1. 。
炼油装置中管道硫化氢腐蚀及防护

阴极反 应式 为 :
2 H + 2 e Ha d+ H. d _+ 2H _+ H 2
[ H ]一 钢 中扩散
中,成为引发管道材料失效 的主要腐蚀介质之一 。
硫 化氢 引 起 的 管 道 失 效 ,会 造 成 重 大 经 济 损 失 和
其中,H 。 为钢表面吸附的氢原子 ;[ H ]为钢
5 8 3 6 6 6 0 0 —3 5 6 5. E —ma i l :y a n g x i n g y o u . s s c c @s i n o p e c . t o m。
杨 兴有
炼油装置 中管道硫 化氢腐蚀 及防护
3 9
氢鼓 包 是 指 由金 属 内 部 过 高 的 氢 压 力 引起 的
附 ,且 由于原 子 半 径 极 小 ,被 吸 附 的 氢 原 子 在 获
1 湿 硫 化 氢 腐 蚀 机 理 和 腐 蚀 环 境
低温下干燥 的硫化氢对 金属材料没有 腐蚀破 坏作用 ,只有当硫化氢溶解 在水 中才可 能具有腐
蚀性 。硫 化 氢 为 二 元 酸 ,在 有 水 存 在 的 情 况 下 , 硫离 子可 引 起 碳 钢 和低 合 金 钢 的 均 匀 腐 蚀 ,而 氢
H2 S_ + H + HS’ HS一 _ + H +I C ) 。如果这样 的空隙靠近金
属表 面 ,则 表 现 为 氢 鼓 包 。当 金 属 表 面 存 在 微 观 缺 陷时 ,由于应 力 集 中 的 效 应 ,扩 散 氢 还 容 易 向 高应 力 区 迁 移 并 聚 集 ,在 与金 属 材 料 应 力 的交 互
氢腐蚀 的防护措施。
关键 词 硫化氢腐蚀 腐蚀机理 腐蚀形式 影响因素 防护措施
随着 我 国经 济 的 高 速 发 展 , 国 内对 石 油 能 源 的需求 也快 速 增 加 。 目前 进 口石 油 不 断 增 加 ,进 口原油 中很 大 部 分 是 高含 硫 原 油 。高 含 硫 原 油 造 成 硫化 氢 广 泛 存 在 于 炼 油 装 置 以及 后 续 加 工 系 统
硫化氢腐蚀机理及预防措施

二OO八年一月 OO八年一月
• 1.硫化氢的特性 硫化氢的特性
• 硫化氢的分子量为34.08,密度为1.539mg/m3。 而且是一种无色、有臭鸡蛋味、易燃、易爆、有 毒和腐蚀性的酸性气体。 • H2S在水中的溶解度很大,水溶液具有弱酸性, 如在1大气压下,30℃水溶液中H2S饱和浓度大约 是300mg/L,溶液的pH值约是4。
5.2 降低焊缝及热影响区的硬度,减少壳体及焊缝区 的残余应力,能有效防止应力腐蚀裂纹
降低焊缝区的硬度首先要从焊接开始,除了焊前预热外,应适当 加大储罐上环缝的焊接线能量,因为线能量增大,能放慢焊缝区 的冷却速度,不但能降低硬度,而且还能起到稳定金相组织的作 用。当然,适当加大横焊缝的线能量,要因钢板和焊条的性能而 异,还要有优秀焊工的配合,搞不好会出现过多的飞溅物和引起 “咬肉”现象增加,“咬肉”处出现的麻点坑是应力腐蚀裂纹的 重要起裂点之一,切不可马虎。近几年来对许多在H 重要起裂点之一,切不可马虎。近几年来对许多在H2S应力腐蚀 的储罐开罐检查,发现环焊缝附近(气相区) 的储罐开罐检查,发现环焊缝附近(气相区)出现的裂纹,多数是 由于输入线能量小,冷却速度快而引起硬度增加所至,同时,由 于该处壳壁吸附的水蒸汽凝聚成水珠,同H 于该处壳壁吸附的水蒸汽凝聚成水珠,同H2S气体进行电化学反 应,大量的氢存在,又加速了该部位裂纹的扩展。
第二、结构材料中(壳体及其焊缝、接管等) 第二、结构材料中(壳体及其焊缝、接管等)必须存在应力 第三、材料同腐蚀环境相互搭配,如湿H 第三、材料同腐蚀环境相互搭配,如湿H2S对高强度钢应力腐蚀。
• 3 H2S对储罐的应力腐蚀 • 早在20世纪50年代初,美国就开始研究H2S的应力腐蚀问题, 经过几十年的探索,美国腐蚀工程师协会(NACE)提出,液 化了的石油气,在有液相水的情况下,H2S的气相分压 >0.00035 MPa时,就存在H2S对设备的腐蚀和破坏的危险 性;日本于1962年开始研究,经过20多年的研究和实践, 在解决高强度钢的H2S应力腐蚀方面取得了一定的成功,并 HS 制订了《高强度钢使用标准》,该标准明确规定了不同程度 级别的钢种允许储存H2S浓度的限定值。我国在这方面的研 究也有了较大的进展,中国石化总公司为避免H2S对输送和 储存设备的应力腐蚀,对液化石油气中的H2S含量规定为10 ppm以下。根据我国目前的状况,油田轻烃中多数未经精制, H2S和水的含量普遍较高。近年来在许多储罐相继开罐检查 中发现的裂纹,其中有相当数量的裂纹属于H2S引起的应力 腐蚀裂纹。
硫化氢对钻具的腐蚀机理及防护的研究

3.2004陈利琼.介质中其他成分:H2S水溶液中 ,Cl-和O2对管子的SSCC敏感性影响较大。在一定范 围内,Cl-的存在将加快腐蚀速度;但Cl-浓度较高 时,腐蚀速度反而减缓。O2对SSCC也有很大的促进 作用。 4.2008刘伟、蒲晓林.管材暴露时间,在H2S溶液 中,碳钢初始腐蚀速率约为0.7mm/a。随着时间延 长,腐蚀速率逐渐下降,2000h后趋于平衡,约为 0.01mm/a
一.研究目的和意义
以上表明,由于含硫油气天在 开采、炼制和集输过程中极易发生 H2S应力腐蚀开裂,从而降低设备服 役寿命,造成巨大经济损失并且威 胁人身安全。 因此,研究含硫气田钻具腐蚀机 理与防护措施可为我国高含硫气田 开发提供指导和借鉴,对确保开发 安全可靠、降低开发成本、提升我 国在此类油气田开发的水平具有十 分重要的意义。
3. H2S对钻具腐蚀的防护措施研究
3.1.2国内外防护措施研究现状
国外
序 号
⑴
时间
1987
研究人员/单位
C.T.Wang等
研究成果
锆——钢双金属管,采用由高强度钢外壳和抗腐蚀 衬里组成的双金属管材。结合好,强度高;
⑵
⑶ ⑷ ⑸
1989
1993 1996 1998 2003
Fierro G
美国GrantPrideeo 公司 加拿大、美国和俄 罗斯联合研制 GrantPrideeo Chevron
材料的强度及碳当量、硫、磷含量越高,越容 易产生SSCC
制造出第一批抗H2S钻杆其最低屈服强度为665MPa, 配上标准API钻杆接头,可抵抗硫化物应力断裂; 开发出一系列抗硫钻杆。特点控制S、P含量,提高Cr, Mo含量,细化晶粒度, 降低硬度,提高夏比冲击功; 研制成功最低屈服强度为735MPa的xD一105钢级钻杆 和钻杆接头,现开发出第三代钻杆SL1—95钻杆;
硫化氢腐蚀原理与防护技术

6
硫化氢腐蚀原理与防护技术
7
金属晶体
金属晶体的内部结构
金属晶体中,结点上排 列的是金属原子。晶体中原 子在空间的排布,可近似看 成是等径圆球的堆积。为形 成稳定结构采取尽可能紧密 的堆积方式,所以金属一般 密度较大,配位数较大。
金属键
金属晶体中金属原子间的结合力,称为金 属键。特征:无饱和性,方向性。
灰口铸铁石墨化和黄铜脱锌。
6. 应力腐蚀开裂(SCC, 简称应力腐蚀):它是在 拉应力和特定的腐蚀介质共同作用下发生的金属材 料的破断现象。
7. 腐蚀疲劳:金属在腐蚀介质和交变应力共同作用 下引起的破坏为腐蚀疲劳。
8. 磨损腐蚀:指在磨损和腐蚀的综合作用下材料发 生的加速腐蚀破坏。有三种表现形式:摩振腐蚀、 湍流腐蚀和空泡腐蚀
4. 沿晶腐蚀:腐蚀沿着金属或合金的晶粒边界或其 它的邻近区域发展,晶粒本身腐蚀很轻微,这种腐 蚀便称为沿晶腐蚀,又叫作晶间腐蚀。
5. 选择性腐蚀:合金在腐蚀过程中,腐蚀介质不是 按合金的比例侵蚀,而是发生了其中某种成分的选 择性溶解,使合金的机械强度下降,这种腐蚀形态 称之为成分选择腐蚀,或称为选择性腐蚀。
硫化氢腐蚀原理与防护技术
一、分子、原子、金属结构基础知识
硫化氢腐蚀原理与防护技术
2
核 外 电 子 填 充 顺 序 图
硫化氢腐蚀原理与防护技术
3
元素周期律
原子核外电子排布的特点,特别是外层电子结构的变化:
第一周期 H He 外层电子数 1 2 第二周期 Li Ne 外层电子数 1 8 第三周期 Na Ar 外层电子数 1 8 第四周期 K Kr 外层电子数 1 8
B. 微观腐蚀电池
(1)金属化学成分的不均匀性 (2)组织结构的不均匀性 (3)金属表面膜的不完整性 (4)金属表面物理状态的不均匀性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硫化氢腐蚀机理和防护的研究现状及进展陈明;崔琦【摘要】在石油、天然气、煤化工及其他一些工业中广泛存在硫化氢腐蚀问题,硫化氢的存在不仅会造成全面腐蚀和局部腐蚀,而且还会导致硫化物应力腐蚀开裂(SSCC)和氢致开裂(HIC)等脆性断裂事故,一旦发生这种事故,往往会造成重大经济损失和灾难性后果,因此研究硫化氢的腐蚀机理、影响因素及防腐措施,无论对防止事故发生,还是对提高经济效益都有十分重要的意义.文章阐述了硫化氢的腐蚀机理,探讨了硫化氢腐蚀的影响因素,提出了防止硫化氢腐蚀的技术和工艺措施.【期刊名称】《石油工程建设》【年(卷),期】2010(036)005【总页数】5页(P1-5)【关键词】硫化氢腐蚀;腐蚀机理;影响因素;防腐技术【作者】陈明;崔琦【作者单位】西南石油大学,四川成都,610500;西南石油大学,四川成都,610500【正文语种】中文【中图分类】TE988.2在石油、天然气、煤化工及其他一些工业中广泛存在硫化氢腐蚀问题。
一般都认为金属材料在含硫化氢环境中可能出现三类腐蚀:硫化物应力开裂(SSCC)、氢致开裂(HIC)和电化学腐蚀,其中SSCC危害最大,可在一个月、几天、甚至更短的时间内引起金属材料在较低的工作应力下发生断裂。
且各种腐蚀形式相互促进,最终导致材料开裂并引发大量恶性事故。
弄清硫化氢的腐蚀机理、影响因素及防腐措施,无论对于抑制硫化氢腐蚀,防止事故发生,还是提高经济效益都有着十分重要的意义。
目前主要防腐蚀措施有以下5种:添加缓蚀剂、合理选择材质、使用涂镀层管材、阴极保护、防腐措施和设计,其中采用加注缓蚀剂的方法来抑制腐蚀是最经济也是最简便的方法。
H2S是弱酸,在水溶液中会电离出H+、HS-和S2-,它们对金属的腐蚀是氢去极化过程。
在溶液中H2S首先吸附在铁表面,铁经过一系列阴离子的吸附和脱附、阳极氧化反应、水解等过程生成铁离子或者硫化铁[1]:在弱酸溶液中,铁的阳极电化学反应产生的FeH也可能脱附H+直接转变为FeS[2]。
当生成的FeS致密且与基体结合良好时,对腐蚀有一定的减缓作用。
但当生成的FeS不致密时,可与金属基体形成电位差为0.2~0.4 V的强电偶[3],反而促进基体金属的腐蚀。
另外,当溶液中或金属基体表面有硫化物存在时,硫化物在一定程度上阻止了氢原子向氢分子的转变,这些氢原子在钢材表面层的缺陷部位结合成氢分子并聚集膨胀,产生氢压,在钢材的服役拉力叠加、协同作用下,就导致SSCC。
由于溶液中同时存在HS-、H+、S2-和H2S,因此对于哪种离子发生还原反应,存在不同的观点,第一种观点[4]认为,在H2S环境中只有H2S发生还原反应,该反应同时受到硫化氢扩散步骤控制和电化学极化控制;第二种观点[5]却认为HS-、H+和H2S都有可能参与阴极还原反应;第三种观点认为只有氢离子参与阴极反应,且按照两种途径反应,一种是在硫化物外表面上氢离子直接参与阴极反应[6],另一种是在H2S的桥梁作用下氢离子间接与阴极反应:根据以上对含H2S环境中阳极和阴极反应机理的研究,可知目前对于电化学反应步骤、最终腐蚀产物、何种物质参与电化学反应存在极大的争议,另外由于氧、pH等环境因素[7-8]的影响,增加了研究阴阳极腐蚀机理的难度。
在H2S环境中,由于HS-或其他毒性物质(如氰化物或氢氟酸)的存在,降低了阴极反应产生氢原子并转化为氢气的速度,因此一部分氢原子扩散进入钢基体内。
氢原子扩散过程中,当遇到氢陷阱(如在晶界或相界上缺陷、位错、三轴拉伸应力区等)时,氢原子就停留在此处,随着扩散到达氢陷阱处的氢原子增多,重新结合为氢气,因此在陷阱处形成很高氢压力;随着氢陷阱处的压力增加,在氢陷阱边缘处形成应力密度集中区,导致界面之间破裂并形成裂缝。
当裂缝边缘应力强度因子超过钢的临界应力强度时,裂缝生长,裂纹的体积增加,裂缝处压力降低,强度也降低。
经过一定时间后,随着扩散到达氢陷阱处的氢原子增多,裂缝压力又会升高,导致新一轮裂纹扩展[9]。
影响H2S应力腐蚀开裂的因素有很多,主要包括以下几方面:随着H2S浓度的增加,硫化物破裂的临界应力降低;较高的硫化氢浓度或分压,会产生较大的均匀腐蚀速率。
李鹤林等人的研究[10]表明,H2S含量较低和较高时,钢的腐蚀速率均较低;随着H2S含量的增加,钢呈现出明显的局部腐蚀特征,同时腐蚀倾向与腐蚀形态间也表现出一定的相关性。
H2S浓度对腐蚀产物FeS膜也有影响。
有研究资料[11]表明,H2S质量浓度为2.0 mg/L时,腐蚀产物为FeS2和FeS;H2S质量浓度为2.0~20 mg/L时,腐蚀产物除FeS2和FeS外,还有少量的S生成;H2S质量浓度为20~600 mg/L时,腐蚀产物中S的含量最高。
上述腐蚀产物中,Fe9S8的保护性能最差。
pH=6是一个临界值,一般认为,pH≤6时,硫化物应力腐蚀严重,在6<pH≤9时,硫化物应力腐蚀敏感性开始显著下降,但达到断裂的时间仍然很短,pH>9时就很少发生硫化物应力腐蚀破坏[12]。
pH值与硫类型和浓度密切相关,而不同的硫类型可腐蚀形成不同的硫化铁腐蚀产物。
在pH值为酸性时,主要类型为H2S,生成的是以含硫量不足的硫化铁(如Fe9S8)为主的无保护性的产物膜,从而加剧钢材的腐蚀;当pH值为碱性时,S2-为主要成分,生成的是以FeS2为主的具有一定保护效果的膜[13];HS-是pH值为中性时的主要成分。
在H2S溶液中,不同离子对渗氢作用的次序为:H2S>HS->S2-。
Dugstad等人[14]则认为pH值影响腐蚀速率存在着不同的机理。
介质温度升高,均匀腐蚀速率升高,HB、HIC和SOHIC(应力导向的氢致开裂)的敏感性也增加,但SSCC的敏感性下降。
SSCC发生在常温下的几率最大,而在65℃以上则较少发生[15-17]。
有学者[18]认为,无水H2S在250℃以下腐蚀性较弱;在室温下的湿H2S气体中,钢铁表面生成的是无保护性的Fe9S8。
在100℃含水蒸气的H2S中,生成的也是无保护性的S和少量FeS。
在饱和H2S水溶液中,碳钢在50℃下生成的是无保护性的Fe9S8和少量FeS;当温度升高到100~150℃时,生成的是保护性较好的FeS2。
一方面,温度升高使H2S气体在水中的溶解度下降的同时,又使腐蚀速度加快,就会出现一个敏感性最大的温度。
另一方面,氢致开裂需要氢的扩散,在应变速率相同时,温度愈高,扩散愈快,但升温又降低了H2S的溶解度,因而也会出现敏感性最大的温度[19-20]。
在H2S溶液中,碳钢的初始腐蚀速率约为0.7 mm/a。
随着时间延长,腐蚀速率逐渐下降,2 000 h后趋于平衡,约为0.01 mm/a[11]。
我国的大部分油气田,当含H2S的气体流速高于10 m/s时缓蚀剂就不再起作用。
因此气体流速较高,腐蚀速率往往也较高。
如果腐蚀介质中有固体颗粒,则在较高气体流速下加剧冲刷腐蚀,因而必须控制气体流速的上限;但是,如果气体流速低,也可造成设备底部积液而发生水线腐蚀、垢下腐蚀等[15]。
郑玉贵[21]等认为流速不仅可以破坏表面腐蚀产物膜的形成,而且可以加速腐蚀介质向钢材表面的扩散,随流速的增加,腐蚀介质到达管体表面的速度增加,腐蚀产物离开表面的速度增加,因而使腐蚀加快。
当流速增加到促使流体达到湍流状态,并对金属产生很高的切应力时,可剥除金属表面的保护膜,因而使腐蚀速率提高。
但流速过低易导致点蚀等局部腐蚀速率的增加。
现场实践也表明,流速对钢的H2S腐蚀影响是非常重要的因素,因此在产能设计中要考虑流速冲刷腐蚀。
除了以上影响因素以外,H2S的腐蚀还受到其他腐蚀介质(如氯离子和氢氰根离子)、材料的硬度及焊后热处理、管道元件的表面质量、材料的强度及碳当量、材料的硫和磷含量等因素的影响[22]。
在石油、天然气、煤化工及其他一些工业中广泛存在H2S腐蚀问题。
金属材料遭受H2S腐蚀时,可产生均匀腐蚀(UC)、点蚀(PC)、氢鼓泡(HB)、氢致开裂(HIC)、应力导向的氢致开裂(SOHIC)、氢脆(HE)、硫化物应力腐蚀开裂(SSCC)及氢诱发阶梯裂纹(HISC)等,且各种腐蚀形式相互促进,最终导致材料开裂并引发大量恶性事故。
为了最大程度地抑制H2S腐蚀,减少事故的发生,必须采取适当措施来控制H2S腐蚀。
控制H2S腐蚀主要有以下途径:采用缓蚀剂防腐主要是利用缓蚀剂的防腐作用来达到减缓钢材腐蚀的目的。
通常情况下,中性介质中多使用无机缓蚀剂,以钝化型和沉淀型为主;酸性介质使用的缓蚀剂大多为有机物,以吸附型为主。
但现在的复配缓蚀剂根据需要在用于中性介质的缓蚀剂中也使用有机物,而在用于酸性水介质的缓蚀剂中也添加无机盐类。
不同金属的原子外层电子排布、电位序列、化学性质等有所不同,它们在不同介质中的吸附和成膜特性也不相同[23]。
3.2.1根据材料化学成分选择材质钢中影响H2S腐蚀的主要化学元素是锰和硫,锰元素在设备焊接过程中,产生马氏体、贝氏体高强度及低韧性的显微金相组织,表现出极高硬度,这对设备抗SSCC极为不利;硫元素则在钢中形成MnS、FeS非金属夹杂物,致使局部显微组织疏松,在湿H2S环境下诱发HIC或SOHIC。
为提高钢的抗湿H2S性能,法国压力容器标准CODAP-90的附录MA3中提出以下建议:(1)减少夹杂物,限制钢中硫含量,使其不超过0.002%,如果能不超过0.001%则更好。
(2)限制钢中的氧含量,使其不超过0.002%。
(3)限制钢中的磷含量,尽量使其不超过0.008%。
(4)限制钢中的镍含量。
(5)在满足钢板的力学性能条件下,应尽可能降低钢的碳含量[24]。
3.2.2根据硫化氢分压选择材质任何钢种均随着H2S分压的升高,临界应力下降。
钢强度越高,临界应力越低。
据此,在已知H2S分压的条件下,选择临界应力能满足施工要求的钢材。
3.2.3根据美国腐蚀协会标准选择材质美国腐蚀协会(NACE)标准MR-01-95中规定:防止硫化物应力腐蚀开裂(SSCC)时应采用硬度低于洛氏硬度HRC22的普通钢(镍含量小于1%)或者HRC 26以下的回火处理的铬钼钢。
3.2.4根据温度选择材质根据气井的温度可以选择满足测试施工需要的钢材。
在低温区应采用硫化物应力腐蚀敏感性低的低强度钢(洛氏硬度低于22)或者耐硫化物应力腐蚀钢(铬钼系列合金钢);温度越高选材范围越广。
在选择管柱材质时,切忌不要按高温区选择一种材质,按低温区又选择另一种材质,应按低温区考虑选择同一种材质[25]。
涂镀层油管主要是靠镀层来隔绝油管与腐蚀介质的接触进行防腐的,其防腐效果与涂层或镀层材料及工艺技术水平有关。
凡是与电解质溶液接触而产生腐蚀的设备都可以用阴极保护法来提高其抗腐蚀能力[26]。