优选第三节有机化合物红外光谱谱图的基本特征

合集下载

波谱分析 第三章 03红外谱图解析

波谱分析 第三章 03红外谱图解析

C= C : 16பைடு நூலகம்0~1450 cm-1区域吸收峰的强弱及个数与分子结 构有关,是判断苯环存在的主要依据。 有2-4个峰,峰数取决于取代基对苯环对称性破坏的程度
苯 甲苯 取代基与苯环共轭时 烷基存在时 1600 cm-1 无吸收 1500 、 1600 cm-1 有吸收 1580 cm-1 处出现强吸收 1450 cm-1 有吸收
烷烃
表3-4, (CH2)n结构 中亚甲基面内摇 摆振动
CH3 –CH – CH2 –CH – CH3 CH3
1168 1386 1468 1367
CH3
2,4 - 二甲基戊烷
78
2.烯烃
基团 = CH中C-H C=C骨架
3080 2975 1680~1620
1000~800 (面外摇摆)
(1) = CH >3000 cm-1为不饱和碳上质子振动吸收,是与饱 和碳上质子的重要区别。 (2) C=C的 位置及强度 与烯碳的取代情况及分子对称性 密切相关。 末端烯烃 C=C吸收最强,双键移向碳链中心时结构对称 性增强, C=C带减弱。顺式较反式强。 共轭双键中由于双键的相互作用出现两个 C=C (1650、1600 cm-1 )。 46
饱和环醚: 在 1260~780 cm-1 范围出现两条或两条以上的吸收带。 环张力增加as波数降低, s波数升高。 O 1071 913 O 983 1028
(3) CH(面外)最有用。 特点是: 不同类型的烯烃,有其独特的波数,且比较固定,不受 取代基的变化而发生很大的变化。 吸收强度特别强。 根据烯氢被取代的个数、取代位置及顺反异构的不同, 出峰的个数、位置及强度不同。
烯烃类型 R1CH=CH2 R1R2CH=CH2 R1CH=CHR2 (顺) R1CH=CHR2 (反) R1R2CH=CHR3 面外弯曲振动位置/cm-1 995 ~985, 910 ~905 895 ~ 885 730 ~ 650 980 ~ 965 840 ~ 790

红外光谱的四大特征

红外光谱的四大特征

红外光谱的四大特征
红外光谱的四大特征包括谱带的数目、谱带的位置、谱带的强度以及谱带的形状。

这四大特征可以帮助科学家们在鉴定化合物时确定化合物的类型。

具体来说,
1. 谱带的数目:不同的化合物在红外光谱中表现出不同数量的吸收谱带。

2. 谱带的位置:每个基团都有其特征振动频率,在红外光谱中表现出特定的吸收谱带位置,通常用波数表示。

在鉴定化合物时,谱带位置是最重要的参数之一。

3. 谱带的强度:谱带的强度可以反映化合物中相关基团的含量,也可以反映基团间的相互作用。

4. 谱带的形状:如果所分析的化合物较纯,其谱带较尖锐、对称性好;若是混合物,有时会出现谱带的重叠、加宽,对称性被破坏。

对于晶体固态物质,其结晶的完整性程度也影响谱带形状。

第三章红外光谱IR

第三章红外光谱IR

烷烃吸收峰
正己烷的红外光谱图
2,2,4-三甲基戊烷的红外光谱图
2、不饱和烃
• 烯烃 • 炔烃 • 芳香烃
2、1 烯烃 烯烃双键的特征吸收
影响双键碳碳伸缩振动吸收的因素
• 对称性:对称性越高,吸收强度越低。 • 与吸电子基团相连,振动波数下降,吸
收强度增加。 • 取代基的质量效应:双键上的氢被氘取
代后,波数下降10-20厘米-1。质量效应 • 共轭效应:使波数下降约30厘米-1 。
1-己烯的红外光谱图
~3060cm-1: 烯烃C—H伸缩振动;~1820:910cm-1倍频; ~1650cm-1: C=C伸缩振动;~995,905cm-1: C=CH2 非平面摇摆振动
顺式和反式2,2,5,5-四甲基己烯红外光谱 a 顺式 b 反式
v~
=
1
——
K
2C M
M = m1 m2 m1 + m2
双原子分子红外吸收的频率决定于折合质量和键力常数。
C-H C-C C-O C-Cl C-Br C-I
-1 cm
3000
1200 1100
800
550
500
v cm-1
力常数/g.s-2
CC 2200~2100
12~18105
C=C 1680~1620
C-H面外弯曲振动吸收峰位置(cm-1) 670
770-730,710-690 770-735
810-750,710-690 833-810
780-760,745-705 885-870,825-805 865-810,730-675
810-800 850-840 870-855
870
各类取代苯的倍频吸收和面外弯曲振动吸收

实验三 有机化合物红外光谱的测绘及结构分析

实验三  有机化合物红外光谱的测绘及结构分析

实验三有机化合物红外光谱的测绘及结构分析一、目的要求1.掌握溴化钾压片法制备固体样品的方法;2.了解傅立叶变换红外光谱仪的基本原理,学习和掌握美国PE公司Spectrum Two型红外光谱仪的使用方法;3.初步学会红外吸收光谱图的解析方法。

二、实验原理1. 红外吸收光谱法当物质的分子对红外线进行选择性吸收时,其结构若使得振动能级及转动能级发生跃迁,就会形成具有特征性的红外吸收光谱。

红外吸收光谱是物质分子结构的客观反映,谱图中吸收峰都对应着分子中各基团的振动形式,其位置和形状也是分子结构的特征性数据。

因此,根据红外吸收光谱中各吸收峰的位置、强度、形状及数目的多少,可以判断物质中可能存在的某些官能团,进而对未知物的结构进行鉴定。

即首先对红外吸收光谱进行谱图解析,然后推断未知物的结构。

最后还需将未知物的红外吸收光谱通过与未知物相同条件下得到的标准样品的谱图或标准谱图集中的标准光谱进行对照,以进一步证实其分析结果。

2. 傅立叶变换红外光谱仪傅里叶变换红外光谱仪(FTIR)是20世纪70年代出现的新一代红外光谱测量技术和仪器。

这种新技术具有采样速度快、分辨率和波数精度高、光谱范围宽、灵敏度高等优点,因而发展迅速,将逐步取代色散型红外光谱仪。

傅里叶变换红外光谱仪(FTIR)是根据光的相干性原理设计而成的一种干涉型光谱仪。

它主要由光源、干涉仪(迈克尔逊)、吸收池(样品室)、检测器、计算机和记录系统等组成(图1)。

其工作原理:由光源发出的光经过干涉仪转变成干涉光,干涉光中包含了光源发出的所有波长光的信息。

当干涉光通过试样时某一些特定波长的光被试样吸收,所以检测器检测到的是含有试样信息的干涉光,通过模数转换送入计算机得到试样的干涉图,在经过计算机快速傅里叶变换后得到吸光度或透光率随频率或波长变化的红外光谱图。

图1傅里叶变换红外光谱仪结构框图三、仪器与试剂1.仪器美国PE公司Spectrum Two型红外光谱仪;压片机;玛瑙研钵;2. 试剂无水乙醇(A.R);苯甲酸(A.R);溴化钾(光谱纯或分析纯)130 ℃下干燥24 h,存于干燥器中,备用。

有机波谱解析-第三章_红外光谱

有机波谱解析-第三章_红外光谱

由于红外光谱吸收强度受狭缝宽度、温度和溶剂等因素影 响,故不易精确测定,在实际分析中,只是通过与羰基等强吸 收峰对比来定性研究。
谱带强度与振动时偶极矩变化有关,偶极矩变化愈 基团极性 大,谱带强度愈大;偶极矩不发生变化,谱带强度为0, 即为红外非活性。 电子效应
红外吸收强度 偶极距变化幅度 振动偶合
伸缩振动(
as
)两种形式。
弯曲振动:原子垂直于化学键方向的运动。又可以分
它们还可以细分为摇摆、卷曲等振动形式。
为面内弯曲振动()和面外弯曲振动( )两种形式,
+和-表示垂直于纸面方向的前后振动。
亚甲基的振动形式
三、分子振动与红外吸收峰的关系
理论上具有特定频率的每一种振动都能吸收相应 频率的红外光,在光谱图对应位臵上出现一个吸收 峰。实际上,因种种原因分子振动的数目与谱图中
纵坐标为: 百分透过率(%) 横坐标为: 波长(µ m)或波 数(cm-1)。
环戊烷
也可用文字形式表示为:2955cm-1(s)为CH2的反对称伸缩振动 (υasCH2),2870cm-1(m)为CH2的对称伸缩振动(υsCH2) 1458cm-1(m) 为CH2的面内弯曲振动(δ面内CH2),895cm-1(m)为CH2的面外弯曲振动 (面外CH2)
诱导效应大于共轭效应, C=O 蓝移至 1735 cm-1
三、空间效应
(1)空间位阻 破坏共轭体系的共平面性,使共
轭效应减弱,双键的振动频率蓝移(增大)。
CH(CH3)2 O O O
CH3 CH3
CH3 CH(CH3)2
CH3
1663cm-1
1686cm-1
1693cm-1
(2)环的张力:环的大小影响环上有关基 团的频率。

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。

辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。

3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。

图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。

N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。

为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。

U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。

泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。

特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。

各类化合物的红外光谱特征

各类化合物的红外光谱特征

各类化合物的红外光谱特征红外光谱是一种常用的分析技术,可以用于识别和表征不同化合物的结构和功能团。

不同类型的化合物在红外光谱中显示出特定的吸收峰,这些峰对应于特定的振动模式和化学键。

有机化合物的红外光谱特征:1. 烷烃:烷烃的红外光谱特征主要包括C-H伸缩振动峰和C-H弯曲振动峰。

在3000-2850 cm-1区域,烷烃显示出强的C-H伸缩振动峰。

在1450-1375 cm-1区域,烷烃显示出C-H弯曲振动峰。

2. 卤代烃:卤代烃的红外光谱特征主要包括C-X伸缩振动峰和C-H弯曲振动峰。

在3000-2850 cm-1区域,卤代烃显示出C-H伸缩振动峰。

在700-600 cm-1区域,卤代烃会显示出C-X伸缩振动峰(X表示卤素)。

3. 醇:醇的红外光谱特征主要包括O-H伸缩振动峰和C-O伸缩振动峰。

在3650-3200 cm-1区域,醇显示出非常强的O-H伸缩振动峰。

在1050-1000 cm-1区域,醇会显示出C-O伸缩振动峰。

4. 酸:酸的红外光谱特征主要包括O-H伸缩振动峰和C=O伸缩振动峰。

在3650-3200 cm-1区域,酸显示出非常强的O-H伸缩振动峰。

在1750-1690 cm-1区域,酸会显示出C=O伸缩振动峰。

5. 醛和酮:醛和酮的红外光谱特征主要包括C=O伸缩振动峰和C-H伸缩振动峰。

在1750-1690 cm-1区域,醛和酮会显示出强的C=O伸缩振动峰。

在3000-2850 cm-1区域,醛和酮显示出C-H伸缩振动峰。

6. 酯:酯的红外光谱特征主要是C=O伸缩振动峰和C-O伸缩振动峰。

在1750-1690 cm-1区域,酯显示出强的C=O伸缩振动峰。

在1250-1100 cm-1区域,酯会显示出C-O伸缩振动峰。

7. 醚:醚的红外光谱特征主要是C-O伸缩振动峰。

在1250-1100cm-1区域,醚会显示出C-O伸缩振动峰。

8. 腈:腈的红外光谱特征主要是C≡N伸缩振动峰。

在2250-2100cm-1区域,腈会显示出C≡N伸缩振动峰。

4-3红外光谱解析

4-3红外光谱解析

面外变形(=C-H) 1000-700 cm-1 (有价值)
(=C-H)
R1
H
CC
970 cm-1(强)
H
R2
R1
R3 CC
790-840 cm-1
R2
H (820 cm-1)
R1
R2 (=C-H)
H
CC H
800-650 cm-1 (690 cm-1)
R1 C C H 990 cm-1
H
H 910 cm-1 (强)
1195 cm-1
C H3 C C H3 CH
3
1405-1385cm-1 1372-1365cm-1
1:2 1250 cm-1
c) CH2面外变形振动—(CH2)n—,证明长碳链的存在。 n=1 770~785 cm-1 (中 ) n=2 740 ~ 750 cm-1 (中 )
n=3 730 ~740 cm-1 (中 ) n≥ 720 cm-1 (中强 )
1300cm-1 ~ 910 cm-1区域是C-O、C-N、C-F、C-P、C-S、 P-O、Si-O等单键的伸缩振动、C=S、S=O、P=O等双键 的伸缩振动、部分含氢基团的变形振动吸收。
910 ~ 650 cm-1区域是烯烃、芳烃的C-H的面外弯曲振动吸 收位置,对结构敏感,吸收峰可用来确认化合物的顺反构 型或苯环的取代类型。
第三节 红外光谱解析
一、官能团区和指纹区
红外光谱
官能团区:4000~1300cm-1(1350) 2.5~7.7μm
指纹区:1300~600cm-1(1350~650) 7.7~16.7μm
官能团区:X-H的伸缩振动以及各种双键、叁键的伸缩 振动吸收峰出现的区域,此区域内峰较稀疏,是鉴定 工作最有价值的区域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
07:21:00
烯烃
3030 cm-1 (弱)=C-H链中烃; 3080(强)=CH2端位烯烃。
1680-1630 -C=C-(弱)
反式:-CH=CH 顺式:-CH=CH
970-960cm-1 770-665cm-1
07:21:00
例2:化合物C6H12的红外光谱如下,写 出其结构式。
07:21:00
1-辛醇的红外光谱图
07:21:00
07:21:00
苯酚的红外光谱图
07:21:00
07:21:00
07:21:00
六、醚
(1)醚的特征吸收为碳氧碳Biblioteka 的伸缩振动as COC
和 s

COC
(a)脂肪族醚(R-O-R):
脂肪族醚中
s C
O
C
弱。
在 as COC
1150~1050cm-1(S)
07:21:00
饱和烃
在饱和烃中 1380cm-1为烷基 异构化情况;
1460cm-1为烷烃中 的-CH2-,
同时在720cm-1证 明。
例1:化合物C9H20的红外光谱如 下,写出其结构式。
07:21:00
解:计算不饱和度:
07:21:00
庚烷CH3(CH2)5CH3的红外光谱图
07:21:00
(4)面外变形振动=CH在900-650cm-1,按其位置、吸收峰个 数及强度可以用来判断苯环上取代基个数及取代模式。
07:21:00
(5)苯环质子的面外变形振动的倍频及组合频在 2000~1650cm-1。也可以用于确定苯环取代类型。
(6)其他 除了上述按邻接氢判断在900~650cm-1的谱带外,在
优选第三节有机化合物红外光 谱谱图的基本特征
一、饱和烷烃
(a)CH的伸缩振动:基本在2975~2845cm-1之间,包括 甲基、亚甲基和次甲基的对称及不对称伸缩振动。 (b)CH的变形振动:在1460附近、1380附近及 720~810cm-1会出现有关吸收。
(c)C-C环的骨架振动,在720~1250cm-1。
(2)=CH出现在3100-3000cm-1,常在3030cm-1附近。
(3)苯环的骨架振动:在1625-1450cm-1之间,可能有几个吸收, 强弱及个数皆与结构有关。
其中以~1600cm-1和~1500cm-1两个吸收为主。 苯环与其他基团共轭时,~1600cm-1峰分裂为二,在~1580cm-1 处又出现一个吸收。~1450cm-1也会有一吸收。
CH3
CH
CH2
CH3
07:21:00
CH
CH3
CH3
红外光谱
二、 烯烃
(1)烯烃有三个特征吸 区 (a)3100~3000cm-1 , =CH (b)1680~1620cm-1 , C=C (a) 、(b)用于判断烯键
的存在与否。 (c)l000~650cm-1,烯碳上质子的面外摇摆振动
=CH,用于判断烯碳上取代类型及顺反异构。
07:21:00
07:21:00
07:21:00
七、羰基化合物
酰胺:
1680~1630
羰基:
1710 ~1730
醛 C=O ~1725(vs) 双峰:υCH:≈2820, ≈2720 (w)
酮 C=O ~1715(vs)
07:21:00
3-戊酮的红外光谱图
07:21:00
例3:化合物C6H10的红 外光谱如下,写出其 结构式。
解:
己炔 HC≡C-CH2-CH2-CH2-CH3
07:21:00
07:21:00
07:21:00
四、芳香烃
(1)苯环在四个区有其特征吸收:3100~3000、2000~1650、 1625~1450及900~650cm-1.
这区域可能还会有另外的吸收出现。 (a)间位二取代在725~680cm-1有强吸收。 (b)1、2、3-三取代化合物另外在745~705cm-1有强
吸收。 (c)1、3、5 - 三取代化合物另外在755~675cm-1有
强吸收。
07:21:00
芳烃
3030、1600、1580、 1500、1450. 670cm-1苯 看3030、1600~1400 有2~4个吸收峰,可 确定为芳香烃化合物。 从900 cm-1 -650 cm-1 区域出现的峰来确定 取代基的数目和位置。
解:
07:21:00
壬烯
07:21:00
1-己烯的红外光谱图
07:21:00
07:21:00
07:21:00
07:21:00
三、炔烃
≡C-H 3300 cm-1 一取代炔烃:
R-C≡C-H 2140 cm-1 -2100cm-1 二取代炔烃: R-C≡C-R 2260 cm-1 -2190 cm-1
07:21:00
例题 判断有无芳烃的存在,并指出其波数。
07:21:00
07:21:00
07:21:00
例题:化合物C9H12的红外光谱如下,写 出其结构式。
07:21:00
解:
07:21:00
例题:下图为一个含有C、H、O的有机化合物的 光谱图,试问: (1)这个化合物是脂肪族还是芳香族? (2)是醇类还是酮类? (3)是否含有双键或叁键?
07:21:00
醇:
O-H:3700-3200(变) 游离O-H: 3670-3580 缔合O-H: 3550-3230 OH: 1410-1260(w) C-O: 1250-1000(s) OH: 750-650 (s)
酚:
O-H: 3705-3125(s) C=C: 1650-1430(m)
07:21:00
07:21:00
推测C8H8纯液体
解:1)U =1-8/2+8=5 2)峰归属 3)可能的结构
07:21:00
H C CH2
五、醇和酚
(1)醇和酚都含有羟基,有三个特征吸收带:OH、 OH和C-O。
(2)羟基的伸缩振动OH在3670~3230cm-1(S)。 游离的羟基OH尖,且大于3600cm-1; 缔合羟基移向低波数,峰加宽,小于3600cm-1。 缔合程度越大,峰越宽,越移向低波数处。 水和NH在此有吸收。
(b)芳香族醚和乙烯基醚: Ph-O-R、Ph-O-Ph和R-C=C-O-R’
1310~1020cm-1为
as COC
强吸收
1075~1020cm-1为
s COC
强度较弱
07:21:00
(2)一般情况下,只用IR来判别醚是困难的。 因其他一些含氧化合物,如醇、羧酸、酯类都会 在1100~1250cm-1范围有强的C-O吸收。
相关文档
最新文档