51单片机最小系统及元件

合集下载

51单片机最小系统设计

51单片机最小系统设计

51单片机最小系统设计单片机是一种集成电路,具备处理器、内存和输入输出设备等功能。

51单片机是一种常见的单片机,广泛应用于各种嵌入式系统中。

本文将介绍51单片机最小系统的设计过程。

一、概述51单片机最小系统由四个基本部分组成:单片机、晶振、复位电路和电源。

单片机是系统的核心,晶振提供时钟信号,复位电路保证系统的可靠复位,电源为系统提供电能。

二、单片机选型在进行最小系统设计前,需要选择合适的51单片机型号。

根据具体的应用需求和性能要求,选择合适的芯片型号。

常见的51单片机型号有AT89S52、STC89C52等。

三、晶振选型晶振的作用是产生稳定的时钟信号,为单片机提供时钟脉冲。

选择晶振时,应考虑系统所需的主频和稳定性要求。

常见的晶振频率有11.0592MHz、12MHz等。

四、复位电路设计复位电路用于保证系统在上电或其他异常情况下的可靠复位。

常见的复位电路设计包括电源复位电路和外部复位电路。

电源复位电路通过电源控制芯片实现,外部复位电路通常由稳压芯片和复位电路芯片组成。

五、电源设计为了保证单片机系统的正常运行,需要提供稳定的电源电压。

常见的电源设计方案有稳压电路和滤波电路。

稳压电路通过稳压芯片实现,滤波电路通过电容和电感组成。

六、最小系统连接在进行最小系统连接时,需要按照51单片机的管脚连接要求进行。

一般包括连接晶振、连接复位电路和连接电源等步骤。

在连接过程中,应注意线路的布局和连接的牢固性。

七、编程与调试当最小系统连接完成后,需要进行单片机的编程和调试。

编程可以通过编程器进行,调试可以通过示波器等工具进行。

在调试过程中,需要注意程序的正确性和系统的稳定性。

八、应用案例最小系统设计完成后,可以用于各种嵌入式系统。

例如,可以用于温度控制系统、电子秤系统、自动化设备等。

根据具体应用需求,可以进行系统功能的扩展和改进。

总结本文介绍了51单片机最小系统的设计过程。

通过正确选型、合理设计和精心调试,可以实现一个稳定可靠的最小系统。

51最小系统设计

51最小系统设计

单片机最小系统设计制作1、单片机最小系统电路板硬件设计单品机最小系统电路板选用的是DIP-40封装的单片机STC89C51作为MCU。

系统包括时钟电路,复位电路和下载电路,如图1所示。

图1 单片机最小系统原理框图1.1时钟电路STC89C51单片机内部有一个用于构成振荡器的高增益反向放大器,它的输入端为芯片引脚XTAL1,输出端为引脚XTAL2。

这两个引脚跨接石英晶体振荡器和微调电容,构成一个稳定的自激振荡器,使得单片机能够以此作为时钟控制信号,从而有条不紊的进行工作。

如电路原理图2所示在引脚XTAL1和XTAL2跨接晶振Y1和微调电容C1和C6。

电容一般选择30pf左右,电容的大小会影响振荡器频率的高低,稳定性和速度。

晶振的频率一般在1.2 MHz至12MHz之间,通常选取6MHz或12MHz。

图2 时钟电路1.2复位电路复位电路一般有两种方式,最简单的为上电自动复位。

由于只要给复位引脚RST 加上大于2个机器周期的的高电平就能使单片机复位,因此在RST端加上一个电容和电阻用来充放电就可实现,如图3所示。

本系统采用的是另一种方式,即手动复位方式。

按键没按下时RST端通过电阻接地为低电平,单片机正常工作,若按键按下RST端接高电平就实现复位,更加方便,如图4所示。

图3 上电自动复位电路图4 手动复位电路1.3下载电路图5 下载电路下载电路中所用的MAX232芯片是美信公司专门为电脑的RS-232标准串口设计的单电源电平转换芯片,使用+5v单电源供电。

在传送方面,MAX232内部将+5V电源提升为+10及-10V,然后接收单片机的+5V电平,转换成10V的信号,再传送给PC机。

在接收方面,MAX232从PC上接收+10V的信号,经过内部寄存器,转换成单片机所需的+5V电平。

简单的说,MAX232不过是个电平转换装置而已,使得信号在不同处理器之间互通。

如图5所示,只要在MAX232上接4个10u左右的电容和一个串口头就可以用来下载程序了。

51单片机最小系统原理图

51单片机最小系统原理图

51单片机最小系统原理图51单片机最小系统原理图的功能详解单片机的最小系统是由组成单片机系统必需的一些元件构成的,除了单片机之外,还需要包括电源供电电路、时钟电路、复位电路。

单片机最小系统下面着重介绍时钟电路和复位电路。

1)时钟电路单片机工作时,从取指令到译码再进行微操作,必须在时钟信号控制下才能有序地进行,时钟电路就是为单片机工作提供基本时钟的。

单片机的时钟信号通常有两种产生方式:内部时钟方式和外部时钟方式。

内部时钟方式的原理电路如图所示。

在单片机XTAL1和XTAL2引脚上跨接上一个晶振和两个稳频电容,可以与单片机片内的电路构成一个稳定的自激振荡器。

晶振的取值范围一般为0~24MHz,常用的晶振频率有6MHz、12 MHz、11.0592 MHz、24 MHz等。

一些新型的单片机还可以选择更高的频率。

外接电容的作用是对振荡器进行频率微调,使振荡信号频率与晶振频率一致,同时起到稳定频率的作用,一般选用20~30pF的瓷片电容。

外部时钟方式则是在单片机XTAL1引脚上外接一个稳定的时钟信号源,它一般适用于多片单片机同时工作的情况,使用同一时钟信号可以保证单片机的工作同步。

时序是单片机在执行指令时CPU发出的控制信号在时间上的先后顺序。

AT89C51单片机的时序概念有4个,可用定时单位来说明,包括振荡周期、时钟周期、机器周期和指令周期。

振荡周期:是片内振荡电路或片外为单片机提供的脉冲信号的周期。

时序中1个振荡周期定义为1个节拍,用P表示。

时钟周期:振荡脉冲送入内部时钟电路,由时钟电路对其二分频后输出的时钟脉冲周期称为时钟周期。

时钟周期为振荡周期的2倍。

时序中1个时钟周期定义为1个状态,用S表示。

每个状态包括2个节拍,用P1、P2表示。

机器周期:机器周期是单片机完成一个基本操作所需要的时间。

一条指令的执行需要一个或几个机器周期。

一个机器周期固定的由6个状态S1~S6组成。

指令周期:执行一条指令所需要的时间称为指令周期。

51单片机最小设计系统与电源电路

51单片机最小设计系统与电源电路

单片机最小系统介绍单片机最小系统主要由电源、复位、振荡电路以及扩展部分等部分组成。

最小系统原理图如图4.1所示。

图4.1最小系统电路图电源供电模块图4.1.1 电源模块电路图对于一个完整的电子设计来讲,首要问题就是为整个系统提供电源供电模块,电源模块的稳定可靠是系统平稳运行的前提和基础。

51单片机虽然使用时间最早、应用范围最广,但是在实际使用过程中,一个和典型的问题就是相比其他系列的单片机,51单片机更容易受到干扰而出现程序跑飞的现象,克服这种现象出现的一个重要手段就是为单片机系统配置一个稳定可靠的电源供电模块。

复位电路图4.1.2 复位电路图单片机的置位和复位,都是为了把电路初始化到一个确定的状态,一般来说,单片机复位电路作用是把一个例如状态机初始化到空状态,而在单片机内部,复位的时候单片机是把一些寄存器以及存储设备装入厂商预设的一个值。

单片机复位电路原理是在单片机的复位引脚RST上外接电阻和电容,实现上电复位。

当复位电平持续两个机器周期以上时复位有效。

复位电平的持续时间必须大于单片机的两个机器周期。

具体数值可以由RC电路计算出时间常数。

复位电路由按键复位和上电复位两部分组成。

(1)上电复位:STC89系列单片及为高电平复位,通常在复位引脚RST上连接一个电容到VCC,再连接一个电阻到GND,由此形成一个RC充放电回路保证单片机在上电时RST脚上有足够时间的高电平进行复位,随后回归到低电平进入正常工作状态,这个电阻和电容的典型值为10K和10uF。

(2)按键复位:按键复位就是在复位电容上并联一个开关,当开关按下时电容被放电、RST也被拉到高电平,而且由于电容的充电,会保持一段时间的高电平来使单片机复位。

单片机系统里都有晶振,在单片机系统里晶振作用非常大,全程叫晶体振荡器,他结合单片机内部电路产生单片机所需的时钟频率,单片机晶振提供的时钟频率越高,那么单片机运行速度就越快,单片接的一切指令的执行都是建立在单片机晶振提供的时钟频率。

51单片机计算机加原理图,MCS-51单片机最小系统的组成部分及电路图介绍

51单片机计算机加原理图,MCS-51单片机最小系统的组成部分及电路图介绍

51单⽚机计算机加原理图,MCS-51单⽚机最⼩系统的组成部分及电路图介绍MCS-51单⽚机概述MCS-51单⽚机是⼀种集成的电路芯⽚,是采⽤超⼤规模集成电路技术把具有数据处理能⼒的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O⼝和中断系统、定时器/计时器等功能(可能还包括显⽰驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到⼀块硅⽚上构成的⼀个⼩⽽完善的计算机系统。

51系列单⽚机的特点-8位cpu-⽚内带振荡器,频率范围为1.2MHz~12MHz-⽚内带128B的数据存储器-⽚内带4KB的程序存储器-程序存储器的寻址空间为64KB-⽚外数据存储器的寻址空间为64KB-128个⽤户位寻址空间-21个字节特殊功能寄存器-4个8位的I/O并⾏接⼝:P0、P1、P2、P3-两个16位定时、计数器-两个优先级别的五个中断源-⼀个全双⼯的串⾏I/O接⼝,可多机通信-111条指令,包含乘法指令和除法指令-⽚内采⽤单总线结构-有较强的位处理能⼒-采⽤单⼀+5V电源单⽚机的应⽤分类通⽤型这是按单⽚机(Microcontrollers)适⽤范围来区分的。

例如,80C51式通⽤型单⽚机,它不是为某种专门⽤途设计的;专⽤型单⽚机是针对⼀类产品甚⾄某⼀个产品设计⽣产的,例如为了满⾜电⼦体温计的要求,在⽚内集成ADC接⼝等功能的温度测量控制电路。

总线型这是按单⽚机(Microcontrollers)是否提供并⾏总线来区分的。

总线型单⽚机普遍设置有并⾏地址总线、 数据总线、控制总线,这些引脚⽤以扩展并⾏外围器件都可通过串⾏⼝与单⽚机连接,另外,许多单⽚机已把所需要的外围器件及外设接⼝集成⼀⽚内,因此在许多情况下可以不要并⾏扩展总线,⼤⼤减省封装成本和芯⽚体积,这类单⽚机称为⾮总线型单⽚机。

控制型这是按照单⽚机(Microcontrollers)⼤致应⽤的领域进⾏区分的。

⼀般⽽⾔,⼯控型寻址范围⼤,运算能⼒强;⽤于家电的单⽚机多为专⽤型,通常是⼩封装、低价格,外围器件和外设接⼝集成度⾼。

51单片机最小系统讲解及应用

51单片机最小系统讲解及应用

51单片机最小系统单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统.对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路.下面给出一个51单片机的最小系统电路图.说明复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定.典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般教科书推荐C 取10u,R取8.2K.当然也有其他取法的,原则就是要让RC组合可以在RST脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可以参考电路分析相关书籍.晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作)单片机:一片AT89S51/52或其他51系列兼容单片机特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.这一点是初学者容易忽略的.因此可以看出,其实要熟悉51单片机的40个引脚功能也很容易:总共40个脚,电源用2个(Vcc和GND),晶振用2个,复位1个,EA/Vpp用1个,剩下还有34个.29脚PSEN,30脚ALE为外扩数据/程序存储器时才有特定用处,一般情况下不用考虑,这样,就只剩下32个引脚,对于初学者,这32个引脚就是要经常跟它们打交道的了.它们是:P0端口P0.0~P0.7共8个P1端口P1.0~P1.7共8个P2端口P02.0~P2.7共8个P3端口P3.0~P3.7共8个使得单片机工作的最小电路80C51为例首先,我们在使用protel和proteus的软件画电路图时,你会发现原先40个引脚的芯片变成了38个引脚,那是因为它把第40和第20个引脚VCC和GND隐藏了,所以要是的单片机开始工作至少需要一个VCC(电源)和GND(接地)。

51系列单片机最小系统

51系列单片机最小系统

51系列单片机最小系统设计与调试实验实验指导书51系列单片机最小系统设计与调试一、实验目的1. 了解单片机的基本工作原理2. 学习并掌握相关软件的使用方法(Protel、keil)2. 掌握单片机片内程序存储器下载方法3. 掌握单片机程序设计(汇编及C51)二、原理1. 什么是单片机最小系统单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统.对51系列单片机来说,单片机+晶振电路+复位电路,便组成了一个最小系统.但是一般我们在设计中总是喜欢把按键输入、显示输出等加到上述电路中,成为小系统。

2. AT89C51高性能8位单片机功能AT89C51提供以下标准功能:8K字节Falsh闪速存储器,256字节内部RAM,32个I/O口线,3个16位定时/计数器,一个6向量两级中断结构,一个全双工串行通信口,片内震荡器及时钟电路,同时AT89C51可降至0HZ的静态逻辑操作,并支持两种软件可选的节电工作模式。

空闲方式停止CPU的工作,但允许RAM,时/计数器,串行通信口及中断系统持续工作。

掉电方式保存RAM中的内容,但震荡器停止工作并禁止其他所有部件工作直到下一个硬件复位。

3. AT89C51高性能8位单片机资料请参考相关书籍三、实训任务.(1)认识MCS-51的ROM及片外RAM空间:认识51系列单片机的程序存储器(ROM)的空间范围;汇编指令编码在ROM中存储形式;掌握指令编码和指令编码所在地址的概念;了解51系列单片机的程序存储器(ROM)固定地址的用途。

认识51系列单片机的片外数据存储器(片外RAM)的地址空间范围;了解51系列单片机的片外数据存储器的用途;重点掌握片内片外访问存储器的指令。

(2)认识MCS-51片内RAM空间:认识51系列单片机片内随机存储器(片内RAM)的空间范围;认识51系列单片机片内随机存储器的区域划分;掌握字节地址和位地址的概念;了解R0~R7寄存器与字节地址的关系。

51单片机最小系统

51单片机最小系统

原理图11.51单片机最小系统复位电路的极性电容C1的大小直接影响单片机的复位时间,一般采用10~30uF,51单片机最小系统容值越大需要的复位时间越短。

2.51单片机最小系统晶振Y1也可以采用6MHz或者11.0592MHz,在正常工作的情况下可以采用更高频率的晶振,51单片机最小系统晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。

3.51单片机最小系统起振电容C2、C3一般采用15~33pF,并且电容离晶振越近越好,晶振离单片机越近越好4.P0口为开漏输出,作为输出口时需加上拉电阻,阻值一般为10k。

设置为定时器模式时,加1计数器是对内部机器周期计数(1个机器周期等于12个振荡周期,即计数频率为晶振频率的1/12)。

计数值N乘以机器周期Tcy就是定时时间t。

设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。

在每个机器周期的S5P2期间采样T0、T1引脚电平。

当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1,更新的计数值在下一个机器周期的S3P1期间装入计数器。

由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。

当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2 ms。

标识符号地址寄存器名称P3 0B0H I/O口3寄存器PCON 87H 电源控制及波特率选择寄存器SCON 98H 串行口控制寄存器SBUF 99H 串行数据缓冲寄存器TCON 88H 定时控制寄存器TMOD 89H 定时器方式选择寄存器TL0 8AH 定时器0低8位TH0 8CH 定时器0高8位TL1 8BH 定时器1低8位TH1 8DH 定时器1高8位原理图2所需材料:1:万用板1块 2:STC89C52单片机1个3:测试IC插座1个 4:电容:10uF 1个30PF 2个5:电阻:10K 1个 6: 晶振:12MHz(一般都用11.0592MHz1个7:导线若干8:排针:标准间距(一般是40P每排)24针9:按键开关(“小清除”)1个 10:USB母头(供电用、建议有)1个11:焊锡,导线 12:Max232焊接原理下载器原理图1个330uF/25V的电解电容三端稳压器LM7805三端稳压器后面接一个105的电容,这个电容有滤波和阻尼作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

51单片机最小系统及元件
1. 前言
51单片机是一款非常常见的单片机,广泛应用于嵌入式系统和智能控制领域。

在这个领域,最小系统是最基本的硬件。

本文将介绍51单片机最小系统以及必要
的元件。

2. 51单片机最小系统
51单片机最小系统是由单片机、晶振、电源和复位电路组成的。

其中,单片
机是控制中心,晶振为单片机提供时钟信号,电源为完成单片机运算提供电能,而复位电路则保证单片机正常工作。

2.1 单片机
51单片机一般使用的是AT89C51型号,别名为P89V51RD2。

它由8位CPU、ROM、RAM、I/O端口、计时器/计数器、串口和中断控制器等功能模块组成。

具体的,AT89C51单片机主要参数如下:
参数描述
CPU 8051指令集兼容的8位CPU,占据纯CPU面积的75%
ROM 可重写/擦除1K~64K字节
RAM 128~256字节
I/O端口4个8位I/O端口,可映射到外部I/O空间
计时器/计数器两个16位计时器,一个8位计时器/计数器
串口一个全双工/半双工可编程串口
中断控制器5个中断源,2个优先级
2.2 晶振
晶振是单片机最小系统中的另一个关键元件。

它为单片机提供时钟信号,控制
单片机的运行。

在51单片机最小系统中,一般使用的是12MHz的晶振。

2.3 电源
为单片机提供电能,一般使用的是7805型稳压电源。

在电路中配合一个电容,电容的充放电作用可以过滤电源噪声,提高电源稳定性。

2.4 复位电路
复位电路起到保持单片机在一个已知状态的作用,保证程序的正常运行。


51单片机最小系统中,均采用外部复位电路。

3. 元件
使用51单片机最小系统还要添加其他必要元件,以满足特定的功能要求。


里我们列出一些可能会用到的常用元件。

3.1 LED
LED为发光二极管,它是电子元器件的一种。

当施加电压时,LED会发出光信号。

通过选择不同颜色的LED来指示系统状态。

3.2 按钮开关
按钮开关一般被用来实现系统的输入。

我们可以通过按下按钮来改变系统状态,使单片机进入不同的工作模式。

3.3 蜂鸣器
蜂鸣器是声音发生器。

它可以通过单片机的I/O口发出控制信号,实现报警和
提示等功能。

3.4 电容
电容主要用于对噪声信号的过滤,可以减小电路干扰。

3.5 电阻
电阻可以调节电路的电流和电压,是电子元器件中最基础的元件之一。

4.
本文介绍了51单片机最小系统及必要元件。

一个好的最小系统设计可以为后
续的硬件和软件工作奠定基础,因此非常重要。

当然,在使用单片机的过程中,还要注重对产品设计的细节,从而为整个产品的开发、测试、调试和推广等步骤提供更好的服务。

相关文档
最新文档