CO2-EOR驱油技术

合集下载

三次采油

三次采油

三次采油—CO2驱油技术研究摘要油藏经过二次采油后,仍有大量的原油存留于地下,经过三次采油后,储层的含油饱和度提升的空间仍然很大。

EOR(提高采收率技术)在油田中应用的越来越广泛,主要有化学驱,微生物驱,气驱,热力驱。

随着人类大量排放的温室气体CO2使全球气候变暖,对人类的生存和社会经济的发展构成了严重的威胁。

CO2的地质处置最有效的方式就是注入油气田,不但封存了CO2,而且还可提高油气田的采收率。

CO2的地质处置最有效方式就是注入油气田,不但封存了二氧化碳,而且还可提高油气田的采收率。

本次作业主要介绍了注二氧化碳提高采收率的机理、室内研究进展以及国内外开展现场试验的情况。

在现场应用中二氧化碳吞吐、混相驱和非混相驱都可有效提高采收率,合适的注CO2工艺需根据油藏条件选择。

并指出了注CO2技术目前面临的腐蚀、气源、气窜及高投资等问题。

关键词:最小混相压力;二氧化碳气驱;提高采收率;(非)混相;腐蚀;1概述随着世界对石油需求量的不断增加,石油作为有限的不可再生资源,再发现大油田的几率越来越小,已开发的油田正在不断老化,未开采的多为稠油、超稠油油田,非常难于开发。

这就迫使人们把注意力转向提高老油田原油采收率的技术上。

三次采油(EOR)技术是一项能够利用物理、化学和生物等新技术提高原油采收率的重要油田开发技术。

近年来我国石油供需缺口逐年增大,以及石油价格的急剧攀升,提高采收率技术在我国受到了空前的重视。

目前,三次采油技术在提高采收率,稳定老油田的原油产量方面尤为重要,尤其是在油田开发后期,必须进行三次采油。

近几年,注气提高采收率技术发展迅速,其中又以注CO2技术的发展速度最快。

如今,人类大量排放的CO2温室气体量越来越巨大,导致全球气候变暖,其幅度已经超出了地球本身自然变动的范围,对人类的生存和社会经济的发展构成了严重的威胁。

而CO2的地质处置最有效的方式就是注入油气田,不但封存了二氧化碳,而且还可提高油气田采收率。

CO2驱油法提高油气采收率(CO2―EOR)技术综述

CO2驱油法提高油气采收率(CO2―EOR)技术综述

CO2驱油法提高油气采收率(CO2―EOR)技术综述一、概述石油和天然气是不可再生资源,而随着世界油气能源日益枯竭,国家能源安全形势日益严峻,提高油气采收率(enhance oil recovery,eor)已成为解决能源问题的重中之重。

注气驱油是提高原油采收率的重要技术。

其中,co2是一种十分有效的气体驱油剂,已在全球范围内得到广泛关注。

同时,从环保的角度来看,co2是国际公认的主要温室气体之一,约占温室气体总量的65%。

co2的排放引起的全球变暖问题,始终困扰着各国政府和环保人士的神经。

而从我国国情来看,首先,我国石油资源有限,石油资源主要依靠进口,国家能源安全形势十分严峻。

其次,我国是继美国之后的世界第二大co2排放国,co2减排责任重大。

2009年,中国政府在联合国气候大会上承诺,到2020年中国单位国内生产总值co2排放比2005年下降40%~45%,该指标已经被纳入国民经济和社会发展的中长期规划。

co2驱油技术能够处理co2排放量,并提高原油采收率,为我国经济、政治、军事以及社会等各方面带来效益。

二、国内外研究现状美国因其油气资源丰富,co2混相驱已成为一项成熟的提高采收率的方法,在美国油田广泛应用。

2005年,美国实施注气方法的原油产量首次超过热采产量,成为最主要的eor方法。

另据《油气杂志》2006年统计,全球实施co2-eor项目共94个,其中美国占了82个,其年产量占世界co2-eor总产量的94.2%。

2.1 国外co2驱项目情况美国是co2驱发展最快的国家。

自20世纪80年代以来,美国的co2驱项目不断增加,已成为继蒸汽驱之后的第二大提高采收率技术。

到2009年美国正在实施的co2混相驱项目有64个。

最大的也是最早使用co2驱的是始于1972年的sacroc油田。

其余半数以上的大型气驱方案是于1984~1986年间开始实施的,目前其增产油量仍呈继续上升的趋势。

大部分油田驱替方案中,注入的co2 体积约占烃类空隙体积的30%,提高采收率的幅度为7%~22%。

CO2混相驱和非混相驱的驱油机理

CO2混相驱和非混相驱的驱油机理

谢谢Biblioteka 四、CO2混相驱和非混相驱技术应用
1、CO2混相驱对开采下面几类油藏具有更重要的意义 (1)水驱效果差的低渗透油藏;
(2)水驱完全枯竭的砂岩油藏;
(3)接近开采经济极限深层、气质油藏; (4)利用CO2重力稳定混相驱开采多盐丘油藏。
四、CO2混相驱和非混相驱技术应用
(1)可用CO2来恢复枯竭油藏的压力。 特别是对于低渗透油藏,在不能以经济速度注水或驱 替溶剂段塞来提高油藏的压力时,采用注CO2就可能办到, 因为低渗透性油层对注入CO2这类低粘度流体的阻力很 小。 (2)重力稳定非混相驱替。用于开采高倾角、垂向渗透率高 的油藏。 (3)重油CO2驱,可以改善重油的流度,从而改善水驱效 率。 (4)应用CO2驱开采高粘度原油
三、CO2非混相驱驱油机理
(1)降低原油粘度 CO2溶于原油后,降低了原油粘度,试验表明,原油粘度 越高,粘度降低程度越大。40℃时,CO2溶于沥青可以大大 降低沥青的粘度。温度较高(大于120℃)时,因CO2溶解度 降低,降粘作用反而变差。在同一温度条件下,压力升高 时,CO2溶解度升高,降粘作用随之提高,但是,压力过高,若压 力超过饱和压力时,粘度反而上升。原油粘度降低时,原油 流动能力增加,从而提高了原油产量。
CO2混相驱和非混相驱的驱油机理
CO2混相驱和非混相驱的驱油机理
一、CO2驱研究背景及相关概念 二、CO2混相驱驱油机理 三、CO2非混相驱驱油机理 四、CO2混相驱和非混相驱技术应用 五、CO2混相驱和非混相驱应用优点
一、CO2驱研究背景及相关概念
1、CO2驱研究背景 我国低渗、特低渗油藏投入开发后暴露出许多矛盾, 如自然产能低、地层能量不足、地层压力下降快等,而注 水补充能量因油藏地质条件的限制受到很大制约,因此采 收率均较低。从国外EOR技术的发展趋势看,气驱特别是 CO2混相驱将是提高我国低渗透油藏采收率最有前景的方 法。

co2 eor类型

co2 eor类型

co2 eor类型CO2 EOR(二氧化碳增油)是一种常用的石油开采技术,通过注入二氧化碳来提高油田的采收率。

本文将介绍CO2 EOR的原理、应用、优势和挑战。

一、原理CO2 EOR的原理是基于溶解气体驱替和体积膨胀驱替的作用。

首先,二氧化碳溶解于原油中,降低了原油的粘度和表面张力,使原油更易流动。

其次,二氧化碳的体积膨胀作用可以驱出原油中的孔隙油,增加采收率。

最后,二氧化碳的注入可以驱动原油向井口流动,提高采收效率。

二、应用CO2 EOR广泛应用于石油开采领域。

在已经开采过一段时间的油田中,常规采油技术已经无法有效提高采收率,此时可以考虑采用CO2 EOR技术。

CO2 EOR技术不仅可以提高采收率,还可以实现二氧化碳的地下封存,减少温室气体排放,具有环保意义。

三、优势CO2 EOR技术相比传统采油技术具有以下优势:1. 提高采收率:CO2 EOR技术可以提高油井的采收率,使原本无法开采的油田重新具有经济价值。

2. 减少环境污染:二氧化碳注入油田后,可以实现地下封存,减少温室气体排放,对环境更友好。

3. 经济效益:CO2 EOR技术可以利用已有的油井设施和设备,降低投资成本,提高经济效益。

4. 可持续性:CO2 EOR技术可以延长油田的生产周期,使油井更加可持续。

四、挑战CO2 EOR技术在应用过程中面临一些挑战:1. 二氧化碳来源:二氧化碳的供应是CO2 EOR技术的关键问题之一。

目前,大部分二氧化碳来自化石燃料燃烧过程,因此需要寻找更多的二氧化碳来源。

2. 注入效果:注入二氧化碳后,需要确保二氧化碳能够均匀分布于油层,以提高采收率。

但是油层的渗透性和孔隙结构会影响二氧化碳的分布效果。

3. 安全问题:二氧化碳注入油田后,需要注意对环境和地下水的影响。

同时,也需要防止二氧化碳泄露到地表,造成安全隐患。

CO2 EOR技术通过注入二氧化碳来提高油田的采收率,具有环保、经济和可持续的优势。

然而,二氧化碳的供应、注入效果和安全问题仍然是该技术面临的挑战。

二氧化碳驱油技术

二氧化碳驱油技术

目前,世界上大部分油田仍采用注水开发,这就面临着需要进一步提高采收率和水资源缺乏的问题。

对此,国外近年来大力开展二氧化碳驱油提高采收率技术的研发和应用。

这项技术不仅能满足油田开发的需求,还可以解决二氧化碳的封存问题,保护大气环境。

该技术不仅适用于常规油藏,尤其对低渗、特低渗透油藏,可以明显提高原油采收率。

一、二氧化碳驱油技术二氧化碳驱油,是一种把二氧化碳注入油层中以提高油田采收率的技术。

标准状况下,二氧化碳是一种无色、无味、比空气重的气体,密度是1.977克/升。

当温度压力高于临界点时,二氧化碳的性质发生变化:形态近于液体,黏度近于气体,扩散系数为液体的100倍。

这时的二氧化碳是一种很好的溶剂,其溶解性、穿透性均超过水、乙醇、乙醚等有机溶剂。

如果将二氧化碳流体与待分离的物质接触,它就能够有选择性地把该物质中所含的极性、沸点和分子量不同的成分依次萃取出来。

萃取出来的混合物在压力下降或温度升高时,其中的超临界流体变成普通的二氧化碳气体,而被萃取的物质则完全或基本析出,二氧化碳与萃取物就迅速分离为两相,这样,可以从许多种物质中提取其有效成分。

二氧化碳驱油一般可提高原油采收率7%~15%,延长油井生产寿命15~20年。

在二氧化碳与地层原油初次接触时并不能形成混相,但在合适的压力、温度和原油组分的条件下,二氧化碳可以形成混相前缘。

超临界流体将从原油中萃取出较重的碳氢化合物,并不断使驱替前缘的气体浓缩。

于是,二氧化碳和原油就变成混相的液体,形成单一液相,从而可以有效地将地层原油驱替到生产井。

应用混相驱油提高石油采收率的一个关键性参数是气体与原油的最小混相压力(MMP),MMP是确定气驱最佳工作压力的基础。

一般情况下,因为混相驱油比非混相驱油能采出更多的原油,所以希望在等于或略高于MMP下进行气驱。

如果压力远高于MMP,就容易造成地层破裂,无法保障生产过程的安全性,其结果是不仅不能大幅度提高原油产量,还会降低经济效益。

二氧化碳驱油技术及比较

二氧化碳驱油技术及比较

二氧化碳驱油技术及比较1.2 CO2-EOR驱油技术目前CO2-EOR的实施方法主要有CO2混相驱、CO2非混相驱和CO2吞吐,其中CO2混相驱应用最为普遍。

另外,CO2-EOR实施中也有热CO2驱、碳酸水驱、就地生成CO2技术等其他方法。

1.2.1 CO2混相驱CO2混相驱一般采用CO2与水交替注入储层的方法,具体注入方法取决于储层的性质,主要有连续注入、简单注入、锥形注入等(如图2)。

实施过程中首先注入CO2,由于连续注CO2驱替油层时宏观波及系数很低,因此注水改变二氧化碳的驱油速度,扩大CO2的波及效率。

基本机理是CO2和地层原油在油藏条件下形成稳定的混相带前缘,该前缘作为单相流体移动并有效地把原油驱替到生产井(图3),由于混相,多孔介质中的毛细管力降至为零,理论上可使微观驱替效率达到100%。

混相驱要求油藏压力高于或等于CO2与原油完全混相的最低压力(MMP)。

由于受地层破裂压力等条件的限制,该方法通常用于原油相对密度小于0.89g/cm3,油层温度小于120℃的中、深层油藏。

通过CO2混相驱,原油采收率比注水方法提高约30%~40%。

与水交替注入驱油示意图图2 CO2混相驱技术示意图图3 CO2混相驱对开采下面几类油根据以往的经验,CO2藏具有更重要的意义。

(1)不合适水驱开采的低渗透油藏。

(2)水淹后的砂岩油藏。

(3)接近开采经济极限的深层、轻质油藏。

1.2.2 CO2非混相驱CO2非混相驱效率次于混相驱,但高于水驱或惰性气驱,一般以重力稳定CO2注入方式生产,将二氧化碳注入到圈闭构造的顶部,使原油向下及构造两边移动,在构造两边的生产井中将原油采出(图4)。

主要采油机理是对原油中轻烃汽化和抽提,使原油体积膨胀,黏度降低,界面张力减小。

另外,CO2还可以提高或保持地层压力,当地层压力下降时,CO2就会从饱和了CO2的原油中溢出,形成溶解气驱,达到提高原油采收率的目的。

适用于非混相驱的油藏类型主要有:(1)重油或高黏油油藏;(2)压力衰竭的低渗透油藏;(3)高倾角、垂向渗透率高的油藏。

阐述二氧化碳驱提高采收率技术及应用

阐述二氧化碳驱提高采收率技术及应用

阐述二氧化碳驱提高采收率技术及应用提高采收率(EOR)研究是油气田开发永恒的主题之一。

将二氧化碳注入衰竭的油层,可提高油气田采收率,己成为世界许多国家石油开采业的共识。

二氧化碳驱一般可提高原油采收率7%~15%,延长油井生产寿命15~20a。

二氧化碳来源可从工业设施如发电厂、化肥厂、水泥厂、化工厂、炼油厂、天然气加工厂等排放物中回收,既可实现使气候变暖的温室气体的减排,又可达到增产油气的目的。

1、二氧化碳驱油机理1.1降粘作用二氧化碳与原油有很好的互溶性,随着溶解气油比的增加,原油粘度显著降低,粘度降低后原油流动能力增大,油水流度比减小,提高原油产量。

1.2膨胀作用二氧化碳注入油藏后,使原油体积大幅度膨胀,便可以增加地层的弹性能量,还有利于膨胀后的剩余油脱离地层水以及岩石表面的束缚,变成可动油,是驱油效率升高,提高原油采收率。

1.3萃取和汽化原油中的轻烃在一定压力下,二氧化碳混合物能萃取和汽化原油中不同组分的轻质烃,降低原油相对密度,从而提高采收率。

二氧化碳首先萃取和汽化原油中的轻质烃,随后较重质烃被汽化产出,最后达到稳定。

1.4溶解气驱作用大量的二氧化碳溶于原油中具有溶解气驱的作用。

降压采油机理与溶解气驱相似,随着压力下降,二氧化碳从液体中逸出,液体内产生气体驱动力,提高了驱油效果。

另外,一些二氧化碳驱油后,占据了一定的孔隙空间,成为束缚气,也可使原油增产。

1.5提高渗透率作用二氧化碳溶于原油和水,使其碳酸化。

碳酸水与油藏的碳酸盐反应,生成碳酸氢盐。

碳酸氢盐易溶于水,导致碳酸盐尤其是井筒周围的大量水和二氧化碳通过的碳酸岩渗透率提高,使地层渗透率得以改善,上述作用可使砂岩渗透率提高5%-15%,同时二氧化碳还有利于抑制粘土膨胀。

另外,二氧化碳-水混合物由于酸化作用可以在一定程度上解出无机垢堵塞、疏通油流通道、恢复单井产能。

2、二氧化碳驱种类及注入工艺2.1二氧化碳驱的种类(1)二氧化碳混相驱。

混相驱油是在地层高退条件下,油中的轻质烃类分子被二氧化碳提取到气相中来,形成富含烃类的气相和溶解了二氧化碳的原油的液相两种状态。

二氧化碳驱油技术及比较

二氧化碳驱油技术及比较

二氧化碳驱油技术及比较1.2 CO2-EOR驱油技术目前CO2-EOR的实施方法主要有CO2混相驱、CO2非混相驱和CO2吞吐,其中CO2混相驱应用最为普遍。

另外,CO2-EOR实施中也有热CO2驱、碳酸水驱、就地生成CO2技术等其他方法。

1.2.1 CO2混相驱CO2混相驱一般采用CO2与水交替注入储层的方法,具体注入方法取决于储层的性质,主要有连续注入、简单注入、锥形注入等(如图2)。

实施过程中首先注入CO2,由于连续注CO2驱替油层时宏观波及系数很低,因此注水改变二氧化碳的驱油速度,扩大CO2的波及效率。

基本机理是CO2和地层原油在油藏条件下形成稳定的混相带前缘,该前缘作为单相流体移动并有效地把原油驱替到生产井(图3),由于混相,多孔介质中的毛细管力降至为零,理论上可使微观驱替效率达到100%。

混相驱要求油藏压力高于或等于CO2与原油完全混相的最低压力(MMP)。

由于受地层破裂压力等条件的限制,该方法通常用于原油相对密度小于0.89g/cm3,油层温度小于120℃的中、深层油藏。

通过CO2混相驱,原油采收率比注水方法提高约30%~40%。

与水交替注入驱油示意图图2 CO2混相驱技术示意图图3 CO2混相驱对开采下面几类油根据以往的经验,CO2藏具有更重要的意义。

(1)不合适水驱开采的低渗透油藏。

(2)水淹后的砂岩油藏。

(3)接近开采经济极限的深层、轻质油藏。

1.2.2 CO2非混相驱CO2非混相驱效率次于混相驱,但高于水驱或惰性气驱,一般以重力稳定CO2注入方式生产,将二氧化碳注入到圈闭构造的顶部,使原油向下及构造两边移动,在构造两边的生产井中将原油采出(图4)。

主要采油机理是对原油中轻烃汽化和抽提,使原油体积膨胀,黏度降低,界面张力减小。

另外,CO2还可以提高或保持地层压力,当地层压力下降时,CO2就会从饱和了CO2的原油中溢出,形成溶解气驱,达到提高原油采收率的目的。

适用于非混相驱的油藏类型主要有:(1)重油或高黏油油藏;(2)压力衰竭的低渗透油藏;(3)高倾角、垂向渗透率高的油藏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



目前该技术已在大庆油田、吉林油田、胜利油田和 辽河油田等进行过试验,都取得了较好的效果(郝 敏等,2010)。 由于温室效应的存在,该技术是缓解环境污染压力、 提高石油采收率的重要手段;并且我国的低渗透和 稠油资源十分丰富,同时该技术成本低廉、成效显 著,因此在我国有较好的应用前景。
[1]江怀友,沈平平,卢颖,江良冀,罗金玲. CO2提高世界油气 资源采收率现状研究[J]. 特种油气藏,2010,02:510+120. [2]郝敏,宋永臣. 利用CO2提高石油采收率技术研究现状[J]. 钻采工艺,2010,04:59-63+139. [3]王涛,姚约东,李相方,李虎,石俊芳,杨祝华. 二氧化碳驱油 效果影响因素与分析[J]. 中国石油和化工,2008,24:3033.
①储层的深度范围在1000~3000m范围内;
②致密和高渗透率储层;
③原油黏度为低或中等级别;
④储层为砂岩或碳酸盐岩。

主要机理是:降低原油黏度,改善油水流度比,使 原油膨胀,乳化作用及降压开采。 CO2在油中的溶解度随压力的增加而增加,当压力 降低时, CO2从饱和 CO2的原油中溢出并驱动原 油,形成溶解气驱。气态CO2渗入地层与地层水反 应产生的碳酸,能有效改善井筒周围地层的渗透率, 提高驱油效率(王涛等,2008)。

全球变暖,冰川融化及海平面上升等一系列问题都 与CO2的排放紧密相关,同时资源的匮竭,提高石 油的采收率显得十分重要。所以CO2-EOR( CO2 enhanced oil recovery)技术既能做到CO2的地 质封存,同时也能提高石油采收率。
CO2提高采收率的作用主要有促进原油膨胀、改变 油水流动比、溶解气驱等。 ① CO2混相驱 稀油油藏

CO2 -EOR非混相驱油的条件(江怀友等, 2010):
(1)储层纵向上渗透率高。 (2)储层中大量的原油形成油柱。 (3)储层具有可以形成气顶的圈闭构造,储层连通性好。 (4)储层中没有导致驱油效率降低的断层和断裂。


③ ④ ⑤
CO2提高采收率经济效益问题 流度控制难问题:渗透率和残余油饱和度 波及系数低问题:黏性指进和重力超覆 CO2注入量不足问题 固相沉积问题:石蜡、胶质和沥青质的大量沉积


CO2非混相驱
稠油油藏


在稀油油藏条件下CO2易与原油发生混相,在混相 压力下,处于超临界状态的 CO2可以降低所波及油 水的界面张力, CO2注入浓度越大,油水相界面张 力越小,原油越易被驱替。通过调整注入气体的段 塞使CO2形成混相,可以提高原油采收率增加幅度 (王涛等,2008)。

实施的储层地质条件(江怀友等,2010):
相关文档
最新文档