平面向量三角形四心(有详解)
(完整版)平面向量中的三角形四心问题(可编辑修改word版)

讲义-一平面向量与三角形四心的交汇一. 四心的概念介绍(1) 重心一-中线的交点:重心将中线长度分成2: 1;(2) 垂心一一高线的交点:高线与对应边垂直;(3) 内心一一角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4) 外心一一中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等.二、 四心与向量的结合(I)鬲+亦+冼= 6Q 0是AABC 的*心.(2) OA OB = OB'OC = OC OA^ 0 为 AABC 由墓心.(3)设zb. C 是三兔形的三条边瓠0旻A A RC 的内心 aOA-i~bOB ±cOC = 0 o O 为 MBC 的内卍,三、典型例题:例1: 0是平®上L 定点• A. B 、C 是平®上不共ft 的三个勲 动点P 満足丽M 页+ >1(而+疋. X e [O.-i-oo) • «点P 的轨谜一定遷过例 2: (03全ffl 理4 )。
是孚面上一定点.A. B 、C 是孚®上不共些的三个点.动点P 満足AR AC T K- + =7), e [0,+oo).则点P 的轨连一定夏过MBC 的() AC是平面上的一定点• A . B , C 畏平B 上不共ft 的三个点,一 ------ + —).Ze[0.4oo). W 动点P 的轨迹L 定通过MBC 的(I AB \sinB I ACI sin C3》巳知0爰平《上的一定点.A. B. C 是平®上不共线的三个点,屁字gog.则动心轨―通过“吶2 lAfilcosfi lACIcosC (4)岡= OB = 0C oO 为AABCW 外心.A.外心B.内心 D.垂心0P = 04 +几(=• AB A.外心 B ・内心 C ・4心例 3: 1) 是平》上一定点,4. B. C 是平》上不共a 的三个点,0P = 0A + 2( AB I AC TfljcoH A.外心 )• A e [0,+®) •则点卩的紈逐一宦4过口5(?的(B,内心 C 重心 D.垂心2)巳知0 A ・童心 B ・垂心 C ・外心 D ・内心例4.已知商》0彳0戛0片満足条件+ O&+邮 =(h 丨少;曰O&14O 片1=1・求证:是正三角殆.例5. AABC 的外接B 的08心为Q •诵条边上的«的交点为R. O//=w (Q4 + O8 + OC )・W 実*«・ 例6•点0晏三角恐ABC 卿i 平®内的一乩 為足moB=5B5c=oc54.則点o 赴人肋(?的(C.三条中ft 的交点 在△ABC 内求一点戸・ftAp2 + 3P'+Cp2*小.已知。
平面向量痛点问题之三角形“四心”问题(解析版)

微专题平面向量痛点问题之三角形“四心”问题【题型归纳目录】题型一:重心定理题型二:内心定理题型三:外心定理题型四:垂心定理【知识点梳理】一、四心的概念介绍:(1)重心:中线的交点,重心将中线长度分成2:1.(2)内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等.(3)外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等.(4)垂心:高线的交点,高线与对应边垂直.二、三角形四心与推论:(1)O 是△ABC 的重心:S △BOC :S △COA :S △A 0B =1:1:1⇔OA +OB +OC =0.(2)O 是△ABC 的内心:S △B 0C :S △COA :S △AOB =a :b :c ⇔aOA +bOB +cOC =0.(3)O 是△ABC 的外心:S △B 0C :S △COA :S △AOB =sin2A :sin2B :sin2C ⇔sin2AOA +sin2BOB +sin2COC =0.(4)O 是△ABC 的垂心:S △B 0C :S △COA :S △AOB =tan A :tan B :tan C ⇔tan AOA +tan BOB +tan COC =0.【方法技巧与总结】(1)内心:三角形的内心在向量AB AB +ACAC所在的直线上.AB ⋅PC +BC ⋅PC+CA ⋅PB =0 ⇔P 为△ABC 的内心.(2)外心:PA =PB=PC ⇔P 为△ABC 的外心.(3)垂心:PA ⋅PB =PB ⋅PC =PC ⋅PA⇔P 为△ABC 的垂心.(4)重心:PA +PB +PC =0⇔P 为△ABC 的重心.公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公【典型例题】题型一:重心定理例1.(2023春·山东聊城·高一山东聊城一中校考阶段练习)已知点G 是三角形ABC 所在平面内一点,满足GA +GB +GC =0 ,则G 点是三角形ABC 的( )A.垂心B.内心C.外心D.重心例2.(2023春·山东·高一阶段练习)已知G 是△ABC 的重心,点D 满足BD=DC ,若GD =xAB +yAC ,则x +y 为( )A.13B.12C.23D.1例3.(2023春·上海金山·高一上海市金山中学校考期末)记△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,点G 是△ABC 的重心,若BG ⊥CG ,5b =6c 则cos A 的取值是( )A.5975B.5775C.1115D.6175题型二:内心定理例4.(2023春·江苏宿迁·高一沭阳县修远中学校考期末)已知点P 为△ABC 的内心,∠BAC =23π,AB =1,AC =2,若AP =λAB +μAC,则λ+μ=______.例5.(2023春·陕西西安·高一陕西师大附中校考期中)已知O 是平面上的一个定点,A 、B 、C 是平面上不共线的三点,动点P 满足OP =OA +λAB AB +ACACλ∈R ,则点P 的轨迹一定经过△ABC 的( )A.重心B.外心C.内心D.垂心例6.(2023·全国·高一假期作业)已知I 为△ABC 所在平面上的一点,且AB =c ,AC =b ,BC =a .若aIA+bIB+cIC =0 ,则I 是△ABC 的( )A.重心B.内心C.外心D.垂心例7.(2023春·四川成都·高一树德中学校考竞赛)在△ABC 中,cos A =34,O 为△ABC 的内心,若AO =xAB +yACx ,y ∈R ,则x +y 的最大值为( )A.23B.6-65C.7-76D.8-227题型三:外心定理例8.(2023春·湖北武汉·高一校联考期末)在△ABC 中,AB =2,AC =3,N 是边BC 上的点,且BN=公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公NC,O 为△ABC 的外心,则AN ⋅AO =( )A.3B.134C.92D.94例9.(2023春·河南许昌·高一统考期末)已知P 在△ABC 所在平面内,满足PA =PB=PC ,则P 是△ABC 的( )A.外心B.内心C.垂心D.重心例10.(2023春·四川自贡·高一统考期末)直角△ABC 中,∠C =90∘,AB =4,O 为△ABC 的外心,OA⋅OB +OB ⋅OC +OC ⋅OA=( )A.4B.-4C.2D.-2例11.(2023春·辽宁丹东·高一凤城市第一中学校考阶段练习)已知O 为△ABC 的外心,若AB =1,则AB ⋅AO=( )A.-12B.12C.-1D.23题型四:垂心定理例12.(2023春·河南南阳·高一统考期中)若H 为△ABC 所在平面内一点,且HA 2+BC 2=HB 2+CA 2=HC 2+AB 2则点H 是△ABC 的( )A.重心B.外心C.内心D.垂心例13.(多选题)(2023春·湖南长沙·高一长沙市明德中学校考期中)已知O ,N ,P ,I 在△ABC 所在的平面内,则下列说法正确的是( )A.若OA =OB =OC,则O 是△ABC 的外心B.若PA ⋅PB =PB ⋅PC =PC ⋅PA ,则P 是△ABC 的垂心C.若NA +NB +NC=0,则N 是△ABC 的重心D.若CB ⋅IA =AC ⋅IB =BA ⋅IC=0,则I 是△ABC 的垂心例14.(2023春·河南商丘·高一商丘市第一高级中学校考阶段练习)设H 是△ABC 的垂心,且4HA+5HB+6HC =0 ,则cos ∠AHB =_____.【同步练习】一、单选题1.(2023·四川泸州·泸县五中校考二模)已知△ABC 的重心为O ,则向量BO=( )A.23AB +13ACB.13AB +23ACC.-23AB +13ACD.-13AB +23AC公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公2.(2023·全国·高三专题练习)对于给定的△ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论不正确的是( )A.AO ⋅AB =12AB2B.OA ⋅OB =OA ⋅OC =OB ⋅OCC.过点G 的直线l 交AB 、AC 于E 、F ,若AE =λAB ,AF =μAC ,则1λ+1μ=3D.AH 与AB AB cos B +ACACcos C 共线3.(2023·四川·校联考模拟预测)在平行四边形ABCD 中,G 为△BCD 的重心,AG =xAB +yAD,则3x +y =( )A.73B.2C.83D.34.(2023秋·河南信阳·高三校考阶段练习)过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =xAB ,AE =yAC ,且xy ≠0,则1x +1y=( )A.4B.3C.2D.15.(2023秋·上海·高二专题练习)O 是平面上一定点,A 、B 、C 是该平面上不共线的3个点,一动点P 满足:OP =OA+λ(AB +AC ),λ>0,则直线AP 一定通过△ABC 的( )A.外心B.内心C.重心D.垂心6.(2023秋·湖北·高二校联考期中)O 是△ABC 的外心,AB =6,AC =10,AO =xAB +yAC,2x +10y=5,则cos ∠BAC =( )A.12B.13C.35D.13或357.(2023·湖南·高考真题)P 是△ABC 所在平面上一点,若PA ⋅PB =PB ⋅PC =PC ⋅PA,则P 是△ABC 的( )A.外心B.内心C.重心D.垂心8.(2023·全国·高一专题练习)已知点O ,P 在△ABC 所在平面内,满OA +OB +OC =0 ,PA =PB=PC ,则点O ,P 依次是△ABC 的( )A.重心,外心B.内心,外心C.重心,内心D.垂心,外心9.(2023·全国·高一专题练习)已知O ,A ,B ,C 是平面上的4个定点,A ,B ,C 不共线,若点P 满足OP=公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公OA +λAB +AC ,其中λ∈R ,则点P 的轨迹一定经过△ABC 的( )A.重心B.外心C.内心D.垂心10.(2023春·安徽安庆·高一安庆一中校考阶段练习)在△ABC 中,设O 是△ABC 的外心,且AO =13AB +13AC,则∠BAC 等于( )A.30° B.45° C.60° D.90°11.(2023·全国·高三专题练习)在△ABC 中,AB =2,∠ACB =45°,O 是△ABC 的外心,则AC ⋅BC+OC ⋅AB的最大值为( )A.1B.32C.3D.7212.(2023·全国·高三专题练习)在△ABC 中,AB =3,AC =4,BC =5,O 为△ABC 的内心,若AO =λAB +μBC ,则λ+μ=( )A.23B.34C.56D.3513.(2023秋·四川绵阳·高二四川省绵阳南山中学校考开学考试)若O ,M ,N 在△ABC 所在平面内,满足|OA |=|OB |=|OC |,MA ⋅MB =MB ⋅MC=MC ⋅MA ,且NA +NB +NC =0 ,则点O ,M ,N 依次为△ABC 的( )A.重心,外心,垂心B.重心,外心,内心C.外心,重心,垂心D.外心,垂心,重心14.(2023春·浙江绍兴·高二校考学业考试)已知点O ,P 在△ABC 所在平面内,且OA =OB=OC ,PA ⋅PB =PB ⋅PC =PC ⋅PA,则点O ,P 依次是△ABC 的( )A.重心,垂心 B.重心,内心 C.外心,垂心 D.外心,内心二、多选题15.(2023春·河南·高一校联考期中)已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则下列说法不正确的是( )A.OA +OB =2ODB.若△ABC 为正三角形,则OA ⋅OB +OB ⋅OC +OC ⋅OA=0C.若AO ⋅AB -AC=0,则OA ⊥BCD.OD +OE +OF =016.(2023·全国·高三专题练习)如图,M 是△ABC 所在平面内任意一点,O 是△ABC 的重心,则( )公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公A.AD +BE =CFB.MA +MB +MC=3MOC.MA +MB +MC =MD +ME +MFD.BC ⋅AD+CA ⋅BE +AB ⋅CF =017.(2023秋·重庆渝北·高二重庆市两江育才中学校校考阶段练习)设O 为△ABC 的外心,且满足2OA+3OB +4OC =0 ,OA=1,则下列结论中正确的是( )A.OB ⋅OC =-78 B.AB =62C.∠A =2∠CD.sin ∠A =1418.(2023春·安徽淮北·高一淮北师范大学附属实验中学校考阶段练习)生于瑞士的数学巨星欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上.”这就是著名的欧拉线定理.在△ABC 中,O ,H ,G 分别是外心、垂心和重心,D 为BC 边的中点,下列四个选项中正确的是( )A.GH =2OGB.GA +GB +GC =0C.AH =2ODD.S △ABG =S △BCG =S △ACG19.(2023·全国·模拟预测)在△ABC 中,点D ,E 分别是BC ,AC 的中点,点O 为△ABC 内的一点,则下列结论正确的是( )A.若AO =OD ,则AO =12OB +OCB.若AO =2OD ,则OB =2EOC.若AO =3OD ,则OB =58AB +38ACD.若点O 为△ABC 的外心,BC =4,则OB ⋅BC=-420.(2023春·河北石家庄·高一统考期末)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理被称为欧拉线定理.已知△ABC 的外心为O ,垂心为H ,重心为G ,且AB =3,AC =4,下列说法正确的是( )A.AH ⋅BC=0 B.AG ⋅BC =-73C.AO ⋅BC =72D.OH =OA +OB +OC三、填空题公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公21.(2023秋·上海长宁·高二上海市延安中学校考期中)已知△ABC 的顶点坐标A -6,2 、B 6,4 ,设G 2,0 是△ABC 的重心,则顶点C 的坐标为_________.22.(2023秋·山西吕梁·高三统考阶段练习)设O 为△ABC 的外心,且满足2OA +3OB +4OC =0,OA =1,下列结论中正确的序号为______.①OB ⋅OC =-78;②AB =2;③∠A =2∠C .23.(2023·河北·模拟预测)已知O 为△ABC 的外心,AC =3,BC =4,则OC ⋅AB =___________.24.(2023秋·上海嘉定·高二上海市嘉定区第一中学校考期中)已知A 、B 、C 为△ABC 的三个内角,有如下命题:①若△ABC 是钝角三角形,则tan A +tan B +tan C <0;②若△ABC 是锐角三角形,则cos A +cos B <sin A +sin B ;③若G 、H 分别为△ABC 的外心和垂心,且AB =1,AC =3,则HG ⋅BC =4;④在△ABC 中,若sin B =25,tan C =34,则A >C >B ,其中正确命题的序号是___________.25.(2023秋·天津南开·高三南开大学附属中学校考开学考试)在△ABC 中,AB =3,AC =5,点N 满足BN=2NC ,点O 为△ABC 的外心,则AN ⋅AO 的值为__________.26.(2023·全国·高三专题练习)已知G 为△ABC 的内心,且cos A ⋅GA +cos B ⋅GB +cos C ⋅GC =0,则∠A =___________.27.(2023·全国·高三专题练习)在△ABC 中,cos ∠BAC =13,若O 为内心,且满足AO =xAB +yAC ,则x +y 的最大值为______.28.(2023·全国·高三专题练习)设I 为△ABC 的内心,若AB =2,BC =23,AC =4,则AI ⋅BC=___________公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公微专题平面向量痛点问题之三角形“四心”问题【题型归纳目录】题型一:重心定理题型二:内心定理题型三:外心定理题型四:垂心定理【知识点梳理】一、四心的概念介绍:(1)重心:中线的交点,重心将中线长度分成2:1.(2)内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等.(3)外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等.(4)垂心:高线的交点,高线与对应边垂直.二、三角形四心与推论:(1)O 是△ABC 的重心:S △BOC :S △COA :S △A 0B =1:1:1⇔OA +OB +OC =0.(2)O 是△ABC 的内心:S △B 0C :S △COA :S △AOB =a :b :c ⇔aOA +bOB +cOC =0.(3)O 是△ABC 的外心:S △B 0C :S △COA :S △AOB =sin2A :sin2B :sin2C ⇔sin2AOA +sin2BOB +sin2COC =0.(4)O 是△ABC 的垂心:S △B 0C :S △COA :S △AOB =tan A :tan B :tan C ⇔tan AOA +tan BOB +tan COC =0.【方法技巧与总结】(1)内心:三角形的内心在向量AB AB +ACAC所在的直线上.AB ⋅PC +BC ⋅PC+CA ⋅PB =0 ⇔P 为△ABC 的内心.(2)外心:PA =PB=PC ⇔P 为△ABC 的外心.(3)垂心:PA ⋅PB =PB ⋅PC =PC ⋅PA⇔P 为△ABC 的垂心.(4)重心:PA +PB +PC =0⇔P 为△ABC 的重心.公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公【典型例题】题型一:重心定理例1.(2023春·山东聊城·高一山东聊城一中校考阶段练习)已知点G 是三角形ABC 所在平面内一点,满足GA +GB +GC =0 ,则G 点是三角形ABC 的( )A.垂心B.内心C.外心D.重心【答案】D【解析】因为GA +GB +GC =0 ,所以GA +GB =-GC =CG .以GA 、GB 为邻边作平行四边形GADB ,连接GD 交AB 于点O .如图所示:则CG =GD ,所以GO =13CO ,CO 是AB 边上的中线,所以G 点是△ABC的重心.故选:D例2.(2023春·山东·高一阶段练习)已知G 是△ABC 的重心,点D 满足BD=DC ,若GD =xAB +yAC ,则x +y 为( )A.13B.12C.23D.1【答案】A【解析】因为BD =DC,所以D 为BC 中点,又因为G 是△ABC 的重心,所以GD =13AD,又因为D 为BC 中点,所以AD =12AB +12AC ,所以GD =1312AB +12AC =16AB +16AC,所以x =y =16,所以x +y =13.故选:A例3.(2023春·上海金山·高一上海市金山中学校考期末)记△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,点G 是△ABC 的重心,若BG ⊥CG ,5b =6c 则cos A 的取值是( )A.5975B.5775C.1115D.6175【答案】D公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公【解析】依题意,作出图形,因为点G 是△ABC 的重心,所以M 是BC 的中点,故AM =12AB +AC,由已知得BC=a ,AC =b ,AB =c ,因为BG ⊥CG ,所以GM =12BC =12a ,又因为点G 是△ABC 的重心,所以GM =12GA ,则AM =12a +a =32a ,又因为AM 2=14AB +AC 2,所以94a 2=14c 2+b 2+2bc cos A ,则9a 2=c 2+b 2+2bc cos A ,又由余弦定理得a 2=c 2+b 2-2bc cos A ,所以9c 2+b 2-2bc cos A =c 2+b 2+2bc cos A ,整理得2c 2+2b 2-5bc cos A =0,因为5b =6c ,令b =6k k >0 ,则c =5k ,所以2×5k 2+2×6k 2-5×6k ×5k cos A =0,则cos A =122150=6175.故选:D .题型二:内心定理例4.(2023春·江苏宿迁·高一沭阳县修远中学校考期末)已知点P 为△ABC 的内心,∠BAC =23π,AB =1,AC =2,若AP =λAB +μAC,则λ+μ=______.【答案】9-372【解析】在△ABC ,由余弦定理得BC =AC 2+AB 2-2AC ⋅AB cos ∠BAC =7,设O ,Q ,N 分别是边AB ,BC ,AC 上的切点,设AN =AO =x ,则NC =QC =2-x ,BO =BQ =1-x ,所以BC =BQ +QC =1-x +2-x =7⇒x =3-72,由AP =λAB +μAC 得,AP ⋅AB =λAB +μAC ⋅AB ,即AO ⋅AB =λAB 2+μAC ⋅AB⇒AO =λ-μ,①同理由AP ⋅AC =λAB +μAC ⋅AC⇒2AN =-λ+4μ,②联立①②以及AN =AO =x 即可解得:λ+μ=3x =3×3-72=9-372,故答案为:9-372例5.(2023春·陕西西安·高一陕西师大附中校考期中)已知O 是平面上的一个定点,A 、B 、C 是平面上不共线的三点,动点P 满足OP =OA +λAB AB +ACACλ∈R ,则点P 的轨迹一定经过△ABC 的( )公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公A.重心B.外心C.内心D.垂心【答案】C【解析】因为AB AB 为AB 方向上的单位向量,ACAC为AC 方向上的单位向量,则AB |AB |+AC |AC |的方向与∠BAC 的角平分线一致,由OP =OA +λAB AB +AC AC ,可得OP -OA =λAB AB +ACAC,即AP =λAB AB +ACAC,所以点P 的轨迹为∠BAC 的角平分线所在直线,故点P 的轨迹一定经过△ABC 的内心.故选:C .例6.(2023·全国·高一假期作业)已知I 为△ABC 所在平面上的一点,且AB =c ,AC =b ,BC =a .若aIA+bIB+cIC =0 ,则I 是△ABC 的( )A.重心B.内心C.外心D.垂心【答案】B【解析】因为IB =IA+AB ,IC =IA +AC ,所以aIA +bIB+cIC =aIA +b IA +AB +c IA +AC =a +b +c IA +bAB +cAC =0 ,所以(a +b +c )IA =-(b ⋅AB +c ⋅AC),所以IA =-(b ⋅AB +c ⋅AC)a +b +c =-b a +b +c ⋅AB +c a +b +cAC =-1a +b +c b ⋅AB +c ⋅AC =-bca +b +c AB c +AC b=-bca +b +c AB AB +AC AC,所以IA在角A 的平分线上,故点I 在∠BAC 的平分线上,同理可得,点I 在∠BCA 的平分线上,故点I 在△ABC 的内心,故选:B .例7.(2023春·四川成都·高一树德中学校考竞赛)在△ABC 中,cos A =34,O 为△ABC 的内心,若AO =xAB +yACx ,y ∈R ,则x +y 的最大值为( )公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公A.23B.6-65C.7-76D.8-227【答案】D【解析】如图:圆O 在边AB ,BC 上的切点分别为E ,F ,连接OE ,OF ,延长AO 交BC 于点D设∠OAB =θ,则cos A =cos2θ=1-2sin 2θ=34,则sin θ=24设AD =λAO =λxAB +λyAC∵B ,D ,C 三点共线,则λx +λy =1,即x +y =1λ1λ=AO AD =AO AO +OD ≤AO AO +OF =11+OF AO =11+OE AO=11+sin θ=11+24=8-227即x +y ≤8-227故选:D .题型三:外心定理例8.(2023春·湖北武汉·高一校联考期末)在△ABC 中,AB =2,AC =3,N 是边BC 上的点,且BN=NC,O 为△ABC 的外心,则AN ⋅AO =( )A.3B.134C.92D.94【答案】B【解析】因为BN =NC,则N 是BC 的中点,所以AN =12AB +12AC ,设外接圆的半径为r ,所以AO ⋅AN =AO ⋅12AC +12AB =12AO ⋅AC +12AO ⋅AB =12r ×3×cos ∠OAC +12r ×2×cos ∠OAB =12×3×32+12×2×1=134.故选:B .例9.(2023春·河南许昌·高一统考期末)已知P 在△ABC 所在平面内,满足PA =PB =PC ,则P 是△ABC 的( )A.外心B.内心C.垂心D.重心【答案】A【解析】PA =PB=PC 表示P 到A ,B ,C 三点距离相等,P 为外心.公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公故选:A .例10.(2023春·四川自贡·高一统考期末)直角△ABC 中,∠C =90∘,AB =4,O 为△ABC 的外心,OA ⋅OB +OB ⋅OC +OC ⋅OA=( )A.4B.-4C.2D.-2【答案】B【解析】∵直角△ABC 中,∠C =90°,AB =4,O 为△ABC 的外心,∴O 为AB 的中点,即OA =OB =2,∴OA +OB =0 且OA ⋅OB =|OA |⋅|OB|⋅cos180°=-4,∴OA ⋅OB +OB ⋅OC +OC ⋅OA =-4+OC ⋅(OA+OB )=-4+0=-4,故选:B .例11.(2023春·辽宁丹东·高一凤城市第一中学校考阶段练习)已知O 为△ABC 的外心,若AB =1,则AB ⋅AO=( )A.-12B.12C.-1D.23【答案】B【解析】因为点O 为△ABC 的外心,设AB 的中点为D ,连接OD ,则OD ⊥AB ,如图所以AB ⋅AO =AB ⋅(AD +DO )=AB ⋅AD +AB ⋅DO =12AB 2+0=12×12=12.故选:B .题型四:垂心定理例12.(2023春·河南南阳·高一统考期中)若H 为△ABC 所在平面内一点,且HA 2+BC 2=HB 2+CA 2=HC 2+AB 2则点H 是△ABC 的( )A.重心B.外心C.内心D.垂心【答案】D【解析】HA 2+BC 2=HB 2+CA 2⇒HA 2+BH +HC 2=HB 2+CH +HA2,得BH ⋅HC=CH ⋅HA ⇒HC ⋅BA =0,即HC ⊥BA ;HA 2+BC 2=HC 2+AB 2⇒HA 2+BH +HC 2=HC2+AH +HB 2,得BH ⋅HC =AH ⋅HB ⇒BH ⋅AC =0,即BH⊥AC ;HB 2+CA 2=HC 2+AB 2⇒HB 2+CH +HA 2=HC 2+AH +HB 2,CH ⋅HA =AH ⋅HB ⇒HA ⋅CB =0,即HA ⊥CB,所以H 为△ABC 的垂心.故选:D .例13.(多选题)(2023春·湖南长沙·高一长沙市明德中学校考期中)已知O ,N ,P ,I 在△ABC 所在的平公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公面内,则下列说法正确的是( )A.若OA =OB =OC,则O 是△ABC 的外心B.若PA ⋅PB =PB ⋅PC =PC ⋅PA ,则P 是△ABC 的垂心C.若NA +NB +NC=0,则N 是△ABC 的重心D.若CB ⋅IA =AC ⋅IB =BA ⋅IC=0,则I 是△ABC 的垂心【答案】ABCD【解析】对A ,根据外心的定义,易知A 正确;对B ,PB ⋅PA -PC =PB ⋅CA =0⇒PB ⊥CA ,同理可得:PA ⊥CB ,PC ⊥AB ,所以P 是垂心,故B正确;对C ,记AB 、BC 、CA 的中点为D 、E 、F ,由题意NA +NB =2ND =-NC ,则|NC |=2|ND |,同理可得:|NA |=2|NE |,|NB |=2|NF |,则N 是重心,故C 正确;对D ,由题意,CB ⊥IA ,AC ⊥IB ,BA ⊥IC ,则I 是垂心,故D 正确故选:ABCD .例14.(2023春·河南商丘·高一商丘市第一高级中学校考阶段练习)设H 是△ABC 的垂心,且4HA+5HB+6HC =0 ,则cos ∠AHB =_____.【答案】-2211【解析】∵H 是△ABC 的垂心,∴HA ⊥BC ,HA ⋅BC =HA ⋅HC -HB =0,∴HA ⋅HB =HC ⋅HA ,同理可得,HB ⋅HC =HC ⋅HA ,故HA ⋅HB =HB ⋅HC =HC ⋅HA ,∵4HA +5HB+6HC =0 ,∴4HA 2+5HA ⋅HB +6HA ⋅HC=0,∴HA ⋅HB =-411HA 2,同理可求得HA ⋅HB =-12HB 2,∴cos ∠AHB =HB ⋅HA HB HA =-411HA 2HB HA ,cos ∠AHB =HB ⋅HA HB HA =-12HB 2HB HA,∴cos 2∠AHB =211,即cos ∠AHB =-2211.故答案为:-2211.【同步练习】一、单选题1.(2023·四川泸州·泸县五中校考二模)已知△ABC 的重心为O ,则向量BO=( )公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公A.23AB +13ACB.13AB +23ACC.-23AB +13ACD.-13AB +23AC【答案】C【解析】设E ,F ,D 分别是AC ,AB ,BC 的中点,由于O 是三角形ABC 的重心,所以BO =23BE =23×AE -AB =23×12AC -AB =-23AB +13AC.故选:C .2.(2023·全国·高三专题练习)对于给定的△ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论不正确的是( )A.AO ⋅AB =12AB2B.OA ⋅OB =OA ⋅OC =OB ⋅OCC.过点G 的直线l 交AB 、AC 于E 、F ,若AE =λAB ,AF =μAC ,则1λ+1μ=3D.AH 与AB AB cos B +ACACcos C 共线【答案】B【解析】如图,设AB 中点为M ,则OM ⊥AB ,∴AO cos ∠OAM =AM ,∴AO ·AB =AO AB cos ∠OAB =AB AO cos ∠OAB =AB ⋅AB2=12AB 2,故A 正确;OA ·OB =OA ·OC 等价于OA ·OB -OC=0等价于OA ·CB =0,即OA ⊥BC ,对于一般三角形而言,O 是外心,OA 不一定与BC 垂直,比如直角三角形ABC 中,若B 为直角顶点,则O 为斜边AC 的中点,OA 与BC 不垂直,故B 错误;设BC 的中点为D ,则AG =23AD =13AB +AC =131λAE +1μAF=13λAE +13μAF,∵E ,F ,G 三点共线,∴13λ+13μ=1,即1λ+1μ=3,故C 正确;AB ABcos B +AC AC cos C ⋅BC =AB ⋅BC AB cos B +AC ⋅BCAC cos C =AB BC cos π-B AB cos B +AC BC cos C ACcos C =-BC +BC =0,∴AB AB cos B +ACACcos C 与BC 垂直,又∵AH ⊥BC ,公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公∴AB AB cos B +ACACcos C与AH 共线,故D 正确.故选:B .3.(2023·四川·校联考模拟预测)在平行四边形ABCD 中,G 为△BCD 的重心,AG =xAB +yAD,则3x +y =( )A.73B.2C.83D.3【答案】C【解析】如图,设AC 与BD 相交于点O ,由G 为△BCD 的重心,可得O 为BD 的中点,CG =2GO ,则AG =AO +OG =AO +13OC =43AO =43×12AB +AD =23AB +23AD,可得x =y =23,故3x +y =83.故选:C .4.(2023秋·河南信阳·高三校考阶段练习)过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =xAB ,AE =yAC ,且xy ≠0,则1x +1y=( )A.4B.3C.2D.1【答案】B【解析】设△ABC 的重心为点G ,延长AG 交BC 于点M ,则M 为线段BC 的中点,因为D 、G 、E 三点共线,设DG =λDE,即AG -AD =λAE -AD ,所以,AG =1-λ AD +λAE =1-λ xAB +λyAC ,因为M 为BC 的中点,则AM =AB +BM =AB +12BC =AB+12AC -AB =12AB +12AC ,因为G 为△ABC 的重心,则AG =23AM =13AB +13AC,所以,1-λ x =λy =13,所以,1x +1y=31-λ +3λ=3.故选:B .5.(2023秋·上海·高二专题练习)O 是平面上一定点,A 、B 、C 是该平面上不共线的3个点,一动点P 满足:OP =OA+λ(AB +AC ),λ>0,则直线AP 一定通过△ABC 的( )A.外心 B.内心C.重心D.垂心【答案】C公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公【解析】取线段BC 的中点E ,则AB +AC =2AE .动点P 满足:OP =OA+λ(AB +AC ),λ>0,则OP -OA=2λAE 则AP =2λAE .则直线AP 一定通过△ABC 的重心.故选:C .6.(2023秋·湖北·高二校联考期中)O 是△ABC 的外心,AB =6,AC =10,AO =xAB +yAC,2x +10y=5,则cos ∠BAC =( )A.12B.13C.35D.13或35【答案】D【解析】当O 在AC 上,则O 为AC 的中点,x =0,y =12满足2x +10y =5,符合题意,∴AB ⊥BC ,则cos ∠BAC =AB AC=35;当O 不在AC 上,取AB ,AC 的中点D ,E ,连接OD ,OE ,则OD ⊥AB ,OE ⊥AC ,则AB ⋅AO =AB AO cos ∠OAD =AB ×AO ×ADAO =12AB 2=18,同理可得:AC ⋅AO =12AC 2=50∵AB ⋅AO =AB ⋅xAB +yAC =xAB 2+yAB ⋅AC=36x +60y cos ∠BAC =18,AC ⋅AO =AC ⋅xAB +yAC =xAC ⋅AB +yAC 2=60x cos ∠BAC +100y =50,联立可得36x +60y cos ∠BAC =1860x cos ∠BAC +100y =502x +10y =5,解得x =14y =920cos ∠BAC =13,故选:D .7.(2023·湖南·高考真题)P 是△ABC 所在平面上一点,若PA ⋅PB =PB ⋅PC =PC ⋅PA,则P 是△ABC 的( )A.外心B.内心C.重心D.垂心【答案】D【解析】因为PA ⋅PB=PB ⋅PC ,则PB ⋅PC -PA =PB ⋅AC=0,所以,PB ⊥AC ,同理可得PA ⊥BC ,PC ⊥AB ,故P 是△ABC 的垂心.故选:D .公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公8.(2023·全国·高一专题练习)已知点O ,P 在△ABC 所在平面内,满OA +OB +OC =0 ,PA =PB=PC ,则点O ,P 依次是△ABC 的( )A.重心,外心B.内心,外心C.重心,内心D.垂心,外心【答案】A【解析】设AB 中点为D ,因为OA +OB +OC =0,所以OA +OB +OC =2OD +OC =0 ,即-2OD =OC ,因为OD ,OC有公共点O ,所以,O ,D ,C 三点共线,即O 在△ABC 的中线CD ,同理可得O 在△ABC 的三条中线上,即为△ABC 的重心;因为PA =PB=PC ,所以,点P 为△ABC 的外接圆圆心,即为△ABC 的外心综上,点O ,P 依次是△ABC 的重心,外心.故选:A9.(2023·全国·高一专题练习)已知O ,A ,B ,C 是平面上的4个定点,A ,B ,C 不共线,若点P 满足OP=OA +λAB +AC ,其中λ∈R ,则点P 的轨迹一定经过△ABC 的( )A.重心B.外心C.内心D.垂心【答案】A【解析】根据题意,设BC 边的中点为D ,则AB +AC =2AD,因为点P 满足OP =OA+λAB +AC ,其中λ∈R所以,OP -OA=AP =λAB +AC =2λAD ,即AP =2λAD ,所以,点P 的轨迹为△ABC 的中线AD ,所以,点P 的轨迹一定经过△ABC 的重心.故选:A10.(2023春·安徽安庆·高一安庆一中校考阶段练习)在△ABC 中,设O 是△ABC 的外心,且AO=13AB +13AC,则∠BAC 等于( )A.30°B.45°C.60°D.90°【答案】C【解析】依题意,因为AO =13AB +13AC ,所以O 也是△ABC 的重心,又因为O 是△ABC 的外心,所以△ABC 是等边三角形,所以∠BAC =60°.公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公故选:C .11.(2023·全国·高三专题练习)在△ABC 中,AB =2,∠ACB =45°,O 是△ABC 的外心,则AC ⋅BC+OC ⋅AB的最大值为( )A.1B.32C.3D.72【答案】C【解析】解:由题知,记△ABC 的三边为a ,b ,c ,因为O 是△ABC 的外心,记AB 中点为D ,则有OD ⊥AB ,所以OD ⋅AB =0且CD =12CA +CB ,所以AC ⋅BC +OC ⋅AB =CA ⋅CB +OD +DC ⋅AB =CA ⋅CB +OD ⋅AB +DC ⋅AB =CA ⋅CB -12CA +CB ⋅AB=CA ⋅CB -12CA +CB ⋅CB -CA=CA ⋅CB +12CA 2-CB 2=b ⋅a ⋅cos ∠ACB +12b 2-a 2=122ab +b 2-a 2 ①,在△ABC 中,由余弦定理得:cos ∠ACB =a 2+b 2-c 22ab=22,即a 2+b 2-c 2=2ab ,即a 2+b 2-2=2ab ,代入①中可得:AC ⋅BC +OC ⋅AB=b 2-1,在△ABC 中,由正弦定理得:a sin A=b sin B =csin C =222=2,所以b =2sin B ≤2,所以AC ⋅BC +OC ⋅AB=b 2-1≤3,当b =2,a =c =2,A =C =45∘,B =90∘时取等,故AC ⋅BC +OC ⋅AB的最大值为3.公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公故选:C12.(2023·全国·高三专题练习)在△ABC 中,AB =3,AC =4,BC =5,O 为△ABC 的内心,若AO=λAB +μBC ,则λ+μ=( )A.23B.34C.56D.35【答案】C【解析】由AO =λAB +μBC 得AO =λOB -OA +μOC -OB,则1-λ OA +λ-μ OB +μOC =0,因为O 为△ABC 的内心,所以BC OA +AC OB +AB OC =0,从而1-λ :λ-μ :μ=5:4:3,解得λ=712,μ=14,所以λ+μ=56.故选:C .13.(2023秋·四川绵阳·高二四川省绵阳南山中学校考开学考试)若O ,M ,N 在△ABC 所在平面内,满足|OA |=|OB |=|OC |,MA ⋅MB =MB ⋅MC=MC ⋅MA ,且NA +NB +NC =0 ,则点O ,M ,N 依次为△ABC 的( )A.重心,外心,垂心B.重心,外心,内心C.外心,重心,垂心D.外心,垂心,重心【答案】D【解析】因为|OA |=|OB |=|OC |,所以OA =OB =OC ,所以O 为△ABC 的外心;因为MA ⋅MB =MB ⋅MC=MC ⋅MA ,所以MB ⋅(MA-MC )=0,即MB ⋅CA=0,所以MB ⊥AC ,同理可得:MA ⊥BC ,MC ⊥AB ,所以M 为△ABC 的垂心;因为NA +NB +NC =0 ,所以NA +NB =-NC ,设AB 的中点D ,则NA +NB =2ND,所以-NC =2ND,所以C ,N ,D 三点共线,即N 为△ABC 的中线CD 上的点,且NC =2ND ,所以N 为△ABC 的重心.故选:D .公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公14.(2023春·浙江绍兴·高二校考学业考试)已知点O ,P 在△ABC 所在平面内,且OA =OB =OC ,PA ⋅PB =PB ⋅PC =PC ⋅PA ,则点O ,P 依次是△ABC 的( )A.重心,垂心 B.重心,内心C.外心,垂心D.外心,内心【答案】C【解析】由于OA =OB =OC ,所以O 是三角形ABC 的外心.由于PA ⋅PB =PB ⋅PC ,所以PA -PC ⋅PB =0,CA ⋅PB=0⇒CA ⊥PB ,同理可证得AB ⊥PC ,BC ⊥PA ,所以P 是三角形ABC 的垂心.故选:C二、多选题15.(2023春·河南·高一校联考期中)已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则下列说法不正确的是( )A.OA +OB =2ODB.若△ABC 为正三角形,则OA ⋅OB +OB ⋅OC +OC ⋅OA=0C.若AO ⋅AB -AC=0,则OA ⊥BCD.OD +OE +OF =0【答案】BD【解析】对于A ,在△OAB 中,因为D 为AB 的中点,所以OD =12(OA +OB ),所以OA +OB =2OD ,所以A 正确,对于B ,因为△ABC 为正三角形,O 为△ABC 的重心,所以OA =OB =OC ,∠AOB =∠BOC =∠AOC =120°,设OA =OB =OC =a ,则OA ⋅OB +OB ⋅OC +OC ⋅OA =OA ⋅OB cos ∠AOB +OB ⋅OC cos ∠BOC +OC ⋅OAcos ∠AOC=a 2cos120°+a 2cos120°+a 2cos120°=-32a 2≠0,所以B 错误,对于C ,因为AO ⋅AB -AC =0,所以AO ⋅CB =0,所以AO ⊥CB,所以OA ⊥BC ,所以C 正确,对于D ,因为边AB ,BC ,CA 的中点分别为D ,E ,F ,公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公所以OD =12(OA +OB ),OE =12(OB +OC ),OF =12(OA +OC ),因为O 为△ABC 的重心,所以CO =2OD ,所以2OD =-OC,所以OD +OE +OF =12(OA +OB )+12(OC +OB )+12(OA+OC )=OA +OB +OC=2OD +OC=-OC +OC =0 ,所以D 错误,故选:BD16.(2023·全国·高三专题练习)如图,M 是△ABC 所在平面内任意一点,O 是△ABC 的重心,则( )A.AD +BE =CFB.MA +MB +MC=3MOC.MA +MB +MC =MD +ME +MFD.BC ⋅AD+CA ⋅BE +AB ⋅CF =0【答案】BCD【解析】对于A 选项,由题意可知,D 、E 、F 分别为BC 、AC 、AB 的中点,所以,AD =AB +12BC =AB +12AC -AB =12AB +AC ,同理可得BE =12BA +BC ,CF =12CA +CB,所以,AD +BE =12AB +AC +12BA +BC =12AC +BC =-CF ,A 错;对于B 选项,由重心的性质可知AD =32AO ,BE =32BO ,CF =32CO,由A 选项可知,AD +BE +CF =32AO +BO +CO =0,所以,MA +MB +MC =MO +OA +MO +OB +MO +OC =3MO -AO +BO +CO =3MO ,B 对;对于C 选项,由重心的性质可知OD =12AO,OE =12BO ,OF =12CO ,所以,MD +ME +MF=MO +OD +MO +OE +MO +OF =3MO +12AO +BO +CO=3MO ,C 对;对于D 选项,BC ⋅AD =12AC -AB ⋅AC +AB =12AC 2-AB 2,同理可得CA ⋅BE =12BA 2-BC 2 ,AB ⋅CF =12CB 2-CA 2,公众号 数学有得聊得聊数学有得聊公众号 数学有得聊学有得聊公众号 数学有得聊公众号 数学有得聊公众号公众号 数学有得聊公众号 数学有得聊公。
平面向量与三角形“四心”(较全面)

平面向量与三角形“四心”(较全面)一、“四心”概念(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心1):外心到三角形各顶点的距离相等.二、“四心”的充要条件(1)⇔=++→→→→0OC OB OA 是△ABC 的重心.【证法1】:设()y x O ,,()11,y x A ,()22,y x B ,()33,y x C⇔=++→→→→0OC OB OA ()()()()()()⎩⎨⎧=-+-+-=-+-+-00321321y y y y y y x x x x x x ⎪⎩⎪⎨⎧++=++=⇔33321321y y y y x x x x ⇔是的重心.【证法2】:∵→→→→→→=+=++02ODOAOCOBOA,∴→→=ODAO2∴A,O,D三点共线,且O分AD为2:1,∴是△ABC的重心.(2)⇔⋅=⋅=⋅→→→→→→OA OC OC OB OB OA 为△ABC 的垂心.【证明】:如图,O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC ,D 、E 是垂足.→→→→→→→→→→→⊥⇔=⋅=-⇔⋅=⋅AC OB CA OB OC OA OB OC OB OB OA 0)(同理→→⊥OB OA ,⇔⊥→→AB OC O 为△ABC 的垂心. (3) ⇔=++→→→→0OC c OB b OA a O 为△ABC 的内心. 【证明】:∵bAC c AB →→,分别为→→AC AB ,方向上的单位向量,bACc AB →→+平分BAC ∠,(λ=→AO )bAC c AB →→+,令c b a bc ++=λ cb a bcAO ++=→)(bAC c AB →→+,化简得→→→→=++++0)(AC c AB b OA c b a ,→→→→=++0OC c OB b OA a .(4)⇔==→→→||||||OC OB OA 为△ABC 的外心.三、“四心”的向量表达1.⇒⎪⎩⎪⎨⎧+=+=→→→→→→)(31)(31BC BA BO AC AB AO O 为△ABC 的重心;【证】:由),0[,sin sin +∞∈⎪⎪⎪⎭⎫ ⎝⎛++=→→→→λλC b AC B c AB OA OP ,即)(sin →→→+=AC B A C b AP λ,故→AP 与→→+AC AB 共线,又→→+AC AB 过BC 中点D ,故P 点的轨迹也过中点D , 故点P 过三角形的重心.2. ⇒⎪⎩⎪⎨⎧=⋅=⋅→→→→00AC BO BC AO O 为△ABC 的垂心.(1)由C B A S S S AOB AOC BOC tan :tan :tan ::=∆∆∆⇒→→→→=++0tan tan tan OC C OB B OA A . (2)222222→→→→→→+=+=+B A OC CA OB BC OA .【证】:由⎪⎭⎫ ⎝⎛++=→→→→AC b B A c OA OP λ知,⎪⎭⎫ ⎝⎛+=→→→AC b B B A c C AP cos cos λ, =⋅→→BC AP )cos cos (→→→→⋅+⋅⋅BC AC bB C B AB c C λ 0)cos cos cos cos (=+-=C B C B a λ,故→AP 与向量→BC 垂直, 故点P 的轨迹过垂心.【证】:由),0[,2sin 2sin 22+∞∈⎪⎪⎪⎭⎫ ⎝⎛++=→→→→λλC b AC B c AB OA OP 知,,2sin 2sin 22⎪⎪⎪⎭⎫ ⎝⎛+=→→→C b AC B c AB AP λ故⎪⎪⎪⎭⎫ ⎝⎛⋅+⋅=⋅→→→→→→C b BC AC B c BC AB BC AP 2sin 2sin 22λ,则0)sin sin (2=+-=⋅→→C b a B c a BC AP λ, 故点P 轨迹过三角形的垂心.【解】:AD 垂直BC ,BE 垂直AC , D 、E 是垂足.→→→→→⋅⎪⎪⎪⎭⎫ ⎝⎛+BC C AC AC B AB AB cos ||cos ||C AC BC AC B AB BC AB cos ||cos ||→→→→→→⋅+⋅=C AC C BC AC B AB B BC AB cos ||cos ||||cos ||cos ||||→→→→→→⋅+⋅-=0=+-=→→BC BC ∴点的轨迹一定通过△ABC 的垂心.3. ⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧>+=>+=→→→→→→→→→→0),||||(0),||||(t BC BCBA BA t BO AC AC AB AB AO λλO 为△ABC 的内心;(1)c b a S S S AOB AOC BOC ::::=∆∆∆⇒→→→→=++0sin sin sin OC C OB B OA A(2)→→→→→→→→→→→→→→→→=⎪⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎪⎭⎫ ⎝⎛-⋅0||||||||||||CB CB CA CAOC BC BC BA BA OB AC AC AB AB OA【解】:由),0[,sin sin 22+∞∈⎪⎪⎪⎭⎫ ⎝⎛++=→→→→λλC b AC B c AB OA OP 知,)0)(||||(sin >+=→→→→→λλAC AC AB AB B c AP , 故动点P 的轨迹一定通过ABC ∆的内心.满足⎪⎪⎪⎭⎫ ⎝⎛++=→→→→→→||||AC AC AB AB OA OP λ,),0[+∞∈λ ,则点的轨迹一定通过△ABC 的____.【解】:∵如图,设||,||→→→→→→==AC AC AF AB ABAE 分别为→→AC AB ,方向上的单位向量, 易知四边形AETF 是菱形,∴||||→→→→+AC AC AB AB 平分BAC ∠,∴点的轨迹一定通过△ABC的内心.4.两点分别是△ABC的边上的中点,且⇒⎪⎩⎪⎨⎧⋅=⋅⋅=⋅→→→→→→→→OA EO OC EO OC DO OB DO O 为△ABC 的外心; (1)0=++→∆→∆→∆OC S OB S OA S AOB AOC BOC (外心向量定理) (2)由AOB AOC BOC S S S AOB AOC BOC ∠∠∠=∆∆∆sin :sin :sin ::C B A 2sin :2sin :2sin =⇒→→→→=⋅+⋅+⋅02sin 2sin 2sin OC C OB B OA A .四、欧拉线及其向量法证明三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线叫三角形的欧拉线. 在△ABC 中,已知Q 、G 、H 分别是三角形的外心、重心、垂心.求证:Q 、G 、H 三点共线,且QG:GH=1:2. 【证明】:以A 为原点,AB 所在的直线为x 轴,建立直角坐标系。
三角形四心与平面向量(用)(可编辑修改word版)

OA OB OC AB AC AB cos BAC cos C→ AB sin B → AC sin C ⎪⎪⎭ 向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍 (1) 重心——中线的交点:重心将中线长度分成 2:1; (2) 垂心——高线的交点:高线与对应边垂直; (3) 内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4) 外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。
二、四心与向量的结合(1) OA + OB + OC = 0 ⇔ O 是 ∆ABC 的重心.(2) OA ⋅ OB = OB ⋅ OC = OC ⋅ OA ⇔ O 为 ∆ABC 的垂心. (3) 设 a , b , c 是三角形的三条边长,O 是 ∆ ABC 的内心aOA + bOB + cOC = 0 ⇔ O 为 ∆ABC 的内心.(4) = = ⇔ O 为 ∆ABC 的外心。
典型例题:例 1: O 是 平 面 上 一 定 点 , A 、 B 、 C 是 平 面 上 不 共 线 的 三 个 点 , 动 点 P 满 足OP = OA + ( A B + AC ) ,∈[0,+∞) ,则点 P 的轨迹一定通过∆ABC 的()A .外心B .内心C .重心D .垂心例 2: O 是平面上一定点, A 、 B 、 C 是平面上不共线的三个点, 动点 P 满足OP = OA + ( +) ,∈[0,+∞) ,则点P 的轨迹一定通过∆ABC 的( )A .外心B .内心C .重心D .垂心例 3: O 是 平 面 上 一 定 点 , A 、 B 、 C 是 平 面 上 不 共 线 的 三 个 点 , 动 点 P 满 足OP = OA + (+) , ∈[0,+∞) ,则点 P 的轨迹一定通过 ∆ABC 的()A .外心B .内心C .重心D .垂心⎛ ⎫→ → → → ⎪ 例 4:若存在常数,满足 M G = MA + AB + ⎝AC ⎪(≠ 0) ,则点 G 可能通过∆ABC 的.举一反三:通过上述例题及解答,我们可以总结出关于三角形“四心”的向量表达式.若 P 点为∆ABC 内任意一点,若 P 点满足:⎪DP PB = DP PC ⇒ P 为 ABC 的外心; ⎪ AP BC = 0 ⇒ P 为 ABC 的垂心. 1 + = ⎪ ⎧AP = ( AB + AC ),> 0⎪⎪ 1. ⎨AB AC ⇒ P 为 ABC 的内心;⎪BP = t ( BA + BC ),t > 0 ⎩⎪ BABC 2. D 、E 两点分别是∆ABC 的边 BC 、CA 上的中点,且 ⎧ ⎨ ⎪⎩EP PC = EP PA ⎧ 1 ⎪ AP = 3 ( AB + AC ), 3. ⎨ 1⇒ P 为 ABC 的重心; ⎪BP = ⎩ (BA + BC ), 3 ⎧ 4. ⎨ ⎪⎩BP AC = 0练习:1. 已知∆ABC 三个顶点 A 、B 、C 及平面内一点 P ,满足 PA + PB + PC = 0 ,若实数满足: AB + AC = AP ,则的值为() 3 A .2B .C .3D .622. 若∆ABC 的外接圆的圆心为 O ,半径为 1, OA + OB + OC = 0 ,则OA ⋅ OB = ()A .B .0C .1D . - 1223. 点O 在∆ABC 内部且满足OA + 2OB + 2OC = 0 ,则∆ABC 面积与凹四边形 ABOC 面积之比是( )3 54 A .0B .C .D .2434.∆ABC 的外接圆的圆心为 O ,若OH = OA + OB + OC ,则 H 是∆ABC 的( )A. 外心B .内心C .重心D .垂心5.O 是平面上一定点, A 、 B 、 222C 是平面上不共线的三个点,若OA BC OB+ CA 2= OC 2+ AB 2,则O 是∆ABC 的( )A. 外心B .内心C .重心D .垂心6.∆ABC 的外接圆的圆心为 O ,两条边上的高的交点为 H , OH = m (OA + OB + OC ) ,22 2=++则实数m =→→→→AB AC→→AB→AC17.已知非零向量AB与AC满足( → + → )·BC=0 且→·= , 则△ABC 为( )|AB| |AC| |AB|→ 2|AC|A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形8.已知∆ABC 三个顶点A、B、()C ,若AB =AB ⋅AC +AB ⋅CB +BC ⋅CA ,则∆ABC 为A.等腰三角形B.等腰直角三角形C.直角三角形D.既非等腰又非直角三角形9.已知A、B、C 是平面上不共线的三点,O 是三角形ABC 的重心,动点P 满足OP =1(1OA +1OB +2 OC ),则点P 一定为三角形ABC 的()3 2 2A.AB 边中线的中点B.AB 边中线的三等分点(非重心)C.重心D.AB 边的中点10.在三角形ABC 中,动点P 满足:CA =CB - 2 A B •CP ,则P 点轨迹一定通过△ABC的:()A外心B内心 C 重心 D 垂心11.若O 点是∆ABC 的外心, H 点是∆ABC 的垂心,且OH m(OA OB OC) ,求实数m 的值.12、已知向量OP1, OP2 , OP3 满足条件OP1+OP2 +OP3 = 0 ,| OP1|=| OP2 |=| OP3 |= 1 ,求证:△P1P2P3是正三角形.PA13.在△ABC 内求一点 P ,使 AP 2+ BP 2+ CP 2最小.B图2。
平面向量中三角形“四心”与应用

平面向量种三角形“四心”与应用一.重要结论1.重心:三角形三条中线的交点,重心为O →→→→=++⇔0OC OB OA 证明:G 是ABC ∆所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心.证明:作图如右,图中GEGC GB =+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线.将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略))重心性质1.P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB P A PG ++=.证明:CG PC BG PB AG P A PG +=+=+=⇒)()(3PC PB P A CG BG AG PG +++++=∵G 是△ABC 的重心∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB P A PG ++=3,由此可得)(31PC PB P A PG ++=.(反之亦然(证略))重心性质2.如图,已知点G 是ABC ∆的重心,过G 作直线与AB ,AC 两边分别交于M ,N两点,且AM xAB = ,AN y AC = ,则113x y+=.证明:点G 是ABC ∆的重心,知GA GB GC ++=O ,得()()AG AB AG AC AG -+-+-=O ,有1()3AG AB AC =+ .又M ,N ,G 三点共线(A不在直线MN 上),于是存在,λμ,使得(1)AG AM AN λμλμ=++=且,有AG xAB y AC λμ=+ =1()3AB AC +,得113x y λμλμ+=⎧⎪⎨==⎪⎩,于是得113x y +=2.外心:三角形三条中垂线的交点.外心O →→→==⇔OC OB OA 222OCOB OA ==⇔→→→→→→→→→=⋅⎪⎭⎫⎝⎛+=⋅⎪⎭⎫ ⎝⎛+=⋅⎪⎭⎫ ⎝⎛+⇔0CA OA OC BC OC OB AB OB OA 外心性质:如图,O 为ABC ∆的外心,证明:1.2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.2.)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.3.)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:结合三角形中线向量公式及极化恒等式即可完成证明.附:如图,直角三角形ABC 中,2||→→→=⋅AB AC AB .3.内心.三角形三条角平分线的交点.内心为O 0=⋅+⋅+⋅⇔→→→→→→OC AB OB CA OA BC 内心性质.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足ACAC ABAB OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的()A.外心B.内心C.重心D.垂心解:ABAB AB 的单位向量设AB 与AC方向上的单位向量分别为21e e 和,又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.4.垂心:三角形三条高线的交点.垂心为O →→→→→→⋅=⋅=⋅⇔OAOC OC OB OB OA 垂心性质.点H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心.由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(,同理AB HC ⊥,BC HA ⊥.故H 是△ABC 的垂心.(反之亦然(证略))二.典例分析1.若O 在△ABC 所在的平面内,a ,b ,c 是△ABC 的三边,满足以下条件0a OA b OB c OC ⋅+⋅+⋅=,则O 是△ABC 的()A .垂心B .重心C .内心D .外心解析:,OB OA AB OC OA AC =+=+ 且0a OA b OB c OC ⋅+⋅+⋅=,()0a b c OA b AB c AC ∴++⋅+⋅+⋅=,化简得bc AB AC AO a b c AB AC ⎛⎫ ⎪=+⎪++⎝⎭,设AB AC AP AB AC =+ ,又AB AB与AC AC 分别为AB 和AC 方向上的单位向量,AP ∴平分BAC ∠,又,AO AP共线,故AO 平分BAC ∠,同理可得BO 平分ABC ∠,CO 平分ACB ∠,故O 是△ABC 的内心.故选:C.2.在ABC 中,向量AB 与AC 满足0||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭,且2||||BA BC BA BC ⋅=,则ABC为()A .等边三角形B .直角三角形C .锐角三角形D .等腰直角三角形解析:∵0||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭,∴BAC ∠的角平分线垂直于BC ,根据等腰三角形三线合一定理得到ABC为等腰三角形,又∵2||||BA BC BA BC ⋅= ,∴=45ABC ∠︒,则ABC 为等腰直角三角形,故选:D.3.已知D 是ABC 内部(不含边界)一点,若::5:4:3ABD BCD CAD S S S =△△△,AD xAB y AC =+,则x y +=()A .23B .34C .712D .1解析:如图,连接AD 并延长交BC 与点M,设点B 到直线AD 的距离为B d ,点C 到直线AD 的距离为C d ,因为::5:4:3ABD BCD CAD S S S =△△△,所以设5,4,3ABD BCD CAD S k S k S k ===△△△,因为AM 与向量AD 共线,设AM AD xAB y AC ==+ λλλ,BM BC = μ,AM AB BM ∴=+AB BC =+ μ()(1),AB AC AB AB AC =+-=-+ μμμ所以1x y λμλμ=-⎧⎨=⎩,即11x y μμλλλ-+=+=,AM AD DM AD AD +==λ()()()B C B C AD DM d d AD d d +⨯+=⨯+111()53432221153222B B c B C C AD d AD d d d k k k k k AD d AD d ⨯+⨯+⨯+++===+⨯+⨯,所以123x y +==λ故选:A4.已知点P 是ABC 所在平面内的动点,且满足AB AC OP OA AB AC λ⎛⎫⎪=++⎪ ⎪⎝⎭(0)λ>,射线AP 与边BC 交于点D ,若23BAC π∠=,||1AD = ,则||BC 的最小值为()AB .2C.D.解析:AB AB 表示与AB 共线的单位向量,AC AC表示与AC共线的单位向量,所以点P 在BAC ∠的平分线上,即AD 为BAC ∠的角平分线,在ABD △中,3BAD π∠=,||1AD = ,利用正弦定理知:2sin sin 3sin AD BD B Bπ=⨯=同理,在ACD △中,2sin sin 3sin AD CD C Cπ=⨯=,1122sin sin 2sin sin BC BD CD B C B C ⎫=+==+⎝⎭,其中3B C π+=,分析可知当6B C π==时,BC取得最小值,即min 12sin 6BC π=⨯=5.已知点O 是锐角ABC 的外心,8AB =,12AC =,3A π=,若AO x AB y AC =+ ,则69x y +=()A .6B .5C .4D .3解析:如图所示,过点O 分别作⊥OD AB ,OE AC ⊥,垂足分别为D ,E ;则D ,E 分别为AB ,AC 的中点,∴221183222AO AB AB ⋅==⨯= ,2211127222AO AC AC ⋅==⨯= ;又3A π=,∴812cos 483AB AC π⋅=⨯⨯= ,∵AO x AB y AC =+ ,∴2AO AB xAB y AC AB ⋅=+⋅ ,2AO AC xAC AB y AC ⋅=⋅+ ,化为326448x y =+①,7248144x y =+②,联立①②解得16x =,49y =;∴695x y +=.故选:B6.已知ABC 外接圆圆心为O ,G 为ABC 所在平面内一点,且0GA GB GC ++=.若AB AC += 52AO,则sin BOG ∠=()A .12B .14C.4D解析:取BC 的中点D ,连接AD ,由0GA GB GC ++=,知G 为ABC 的重心,则G 在AD 上,所以12()33AG AB AC AD =+= ,而24()55AO AB AC AD =+=,所以A ,G ,O ,D 四点共线,所以AB AC =,即AD BC ⊥,不妨令5AD =,则4AO BO ==,1OD =.所以sin sin 4BD BOG BOD BO ∠=∠==.故选:C .7.设H 是ABC ∆的垂心,且3450HA HB HC ++=,则cos ABC ∠=______.解析:H 是ABC ∆的垂心⇔::tan :tan :tan BHC CHA AHB S S S A B C∆∆∆=⇔tan tan tan 0A HAB HBC HC∙∙∙++=由题设得tan tan tan345A B Cλ===.再由tan tan tan tan tan tan A B C A B C ++=,得λ=,tan 5B =.故cos 21ABC ∠=.故答案为:218.已知点O 为三角形ABC 所在平面内的一点,且满足1OA OB OC ===,3450OA OB OC ++=,则AB AC ⋅= ___.解析:∵1OA OB OC === ,3450OA OB OC ++= ,∴345OA OB OC +=-,两边同时平方可得,9162425OA OB ++⋅= ,∴0OA OB ⋅=,∵3455OC OA OB =--,则()()AB AC OB OA OC OA ⋅=-⋅- ()8455OB OA OA OB ⎛⎫=-⋅-- ⎪⎝⎭2284845555OB OA OB OA OB OA =-⋅-++⋅ 48400555=-++=,故答案为45.。
(完整版)平面向量与三角形四心问题

平面向量基本定理与三角形四心已知O 是ABC ∆内的一点,AOB AOC BOC ∆∆∆,,的面积分别为A S ,B S ,C S ,求证:0=++•••OC S OB S OA S C B A如图2延长OA 与BC 边相交于点D 则BCCOD ACD BOD ABD COD BOD ACD BD S S DC BD S S S S S S S S A =--===∆∆∆∆∆∆∆图1=OD BC DC OB +BCBDOC =C B BS SS +OB +CB C S S S +OCCB ACOA BOA COD BOD COA COD BOABOD S S S S S S S S S SS OA OD +=++=== 图2∴CB A S S S OD +-=OA∴CB A S S S +-OA =C B BS S S +OB +CB C S S S +OC∴0=++•••OC S OB S OA S C B A推论O 是ABC ∆内的一点,且0=++•••OC OB OA z y x ,则z y x S S S AOB COA BOC ::::=∆∆∆OA BCDOA BC有此定理可得三角形四心向量式O 是ABC ∆的重心⇔1:1:1::=∆∆∆AOB COA BOC S S S ⇔0=++OC OB OAO 是ABC ∆的内心⇔c b a S S S AOB COA BOC ::::=∆∆∆⇔0=++•••OC OB OA c b aO 是ABC ∆的外心⇔C B A S S S AOB COA BOC 2sin :2sin :2sin ::=∆∆∆ ⇔02sin 2sin 2sin =++•••OCC OB B OA AO 是ABC ∆的垂心⇔C B A S S S AOB COA BOC tan :tan :tan ::=∆∆∆ ⇔0tan tan tan =++•••OC C OB B OA A证明:如图O 为三角形的垂心,DBCDB AD CD A ==tan ,tan ⇒AD DB B A :tan :tan = =∆∆COA BOC S S :AD DB :∴B A S S COA BOC tan :tan :=∆∆同理得C B S S AOB COA tan :tan :=∆∆,C A S S AOB BOC tan :tan:=∆∆∴C B A S S S AOB COA BOC tan :tan :tan ::=∆∆∆奔驰定理是三角形四心向量式的完美统一4.2三角形“四心”的相关向量问题一.知识梳理:四心的概念介绍:(1) 重心:中线的交点,重心将中线长度分成2:1; (2) 垂心:高线的交点,高线与对应边垂直;(3) 内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等; (4) 外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等。
平面向量的应用之三角形的四心

△ABC 的
心.
第2页 共3页
8. 若 O# A» + O# B» + O# C» = #0»,则点 O 是 △ABC 的
心.
9.
若
#» PO
=
1 3
# (P
» A
+
# P
» B
+
# P
C»),则点
O
是
△ABC
的
心.
10.
已知
△ABC
的角
A,B,C
所对的边分别为
a,b,c,
若
#» PO
=
#» #» #» aP A + bP B + cP C ,则点
§1 平面向量与三角形的四心
一 知识梳理
1. 三角形的重心
(1) 定义
C
三角形三条中线的交点叫作重心,它到三角形顶点距离与该点到对
边中点距离之比为 2 : 1.
(2) 向量表达式
#» OA
+
#» OB
+
#» OC
=
#0»
#» PO
=
1 3
# (P
» A
+
#» PB
+
# P
C»).
E
F
O
A
D
B
2. 三角形的垂心
C (1) 定义
三角形三条高线的交点叫垂心.
(2) 向量表达式 O# A» · O# B» = O# B» · O# C» = O# A» · O# C» O# A»2 + B# C»2 = O# B»2 + A# C»2 = O# C»2 + A# B»2. A
平面向量与三角形的四心

平面向量与三角形的四心一、三角形的心(在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c )1.三角形的外心(Circumcenter ):三角形三条边的垂直平分线相交于一点,它是这个三角形外接圆的圆心,即外心.①外心到三顶点的距离相等,即|OA →|=|OB →|=|OB →|; ②外接圆半径R =a 2sin A =b 2sin B =c 2sin C =abc4S △ABC,直角三角形的外接圆半径R =c2(c 为斜边长);③AO →·BC →=12(b 2-c 2).2.三角形的内心(Incenter ):三角形三条内角平分线交于一点,这一点到这个三角形的三边的距离相等,是这个三角形的内切圆的圆心,即内心.①内切圆半径r =2S △ABC a +b +c=S △ABCp =(p -a )(p -b )(p -c )p ,Rr =abc2(a +b +c ),(其中R 为△ABC 外接圆半径,p =a +b +c2),直角三角形的内切圆半径r =a +b -c 2=aba +b +c(其中c 为斜边长,a 、b 为直角边长);② a IA →+b IB →+c IC →=0→; ③ID IA =a b +c ,IE IB =b c +a ,IF IC =c a +b. 3.三角形的重心:三角形三条中线相交于一点,它是这个三角形的重心.①GD GA =GE GB =GF GC =12,AD =122b 2+2c 2-a 2,BE =122c 2+2a 2-b 2,CF =122a 2+2b 2-c 2; ② S △GBC =S △GCA =S △GAB ,重心G 到三条边的距离与三条边的长成反比;③重心G 的坐标为(x 1+x 2+x 33,y 1+y 2+y 33);④GA →+GB →+GC →=0→; ⑤AG →·BC →=13(b 2-c 2).4.三角形的垂心(Orthocenter ):三角形三条高或其所在的直线的交点叫做这个三角形的垂心,锐角三角形的垂心在三角形内,直角三角形的垂心在直角顶点,钝角三角形的垂心在三角形外.BDBC二、三角形的心与向量的关系 1、三角形四心与各个顶点的关系⑴|OA →|=|OB →|=|OB →|; ⑵a IA →+b IB →+c IC →=0→⑶GA →+GB →+GC →=0→; ⑷HA →·HB →=HB →·HC →=HC →·HA → 2、轨迹经过三角形的外心、内心、重心、垂心 若O 是平面ABC 内的一定点,那么⑴若OP →=OA →+λ (AB →+AC →) (λ∈R ),则点P 的轨迹经过△ABC 的重心; ⑵若OP →=OA →+λ (AB →—|AB →|+AC →—|AC →|) (λ∈R ),则点P 的轨迹经过△ABC 的内心;⑶若OP →=OA →+λ (AB →—|AB →|cos B +AC →—|AC →|cos C ) (λ∈R ),则点P 的轨迹经过△ABC 的垂心; ⑷若OP →=OB →+OC →2+λ (AB →—|AB →|cos B +AC →—|AC →|cos C ) (λ∈R ),则点P 的轨迹经过△ABC 的外心;⑸若AP →·AB →—|AB →|=AP →·AC →—|AC →|,则点P 的轨迹经过△ABC 的内心. 4、当O 是△ABC 的各心时有下列结论:⑴若O 是重心,则OA →+OB →+OC →=0→,反之亦然; ⑵若O 是内心,则a OA →+b OB →+c OC →=0→,反之亦然;⑶若O 是外心,则sin2A OA →+sin2B OB →+sin2C OC →=0→,反之亦然; ⑷若O 是垂心,则tan A OA →+tan B OB →+tan C OC →=0→,反之亦然; 三、三角形的重要线段及面积 1、若AD 是△ABC 的中线,则⑴AD →=12(AB →+AC →);拓展,若点D 在BC 边上,BD :DC =m ;n ,则AD →=n m +n AB →+m m +n AC →⑵AB 2+AC 2=2(BD 2+AD 2),或AD =122b 2+2c 2-a 2;2、若AD 为∠A 的平分线,则⑴BD DC =AB AC ;⑵AD →= (→AB —|AB →|+→AC—|AC →|). 3、若AD 是BC 边上的高,则AD →·BC →=04、三角形面积S △=12ab sin C =p (p -a )(p -b )(p -c )=2R 2sin A sin B sin C =abc4R【练习题】1.(09海南宁夏)已知O ,N ,P 在△ABC 所在平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0→,且P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( C ) A. 重心、外心、垂心 B. 重心、外心、内心C. 外心、重心、垂心D. 外心、重心、内心(注:三角形的三条高线交于一点,此点为三角型的垂心)2.(2010湖北)已知△ABC 和点M 满足MA →+MB →+MC →=0→.若存在实数m 使得AB →+AC →=m AM →成立,则m = ······························································································· ( B )A .2B .3C .4D .53.(2010全国Ⅱ)△ABC 中,点D 在AB 上,CD 平分∠ACB .若CB →=a →,CA →=b →,|a →|=1,|b →|=2,则CD →= ···························································································· ( A )A. 13a →+23b → B. 23a →+13b → C. 35a →+45b → D. 45a →+35b → 4.(2005年全国I 文科)点O 是△ABC 所在平面内的一点,满足OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的 ············································································· ( D ) A. 三个内角的角平分线的交点 B. 三条边的垂直平分线的交点C. 三条中线的交点D. 三条高的交点5.(2012年大纲)△ABC 中,AB 边上的高为CD ,若CB →=a →,CA →=b →,a →·b →=0,|a→|=1,|b →|=2,则AD →= ··························································································· ( D )A .13a →-13b →B . 23a →-23b →C .35a →-35b →D .45a →-45b →6.(2005年全国I 理科)△ABC 的外接圆的圆心为O ,两条边上的高的交点为H , OH →=m (OA →+OB →+OC →),则实数m = ;【1】7. (2014全国1高考理15)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB→与AC →的夹角为 .【90 】8.给定直线l :y =2x -16,抛物线C :y 2=ax (a >0). ⑴当抛物线C 的焦点在直线l 上时,求抛物线的方程;⑵若△ABC 的三个顶点在⑴确定的抛物线上,且点A 的纵坐标y A =8,△ABC 的重心恰好时抛物线的焦点,求直线BC 的方程.【简答】⑴y 2=32x ;⑵4x +y -40=09.(北京2002年理科数学第21题)已知O (0,0),B (1,0),C (b ,c )是△OBC 的三个顶点.⑴写出△OBC 的重心G ,外心F ,垂心H 的坐标,并证明G 、F 、H 三点共线; ⑵当直线FH 与OB 平行时,求顶点C 的轨迹.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量与三角形“四心”的应用问题
三角形的外心,内心,重心及垂心,在高考中的考查是比较棘手的问题,先课程教材中所加的内容,更加引起我们的重视,尤其与平面向量结合在一起,那就更加难于掌握了。
本文拟对与三角形的“四心”相关的平面向量问题加以归纳,供学习时参考.
1 课本原题
例1、已知向量123,,OP OP OP 满足条件1230OP OP OP ++=,123||||||1OP OP OP ===,求证:
123PP P △是正三角形.
分析 对于本题中的条件123||||||1OP OP OP ===,容易想到,点O 是123PP P △的外心,而另一个条件1230OP OP OP ++=表明,点
O 是123PP P △的重心. 故本题可描述为,若存在一个点既是三角形的重心也是外心,则该三角形一定是正三角形.在1951年高考中有一道考题,原题是:若一三角形的重心与外接圆圆心重合,则此三角形为何种三角形?与本题实质是相同的.
显然,本题中的条件123||||||1OP OP OP ===可改为123||||||OP OP OP ==.
2 高考原题
例2、O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足 ()[0,).||||
A B A C
O P O A A B A C λλ=++⋅∈+∞则P 的轨迹一定通过△ABC 的( )
.
A .外心
B .内心
C .重心
D .垂心
分析 已知等式即(
)||||AB AC AP AB AC λ=+,设,||||
AB AC
AE AF AB AC ==
,显然,AE AF 都是单位向量,以二者为邻边构造平行四边形,则结果为菱形,故AP 为ABC ∠的平分线,选B .
例3、ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,()OH m OA OB OC =++,则实数m = .
分析:本题除了利用特殊三角形求解外,纯粹利用向量知识推导则比较复杂,更加重要的一点是缺乏几何直观.解法如下,由已知,有向量等式0AH BC =,将其中的向量分解,
向已知等式形式靠拢,有()()0OH OA OC OB --=,将已知代入,有
[()]()0m OA OB OC OA OC OB ++--=,即22
()(1)0m OC OB m OA BC -+-=,由O 是外心,得
(1)0m OA BC -=,由于ABC ∆是任意三角形,则OA BC 不恒为0,故只有1m =恒成立.
或者,过点O 作OM BC ⊥与M ,则M 是BC 的中点,有1
()2
OM OB OC =
+;H 是垂心,则AH BC ⊥,故AH 与OM 共线,设AH kOM =,则()2
k
OH OA AH OA OB OC =+=++,又
()OH m OA OB OC =++,故可得(1)()()022k k m OA m OB m OC -+-+-=,有102
k
m m -=-=,
得1m =.
根据已知式子()OH m OA OB OC =++中的OA OB OC ++部分,很容易想到三角形的重心坐标公式,设三角形的重心为G ,O 是平面内任一点,均
有3
OA OB OC
OG ++=
,由题意,题目显然叙述的是一个
一般的结论,先作图使问题直观化,如图1,由图上观察,很容易猜想到2HG GO =,至少有两个产生猜想的诱因,其一是,,BF OT 均与三角形的边AC 垂直,则//BF OT ;其二,点G 是三角形的中线BT 的三等分点.此时,会先猜想BHG TOG △∽△,但现在缺少一个关键的条件,即
2BH OT =,这样由两个三角形的两边长对应成比例,同
时,夹角对应相等可得相似.当然,在考试时,只需大胆使用,也可利用平面几何知识进行证明.
本题结论是关于三角形的欧拉定理,即设O 、G 、H 分别是△ABC 的外心、重心和垂心,则O 、G 、H 三点共线,且OG∶GH=1∶2,利用向量表示就是3OH OG =.
例4、点O 是三角形ABC 所在平面内的一点,满足OA OB OB OC OC OA ==,则点O 是ABC ∆的( ).
A .三个内角的角平分线的交点
B .三条边的垂直平分线的交点
C .三条中线的交点
D .三
条高的交点
分
析 移项后不难得
出,
B
C
图1
A
0OB CA OC AB OA CB ===,点O 是ABC ∆的垂心,选D .
3 推广应用题
例5 在△ABC 内求一点P ,使222AP BP CP ++最小.
分析 如图2,构造向量解决.取,CA a CB b ==为基向量,设CP x =,有
,A P x a B P x b
=-=
-. 于是,222
2
2
2
2
2
211()()3[()]()33
AP BP CP x a x b x x a b a b a b ++=-+-+=-+++-+.
当1()3x a b =+时,222AP BP CP ++最小,此时,即1()3
OP OA OB OC =++,则点P 为△ABC
的重心.
例
6
已
知
O
为△ABC 所在平面内一点,满足
222222||||||||||||OA BC OB CA OC AB +=+=+,则O 为△ABC 的 心.
分析 将22
22||()2BC OC OB OC OB OC OB =-=+-,22||,||CA AB 也类似展开代入,已知等式与例4的条件一样.也可移项后,分解因式合并化简,O 为垂心.
例7 已知O 为△ABC 的外心,求证:sin sin sin 0OA BOC OB AOC OC AOB ++=. 分析 构造坐标系证明.如图3,以A 为坐标原点,B 在x 轴的正半轴,C 在x 轴的上方.201
2
AOB S x y =
△,直线BC 的方程是32
32
3(
)0y x x x y x y +--=,由于点A 与点O 必在直
线BC 的同侧,且230x y -<,因此有
03
302020x y x y x y x y -+-<,得
302303201
()2
BOC S x y x y x y x y =
+--△. 直线AC 的方程是330y x x y -=,由于点(1,0)与
点O 必在直线AC 的同侧,且33100y x ⨯-⨯>,因此有03300x y x y ->,得03301
()2
AOC S x y x y =-△.
于是,容易验证,
BOC AOC AOB OA S OB S OC S ⨯+⨯+⨯=△△△,又
1
||||sin 2BOC S OB OC BOC =△, 1||||sin 2BOA
S OB OA AOB =△,1
||||sin 2
AOC S OA OC AOC =△,又||||||OA OB OC ==,则所证成立.。