flac3d5.0结构单元教程
flac结构单元用法

flac结构单元用法本人没有做过桩锚或桩+支撑的围护形式,不知道pile单元在靠近开挖面一侧当土体被开挖时,pile于土体的接触会是什么样子?(1)cable单元模拟锚杆(全长连接、非全长连接,预应力锚杆),土钉等(2)beam单元模拟支撑、围檩、冠梁等(3)liner单元模拟面层,地下连续墙(4)pile单元模拟钻孔灌注桩,SMW工法,超前支护(注浆钢管、微型桩),抗滑桩等。
一般的搅拌桩可用zone+interface解决。
FLAC学习总结一个在使用flac3d的兄弟(QQ:65006196)1、得到初始应力的方法:方法1、可以先给一些材料参数很大的值,进行初始求解,在计算之前再将材料参数设为正常值,即可。
如在手册中给的第一个示例中就是这样做的。
下面是例子,These are only initial values that are used during the development of gravitational stresses within the body. In effect, we are forcing the body to behave elastically during the development of the initial in-situ stress state.* This prevents any plastic yield during the initial loading phase of the analysis.Gen zone brick size 6 8 8Mode mohrProp bulk 1e8 shear 0.3e8 fric 35Prop cohesion 1e10 tens 1e10 ;注意在此这个值给的很大。
Init dens 1000Set gravity 0 0 -10Fix x range x -0.1 0.1Fix x range x 5.9 6.1Fix y range y -0.1 0.1Fix y range y 7.9 8.1Fix z range z -0.1 0.1set mech force=50solve;---------------------- mode null ---------------------Prop coh 1e3 tens 1e3 ;改为正常值(在此例中我们故意给小值) Mode null range x 2 ,4 y 2 , 6 z 5, 10Set largeIni xdis 0 ydis 0 zdis 0 ;清零,不影响结果,为画图方便。
FLAC3D5.0_InitialStress(课堂PPT)

P=ρ水gh
.
10
水下构筑物
• szz
• pp
.
11
深埋工程地应力场
.
12
深埋工程地应力场—SB法
• new
• gen zone brick p0 0 0 0 p1 60 0 0 p2 0 60 0 p3 0 0 90 &0 p7 60 60 150 &
FLAC3D 5.0培训教程(武汉)
工程师 李振
2014.3.27-3.28 Itasca(武汉)咨询有限公司
.
1
FLAC3D 5.0培训日程安排
2014.3.27~ 2014.3.28
1. FLAC3D V5.0界面操作
2. FLAC3D基本操作方法vs应用流程; initial stress
3. FLAC3D内置Fish语言的应用;
.
4
2、更改强度参数的弹塑性求解
.
5
2、更改强度参数的弹塑性求解
• 更改强度参数
• 不更改强度参数
.
6
2、不更改强度参数的弹塑性求 解
(但,采用initial σij )
.
7
3、分阶段弹塑性求解 (mohr—solve elas)
.
8
4、存在静水压力的初始应力
.
9
Zone上的pp
水位线z=1m
• p4 60 60 0 p5 0 60 90 p6 60 0 150 p7 60 60 150 &
• size 6 6 10
• model elas
• pro bulk 10e10 she 10e10
.
16
• ini den 2500
(完整版)FLAC3D5.00培训教程

将FLAC3D文件打包 和解包!!
1.1.4 the status bar
状态栏
面板控制的快捷键
每个面板都对应着与面板操作相关的快捷按 钮!
快捷键
重新加载上一条或下一条命令!!!
可以单独保存list文件!!!
项目管理 Project .f3prj格式
➢ 将 datafile、plot、savefile 统一起来,构成整 个项目。
鼠标放在模型上 就会显示相关信 息。
缩小
放大恢复
Extrusion Pane
An extruded mesh generated using the extrusion capability in FLAC3D
The Extrusion pane is used to create one or more extrusion sets. It is accessed (if not already visible) by selecting it from the Panes menu. An extrusion set is a 2D shape (drawn) that is linearly extended (extruded) to a third dimension. Once it has been defined in this way, an extrusion set may be used to generate a 3D mesh for use in FLAC3D. Though there is only ever one instance of the Extrusion pane in FLAC3D, multiple extrusion sets may be loaded into it at the same time. The pane provides two distinct views of the extrusion set: the construction view, where the 2D shape is drawn, and the extrusion view, where the extent of the extrusion is specified. These are introduced in the topic Views.
03_FLAC3D5.0_fish应用

FISH变量、函数和操作
如何定义FISH函数
DEF <name> ... END
条件语句
CASE_OF expr · · · CASE n · · · END_CASE IF expr 1 test expr 2 · · · ELSE · · · END_IF
循环语句
LOOP var (expr1, expr2) · · · END_LOOP LOOP WHILE expr1 test expr 2 · · · END_LOOP
FISH的编写习惯
第一步 def abc end abc 第二步 def abc p_gp = gp_head loop while p_gp # null p_gp = gp_next(p_gp) endloop end abc 第三步 def abc p_gp = gp_head loop while p_gp # null command endcommand p_gp = gp_next(p_gp) endloop end abc 第四步 def abc p_gp = gp_head loop while p_gp # null command app nstress … endcommand p_gp = gp_next(p_gp) endloop end abc
WHILE_STEPPING
INT FLOAT STRING ARRAY var(n1, n2) (definition of an array) (change the type of the associated variable)
FISH内置数学函数
Mathematical functions atan atan2 cos exp tan ln log sin sqrt abs max min sgn Type conversion float int string type Tables xtable Message functions in out
(新)Flac3D5.0笔记

FLAC3D5。
0导入dat、txt文件的方法FLAC3D5。
0导入。
sav文件的方法
输入命令流:Restore 文件名.sav
FLAC3D5。
0导入.f3prj文件的方法
视图窗口关闭后,如何再次呈现?输入命令plot zone
当命令流输错可从这里撤销
点亮相应命令流后才可撤销
透明度的调整
保存项目文件
保存文件的重命名做切片
倾向和倾角
法向和过一个点
删除切片
Ctrl+R为查看模型后还原
显示接触面,双击I nterface显示接触面
接触面属性项被激活后,可以更改属性
隐藏网格显示
输出网格
如果点击了透明,将不显示Information
只要不点击透明,则显示Information
等同于
点击显示节点坐标
fish简介
@之前要有(空格)之前加@是Flac3D3。
0和5。
0区别
而在之间没有(空格)
按下列步骤取消fish语言前要加@
点击fish
软件的刷新
如何显示软件最终的安全系数
显示软件节点。
查看应力及最大剪应力的步骤
查看位移云图的步骤
输出云图
设置出图边宽
设置分辨率可设为1080 Reflect镜像restore调用之前的计算结果
Origin原点normal法向量(该点与原点的坐标差)
对于结构单元如桩,若点击Zone将不出现任何模型
按如下步骤才可显示
使用该命令后保存的文件与说建模的文件保存在同一文件夹查看约束反力的步骤
查看分组的步骤
位移云图的显示颜色相反如何调整
连接两个不同尺寸的单元。
-_FLAC3D5.0_InitialStress

• size 6 6 10
• •
mproodeblulelkas10e10常sh规e 法10e10
• ini den 2500
• ini sxx -1e9 grad 0 0 1.1111111e7 range x -.1 .1
• ini sxx -1e9 grad 0 0 6.6666666e6 range x 59.9 60.1
FLAC3D 5.0培训教程(武汉)
工程师 李振 2014.3.27-3.28 Itasca(武汉)安排
2014.3.27~ 2014.3.28
1. FLAC3D V5.0界面操作 2. FLAC3D基本操作方法vs应用流程;
initial stress 3. FLAC3D内置Fish语言的应用; 4. FLAC3D结构单元vs接触单元; 5. FLAC3D渗流模块 6. 其他
精品课件
几种形成初始应力的方法
1. 弹性求解的方法 2. 更改强度参数的弹塑性求解 3. 分阶段弹塑性求解(mohr—solve elas) 4. 存在静水压力的初始应力(水下构筑物) 5. 深埋地应力场
精品课件
1、弹性求解的方法
精品课件
2、更改强度参数的弹塑性求解
精品课件
2、更改强度参数的弹塑性求解
• ini syy -1e9 grad 0 0 8.3333333e6 range y -.1 .1
• ini syy -1e9 grad 0 0 8.3333333e6 range y 59.9 60.1精品课件
精品课件
深埋工程地应力场
精品课件
• size 6 6 10
• model elas
• pro深bu埋lk工10程e10地sh应e 力10e场10 —SB法
FLAC3D5.0模型及输入参数说明教学文案

FL AC3 D5. 0 模型及输入参数说明模型参数代码可参考ma nua I中各个章节的comma nd命令及说明,注意单位。
用prop赋值。
各向同性弹性模型模型修正剑桥模型经典粘弹性模型1.1.14二分幕律模型5 mviscosity Maxwell 动力粘度,朮碎盐变形模型1.2模型适用说明遍布节理模型适用于Mohr-Coulomb材料来明确显示力在各个方向上的差异性。
双线性软化应变遍布节理模型综合了软化应变Mohr-Coulomb模型和遍布节理模型,这种模型包含面向矩阵和遍布节理的一个双线性断裂点集。
改进的Cam-clay 模型反映了形变度和抗破坏能力对体积变化的影响。
Mohr-Coulomb模型最适用于一般工程研究,同时,Mohr-Coulomb的内聚力和摩擦角参数相对于地质工程材料的其它属性,更容易获得。
软化应变和遍布节理塑性模型实际上是Mohr-Coulomb模型的变形,这些模型如果在附加材料参数的值较高时将得出与Mohr-Coulomb模型同样的结果。
Druck-Prager模型是一个相对于Mohr-Coulomb 模型的破坏标准的简化体,但是它一般不适于用来描述地质工程材料的破坏情况。
它主要是用来把FLAC3D与其它一些有Druck-Prager模型但却没有Mohr-Coulomb模型的数学软件作比较。
在摩擦力为零的时候请注意,此时Mohr-Coulomb模型退化为Tresca模型,而Druck-Prager 模型退化为Von Mises模型。
Druck-Prager模型和Mohr-Coulomb模型是计算起来效率最高的塑性模型,而其它的塑性模型在计算时却需要更多的内存和额外的时间。
例如,塑性应变不能在Mohr-Coulomb模型中直接计算出来(参见附录G)。
如果需要计算塑性应变,则必需要用应变软化模型。
这种模型主要是用于破坏后的情况对工程影响重大的工程活动中,如弯曲柱、开采塌落或回填研究。
(2024年)FLAC3D5.0培训教程

精度和计算效率的需求。
2024/3/26
13
接触面处理及摩擦模拟
2024/3/26
接触面定义
01
支持定义不同材料之间的接触面,包括摩擦系数、刚度等参数
设置。
接触面行为模拟
02
能够模拟接触面的滑动、张开和闭合等行为,以及接触面间的
传热和传质过程。
动画展示技巧 在制作动画时,可采用一些技巧来提高动画的展示效果, 如使用透明度渐变来突出关键区域的变化、使用色彩对比 来区分不同物理量的分布情况等。
结果数据对比 在动画制作中,可将不同方案或不同时间步的计算结果进 行对比展示,以便更直观地评估不同方案的效果或观察模 型的动态响应过程。
25
06
总结与展望
21
05
数据可视化与后处理
2024/3/26
22
结果数据输出格式
文本文件输出
可将模型计算结果以文本文件形式输出,方便用户进行自定义处理 和分析。
Excel文件输出
可将模型计算结果直接导出到Excel文件中,便于用户进行数据整理、 分析和可视化。
图像文件输出
可将模型计算结果以图像形式输出,如等值线图、云图等,方便用户 进行直观分析和展示。
施方法
学习在FLAC3D中施加边界条件和 荷载的方法,确保模拟过程的真实 性。
11
03
高级功能与技巧
2024/3/26
12
复杂模型处理技术
复杂地形建模
利用地形数据生成三维地形模型, 包括不规则地形、断层、节理等。
复杂结构建模
支持多种结构单元,如梁、板、 壳等,实现复杂结构的精细化建
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. FLAC3D V5.0界面操作 2. FLAC3D基本操作方法vs应用流程; 3. FLAC3D内置Fish语言的应用; 4. FLAC3D结构单元vs接触单元;
5. FLAC3D渗流模块
6. 其他
StructuralElement
FLAC3D结构单元
1. 2. 3. 4.
4.1、简支梁(beam单元)承受两个相等集中载 ; 荷
========================================================== ; Setup histories for monitoring behavior. history add id=10 sel node ydisp id=7 history add id=30 sel beamsel moment mz end2 cid=1 ; moment, right of SEL-1 history add id=31 sel beamsel moment mz end1 cid=2 ; moment, left of SEL-2 ; ======================================================== ; Bring the problem to equilibrium 如何设置结构单元的跟踪变量! solve ratio=1e-7 save equal-concent-loads ; ======================================================== ; Print out beam responses. list sel beam force list sel beam moment list sel node disp range id=7 return
xciy——梁结构y轴惯性矩, Iy • xciz——梁结构z轴惯性矩,Ix • xcij——极惯性矩,J density——密度,ρ
• •
•
• •
pmoment——塑性矩,Mp
thexp——热膨胀系数,αt ydirection——矢量Y
•
• • •
slide_tol——大变形滑动容差
ycomp——抗压强度(力) density——密度 thexp——热膨胀系数
注意:结构节点并不是简单地与实体网格的
节点(gridpoint)建立联系,也不能建立node 与gridpoint之间的link
2、结构单元的建模方法
梁单元
sel beam id 1 beg 4 0 -1 end 5 0 -2 nseg 4
sel node id=1 0 0 0 sel node id=2 2 0 0 sel node id=3 4 0 -1 sel node id=4 5 0 -2 sel beamsel cid=1 id=1 node 1 2 ; sel beamsel cid=2 id=1 node 2 3 sel beamsel cid=3 id=1 node 3 4
4.1、简支梁(beam单元)承受两个相等集中载 荷
Beam_concent_loads_Example1 .3
4.1、简支梁(beam单元)承受两个相等集中载 荷
挠度计算
剪力、弯矩计算
剪 力 、 弯 矩 计 算
这是节点力!!!
梁单元局部坐标系:x轴从节点1到节点2, y轴在横截面中
4.1、简支梁(beam单元)承受两个相等集中载 荷
4.1、简支梁(beam单元)承受两个相等集中载 荷
2、结构单元的建模方法—线型结构单元
先建立节点再联接成单元的方法;
2、结构单元的建模方法—壳型结构单元
壳单元
2、结构单元的建模方法—壳型结构单元
def set_vals global ptA = 25.0 * sin( 40.0*degrad ) ; global ptB = 25.0 * cos( 40.0*degrad ) end @set_vals generate zone cylinder p0=( 0.0, 0.0, 0.0 ) & p1=( @ptA, 0.0, @ptB ) & p2=( 0.0, 25.0, 0.0 ) & p3=( 0.0, 0.0, 25.0 ) & p4=( @ptA, 25.0, @ptB ) & p5=( 0.0, 25.0, 25.0 ) & size=(1, 2, 2) sel shell id=5 range cylinder end1=(0.0, 0.0,0.0) & end2=(0.0,25.0,0.0) radius=24.5 not plot add zg plot ad sel geom delete zones ; delete all zones sel node init zpos add -25.0
2、结构单元的建模方法—线型结构单元
起始点坐标并给定分段数目的方法; 建立梁单元,并显示 单元坐标系!
2、结构单元的建模方法—线型结构单元
ID号相同,共用Node,ID不同,各个ID对应的结构单元有各自独立的node。除非设 置联系,否则即使节点位于同一位置也不会传递力。
结构单元的显示!GUI操作和命令操作(manual)! 调整好显示效果后可以将显示的命令文件另存出来,以备下次使用。(最适用于 几何模型相同,参数不同的,不同工况分析的比较)
结构单元由结构节点(node)和结构构件
壳型结构单元:
• • •
(SELs)构成。
结构单元中的节点(node)可以与周围的实体
壳单元(shell) 土工格栅(geogrid) 衬砌单元(liner)
网格(zone)或其它结构节点建立连接(link), 通过连接实现岩土体或结构与其它结构发生 相互作用。
两种建模方式各有 各的优点,第二种 方式适合建立复杂 曲线结构单元(但 是要注意它不会自 动建立link!!若不 手动link就无任何作 用)
桩单元
sel pile id 1 beg 0 0 0 end 0 0 10 nseg 4
2、结构单元的建模方法
锚索单元
sel cable id 1 beg 4 0 -1 end 5 0 -2 nseg 4
结构单元的类型 结构单元的建模方法 结构单元的参数取值 结构单元实例分析
5.
关于link
1、结构单元的类型
FLAC3D中包含六种形式的结构单元,可以分成两类:
线型结构单元:
• • • FLAC3D中的结构单元是岩土工程中实际结
梁单元(beam) 锚索单元(cable) 桩单元(pile)
构的一种“抽象”,即采用简单的单元形式 来模拟复杂的结构体。
2、结构单元的建模方法—壳型结构单元
通过附着在实体网格表面来生成shell单元。
The shells can then be repositioned if ecessary by using the SEL node init command
2、结构单元的建模方法—注意事项
FLAC3D是岩土工程的专业软件,因此一般很少用来做专门的结构
4.1、简支梁(beam单元)承受两个相等集中载 荷
根据理论公式计算得到:
载荷(N)
载荷距支座 铰支座之间的 弹性模量 的距离(m) 距离(m) (Pa)
惯性矩 (m^4)
惯性矩 (m^5)
最大挠度(m)
P
a
L
E
Iy
Iz
Δmax
10000
3
9
2.00E+11 2.00E-04 2.00E-04 0.006468750
4.1、简支梁(beam单元)承受两个相等集中载 A simply supported beam is loaded by 荷 two equal concentrated loads,
symmetrically placed as shown in Figure 1.9. The shear and moment diagrams for this configuration are also shown in the figure.The shear force magnitude,V, is equal to the applied concentrated load,P. The maximum moment,Mmax, occurs between the two loads and is equal to Pa. The maximum deflection of the beam,max, occurs at the center and is given by AISC (1980, p. 2-116) as
3、结构单元的参数取值
某些结构单元参数的取值要视具体情况 而定,根据经验且必要时调整参数通过 试算来确定。
4、结构单元实例分析
4.1、简支梁(beam单元)承受两个相等集 中载荷
4.2、简支梁(shell单元)承受两个相等集 中载荷
4.1、简支梁(BEAM单元)承受两个相等集中 载荷
Simple Beam – Two Equal Concentrated Loads
分析。在涉及到结构单元的问题中,往往都要考虑结构与周围的实 体单元的相互作用。在结构单元的建模时要特别注意一个基本原则: 一个zone至多包含一个structure node!
因此在建立线型结构单元时,要特别注意nseg变量的大小。nseg太
小则会导致计算不精确,而太大就会违反结构单元建模的基本原则。
4.1、简支梁(beam单元)承受两个相等集中载 荷 new
title "Simple Beam --- Two Equal Concentrated Loads Symmetrically Placed" ; ====================================================== ; Create the grid, insure that nodes will exist at third points. sel beam id=1 begin=( 0, 0, 0) end=( 3, 0, 0) nseg=3 sel beam id=1 begin=( 3, 0, 0) end=( 6, 0, 0) nseg=4 sel beam id=1 begin=( 6, 0, 0) end=( 9, 0, 0) nseg=3 ; ====================================================== ; Assign beam properties sel beam id=1 prop emod=2e11 nu=0.30 & xcarea=6e-3 xcj=0.0 xciy=200e-6 xciz=200e-6 ;======================================================== ; Specify model boundary conditions (including applied loads) sel node fix z xr yr ; restrict all non-beam modes sel node fix y range id=1 ; sel node fix y range id=9 ; ; rollers at beam ends sel node apply force=(0.0,-1e4,0.0) range id=2 ; apply point loads sel node apply force=(0.0,-1e4,0.0) range id=5 ;