最新51单片机最小系统电路

合集下载

51单片机最小系统

51单片机最小系统

51单⽚机最⼩系统
电路原理图:
最⼩系统组成:
单⽚机、复位电路、晶振(时钟)电路、电源
最⼩系统所⽤到的引脚:
1、主电源引脚
VCC:电源输⼊,接5v电源,第40根引脚
GND:接地线,第20根引脚
2、外接晶振引脚(两根)⼀般晶振⽆⽅向
XTAL1:⽚内电路的晶振输⼊端
XTAL2:⽚内电路的晶振输出端
电容的作⽤:过滤掉晶振部分的⾼频信号,让晶振⼯作更加稳定
3、复位引脚
RST:复位引脚(⾼电平复位) T = RC
刚上电时,引脚为⾼电平(不少于两个时钟周期),单⽚机⾃动复位,从零开始执⾏程序。

1个状态周期 = 2 个震荡周期;1个机器周期= 6个状态周期;1-4个机器周期 = 1个指令周期 震荡周期 = 1/fosc = 1/12MHZ = 0.0833us
4、其它功能
EA:存储器选择引脚,接5v时选内部存储器,低电平选择外部存储器
MCS-51系列单⽚机⽚内RAM共有128字节,地址范围为00H~7FH
ROM 4K字节,地址范围0-0FFFH。

51单片机最小系统-(最新版)

51单片机最小系统-(最新版)

单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统.对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路.下面给出一个51单片机的最小系统电路图.说明复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定.典型的5 1单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般教科书推荐 C 取10u,R取.当然也有其他取法的,原则就是要让RC组合可以在RST脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可以参考电路分析相关书籍.晶振电路:典型的晶振取(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作)单片机:一片AT89S51/52或其他51系列兼容单片机特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.这一点是初学者容易忽略的.复位电路:一、复位电路的用途单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。

单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。

单片机复位电路如下图:二、复位电路的工作原理在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢?在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。

所以可以通过按键的断开和闭合在运行的系统中控制其复位。

开机的时候为什么为复位在电路图中,电容的的大小是10uF,电阻的大小是10k。

51单片机最小系统原理及编程电路设计

51单片机最小系统原理及编程电路设计

51单片机最小系统原理及编程电路设计本课以AT89S51单片机最小系统来教你如何实现单片机编程,该程序驱动单片机P1.7端口上的发光二极管不停闪烁,系统程序用keil 汇编语言编写,电路参考下图1所示。

间SETB P1.7 ;P1.7输出高电平"1",熄灭发光二极管ACALL DELAY ;调用延时子程序延时一段时间,让发光二极管熄灭一段时间AJMP MAIN ;跳转到程序开头重复执行;******** 下面是延时子程序 ********DELAY: MOV R7,#255Y1: MOV R6,#255DJNZ R6,$DJNZ R7,Y1RET ;延时子程序返回END ;程序结束启动“Keil uVision2”单片机集成开发环境,如没有请再这里下载 keil下载建立一个新工程,输入上面的源程序,最后编译得到一个lich1.hex目标文件,用编程器把lich1. hex写入单片机AT89S51中,插到实验板上就可以看到第一个程序的运行效果了(P1.7端口的发光二极管不停闪烁)。

这就是我们学习的第一个最简单的程序,是一个完整的单片机开发过程,再复杂庞大的程序都是由简单的语句、程序构成的,希望该教程能给初学者对单片机开发有一个感性的认识。

不懂如何在Keil中编辑源程序的初学者请看 keil教程图4:ISP编程器将产生的目标程序lich1.hex写入AT89S51单片机图5:单片机插入实验板上程序的运行效果单片机的学习是一个循序渐进的过程,制作单片机最小系统,并彻底了解其原理,能把你快速带入单片机世界的大门,这只是一个最简单的制作,有什么问题请联系我。

可以提供相关资料,我们共同学习。

本人邮箱,uk383246980@。

C51最小系统的电路原理

C51最小系统的电路原理

C51单片机最小系统的电路原理与制作——吴越1 C51单片机最小系统电路图及电路原理单片机最小系统,是指用最少的元件组成并可工作的单片机系统,相关的资料网上或书店都很多。

图1为一个常见的单片机最小系统电路图。

C51最小系统电路由复位电路、时钟电路组成。

另外还需要DC+5V的电源最小系统才能工作。

(1)复位电路:复位电路在单片机系统中很关键,当程序运行不正常或死机时,就需要进行复位,一般有两种复位方式。

①上电复位:由电容C3和电阻R1串联组成,系统一通电,RST脚(9脚)为高电平,这个高电平持续的时间由电路的RC值来决定。

典型的C51单片机当RST脚的高电平持续两个机器周期以上就将复位,适当组合RC的取值就可以保证可靠的复位。

一般C3取10μF、R1取10K。

也有不同取值的,原则是RC组合要在RST脚上产生2个机器周期以上的高电平。

②手动复位:由电阻R2和开关S组成,R2取值没有严格的要求,一般能把复位脚的电压下拉至0.5V以下即可,可以把R2理解为缓冲电阻或与C3、R1组成防抖动电路,也有不用R2的。

单片机通电启动后,电容C3两端的电压持续充电约为5V,此时电阻R1两端的电压接近于0V,RST脚为低电平,系统进入正常工作状态。

当按下开关S时,开关导通,电容被短路,电容释放之存储的电量。

电容两端的电压从5V降到约等于0V,电阻R1两端的电压上升到约等于5V,RST脚为高电平,系统进入复位状态。

(2)时钟电路:时钟电路由晶振CY和C1、C2组成,一般晶振的取值1.2MHz~24MHz。

典型的晶振取11.0592MHz或12MHz,11.0592MHz适用于串口通讯,12MHz适用于定时控制,C1、C2一般取15pF~50pF。

如果要自己设计单片机系统的PCB板,注意,C1、C2要紧靠晶振CY,并且晶振CY和C1、C2要紧靠C51芯片,以保证振荡器可靠的工作。

系统通电后可以检测一下晶振是否起振。

若起振,可以用示波器观察到XTAL2会输出很漂亮的正弦波波型,也可以用万用表测量(用直流档)XTAL2和地之间的电压,可以看到有2V左右的电压(有效电压值)。

51单片机最小系统

51单片机最小系统

单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统.对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路.下面给出一个51单片机的最小系统电路图.说明复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定.典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般教科书推荐C 取10u,R取.当然也有其他取法的,原则就是要让RC组合可以在RST脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可以参考电路分析相关书籍.晶振电路:典型的晶振取(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作)单片机:一片AT89S51/52或其他51系列兼容单片机特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.这一点是初学者容易忽略的.?复位电路:一、复位电路的用途单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。

单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。

单片机复位电路如下图:二、复位电路的工作原理在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢?在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。

所以可以通过按键的断开和闭合在运行的系统中控制其复位。

开机的时候为什么为复位在电路图中,电容的的大小是10uF,电阻的大小是10k。

51单片机最小系统电路板的设计

51单片机最小系统电路板的设计

51单片机最小系统电路板的设计51单片机是常用的单片机之一,它具有速度快、功能强大、成本低廉等优点,被广泛应用于各种电子设备中。

为了使51单片机能够正常工作,我们需要设计一个最小系统电路板,下面就是其设计内容。

1.硬件设计1.1 电源部分51单片机的供电电压范围为2.7V~5.5V,一般使用稳压电源供电,以保证稳定、可靠的工作。

电源电路主要由稳压电路和滤波电路组成。

稳压电路通常选择7805稳压器,它能将输入的直流电压稳定在5V,并且输出电路中需要连接两个电容,一个是输入电容,一个是输出电容,以保证电路的稳定性。

1.2 时钟部分51单片机需要工作时钟才能正常运行,因此时钟电路是最小系统电路板中最关键的部分。

时钟电路的主要功能是为51单片机提供稳定、准确的时钟信号。

时钟电路通常包括晶体振荡器、电容、电阻和二极管等元器件。

晶体振荡器的选用要注意其磁耦合系数和负载能力等特性。

1.3 外围设备接口部分最小系统电路板除了提供基本的电源管理和时钟信号外,还需要提供一些需要控制的外围设备接口。

比如串口、I2C总线、SPI总线等接口,其需要连接外部被控设备才能起到作用。

2.软件设计51单片机的软件设计主要分为两部分,一部分是编写应用程序,一部分是编写系统初始化代码。

其中,应用程序主要根据用户需求编写。

而系统初始化代码则包括单片机时钟频率的初始化、外设中断的初始化等操作,以保证整个系统的功能正常运行。

3.最小系统电路板的布线设计最小系统电路板的布线设计应考虑以下因素:3.1 信号布线应保持短路,以保证电路的稳定性和抗干扰性;3.2 信号箱与高压箱应分离布置,以避免高压箱的辐射干扰影响到信号箱;3.3 信号箱内应将尽可能多的元器件与信号线层级分开,以便进行布线。

4.最小系统电路板制作在制作最小系统电路板时,应注意以下问题:4.1 电源和时钟部件应位于板的边缘部分,以方便使用者连接电源和时钟信号;4.2 布线过程中,应采用放大路线等技术来针对电路的高频特性进行优化布线,以保证系统的信号完整性。

51单片机最小系统原理图

51单片机最小系统原理图

51单片机最小系统原理图一、简介51单片机是指Intel公司推出的一种8位单片机,其核心是Intel 8051架构。

51单片机具有强大的功能和广泛的应用领域,在电子制作和嵌入式系统设计中被广泛采用。

本文将介绍51单片机最小系统的原理图及其组成。

二、51单片机最小系统原理图51单片机最小系统由4个基本模块组成:单片机芯片、时钟电路、复位电路和电源电路。

下面将详细介绍每个模块的原理图和功能。

1. 单片机芯片单片机芯片是51单片机系统的核心部件,一般选择的是AT89C51或AT89S52芯片。

其原理图基本包括芯片引脚和外围电路连接方式。

根据具体需求,连接的外围电路可以包括输入输出端口、定时器/计数器、串行通信接口等。

单片机芯片是整个系统的控制中心,它通过引脚与其他模块进行通信和控制。

2. 时钟电路时钟电路提供稳定的系统时钟,是单片机系统正常工作的基础。

常用的时钟源有晶体振荡器和时钟发生器。

晶体振荡器通过外接晶体元件提供稳定的时钟信号,时钟发生器则通过内部电路产生常用的时钟频率。

时钟信号的频率取决于具体需求,一般常用的频率为11.0592MHz。

3. 复位电路复位电路用于初始化单片机系统,保证其在上电或复位时工作正常。

复位电路一般由复位按钮、电容和电阻组成。

当系统上电或复位按钮按下时,复位电路将向单片机芯片发送一个复位信号,使其返回到初始状态,并重新启动。

4. 电源电路电源电路为单片机系统提供电能,保证其正常运行。

电源电路一般由电源适配器、电源滤波器、稳压电路和电源指示灯组成。

电源适配器将交流电转换为直流电,并经过滤波器进行滤波,稳压电路确保系统供电电压稳定。

电源指示灯用于显示电源状态,通常为红色表示供电正常。

三、总结51单片机最小系统原理图包括单片机芯片、时钟电路、复位电路和电源电路。

单片机芯片是控制中心,时钟电路提供稳定的时钟信号,复位电路用于系统初始化,电源电路为系统提供电能。

这些模块相互配合,保证了单片机系统的正常运行。

51单片机最小设计系统与电源电路

51单片机最小设计系统与电源电路

单片机最小系统介绍单片机最小系统主要由电源、复位、振荡电路以及扩展部分等部分组成。

最小系统原理图如图4.1所示。

图4.1最小系统电路图电源供电模块图4.1.1 电源模块电路图对于一个完整的电子设计来讲,首要问题就是为整个系统提供电源供电模块,电源模块的稳定可靠是系统平稳运行的前提和基础。

51单片机虽然使用时间最早、应用范围最广,但是在实际使用过程中,一个和典型的问题就是相比其他系列的单片机,51单片机更容易受到干扰而出现程序跑飞的现象,克服这种现象出现的一个重要手段就是为单片机系统配置一个稳定可靠的电源供电模块。

复位电路图4.1.2 复位电路图单片机的置位和复位,都是为了把电路初始化到一个确定的状态,一般来说,单片机复位电路作用是把一个例如状态机初始化到空状态,而在单片机内部,复位的时候单片机是把一些寄存器以及存储设备装入厂商预设的一个值。

单片机复位电路原理是在单片机的复位引脚RST上外接电阻和电容,实现上电复位。

当复位电平持续两个机器周期以上时复位有效。

复位电平的持续时间必须大于单片机的两个机器周期。

具体数值可以由RC电路计算出时间常数。

复位电路由按键复位和上电复位两部分组成。

(1)上电复位:STC89系列单片及为高电平复位,通常在复位引脚RST上连接一个电容到VCC,再连接一个电阻到GND,由此形成一个RC充放电回路保证单片机在上电时RST脚上有足够时间的高电平进行复位,随后回归到低电平进入正常工作状态,这个电阻和电容的典型值为10K和10uF。

(2)按键复位:按键复位就是在复位电容上并联一个开关,当开关按下时电容被放电、RST也被拉到高电平,而且由于电容的充电,会保持一段时间的高电平来使单片机复位。

单片机系统里都有晶振,在单片机系统里晶振作用非常大,全程叫晶体振荡器,他结合单片机内部电路产生单片机所需的时钟频率,单片机晶振提供的时钟频率越高,那么单片机运行速度就越快,单片接的一切指令的执行都是建立在单片机晶振提供的时钟频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
注意: 时钟电路振荡频率fosc = 晶振频率 时钟电路振荡周期 = 1/fosc 单片机机器周期 = 振荡周期×12 例如: 晶振频率 = 12MHz 振荡频率 = 12MHz 振荡周期 = 1/12 μs 机器周期 = 1μs
4
3、单片机复位电路
复位电路产生复位信号,使单片机从固定的 起始状态开始工作,完成单片机的“启机”过程。
6
3、混合复位电路 将上电复位电路
和手动复位电路结合到 一起构成,通常使用的 都是这种混合复位电路。
7
单片机最小硬件系统电路图
注意: 1)EA/VP(31脚)
接+5V
2)单片机的P0、 P1、P2、P3四个 端口用于输入/输出 数字电信号。
8Байду номын сангаас
八、I/O端口使用举例
编程:已知P0端口外接8个发光二极管,P3端口 外接按键开关。编写程序,实现开关控制发光 二极管的亮灭。
AT89S51单片机复位信号是高电平有效,通 过RST/VPD(9脚)输入。
复位电路连接方式有两种。 1、上电复位
单片机接通电源时产生复 位信号,完成单片机启动,确 定单片机起始工作状态。
5
2、手动复位
手动按键产生复位信 号,完成单片机启动,确 定单片机的初始状态。
通常在单片机工作出 现混乱或“死机”时,使 用手动复位可实现单片机 “重启”。
注意:端口作输入,先输出高电平,后 取输入值。
10
扩展内容安排(重点)
1、单片机实验板最小系统电路 2、LED发光二极管电路 3、LED数码管电路 4、蜂鸣器电路 5、按键开关电路
11
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
51单片机最小系统电路
2、单片机时钟电路:
时钟电路就是振荡电路,向单片机提供一个正弦波信 号作为基准,决定单片机的执行速度。
AT89S51单片机时钟频率范围:0 — 33MHz。
时钟电路连接方式为
XTAL1(19脚) XTAL2(18脚)
接一个 晶振
图中的电容C1和C2起稳 定作用。
2
晶振:石英晶体振荡器的简称,通常用来构成振荡电 路,产生各种频率信号。
程序: LOOP:
ORG 0000H ;开始
MOV P3 , #0FFH ;P3置1,输出高电平
MOV P0 , P3 ;取P3给P0
SJMP LOOP
;循环检测开关
END
;结束
9
本节总结:
1、AT89S51单片机引脚的功能 2、单片机最小硬件系统电路的组成 3、时钟电路的组成和功能 4、复位电路的组成和功能 5、单片机I/O端口使用
相关文档
最新文档