高三数学 第60课时 线面平行、面面平行教案
清泉州阳光实验学校高三数学一轮教案线面平行与面面平行

清泉州阳光实验学校§线面平行与面面平行【复习目的】1. 掌握直线与平面、平面与平面平行的定义、断定定理和性质定理,并能运用这些知识进展论证或者者解题; 2. 理解线线平行、线面平行、面面平行之间的转化以及平行与垂直之间的转化的辩证关系。
【课前预习】1. 空间平面与平面的位置关系分类、三个平行关系的转化:2. 假设直线a ⊥平面α,直线b α,直线a 与b 的位置关系是〔〕A .a bB .a b ⊥C .,a b 一定异面D .,a b 一定相交3. 假设直线l 平面α,那么以下命题中正确的选项是〔〕A .l 平行于α内所有直线B .l 平行于过l 的平面与α的交线C .l 平行于α内的任一直线D .l 平行于α内唯一确定的直线4. 两条异面直线a 、b 分别在平面α、β内,且βα =c ,那么直线c 〔〕A .一定与a,b 都相交B .至少与a,b 中的一条相交C .至多与a,b 中的一条相交D .一定与a,b 都不相交5. 直线,a b 和平面α,那么a b 的一个必要不充分条件是〔〕A .,a b ααB .,a b αα⊥⊥C .,b a αα⊂D .,a b 与α成等角6. ,αβ表示两个平面,,a b 表示两条直线,那么a α的一个充分条件是〔〕A .,a αββ⊥⊥B .,b a b αβ=C .,a b b αD .,a αββ⊂7. 判断真假:〔1〕平行于同一直线的两直线平行〔〕;〔2〕平行于同一直线的两平面平行〔〕;〔3〕平行于同一平面的两直线平行〔〕;〔4〕平行于同一平面的两平面平行〔〕;〔5〕垂直于同一平面的两直线平行〔〕;B 1Q〔6〕垂直于同一平面的两平面平行〔〕;〔7〕垂直于同一直线的两直线平行〔〕;〔8〕垂直于同一直线的两平面平行〔〕;〔9〕一个平面上不一一共线的三点到另一个平面间隔相等,那么这两个平面平行〔〕;〔10〕与同一条直线成等角的两个平面平行〔〕。
面面平行的判定教案

面面平行的判定教案一、教学目标1. 让学生掌握面面平行的判定定理及其推论。
2. 培养学生运用几何知识解决实际问题的能力。
3. 提高学生的空间想象能力和逻辑思维能力。
二、教学内容1. 面面平行的判定定理2. 面面平行的性质定理3. 面面平行的判定定理的应用三、教学重点与难点1. 教学重点:面面平行的判定定理及其推论。
2. 教学难点:面面平行的判定定理在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解面面平行的判定定理及其推论。
2. 运用案例分析法,分析实际问题中的面面平行判定。
3. 利用互动教学法,引导学生参与课堂讨论,提高学生的动手操作能力。
五、教学过程1. 导入新课:通过展示生活中的实例,引导学生思考面面平行的判定方法。
2. 讲解面面平行的判定定理:结合图形,讲解定理的内涵和外延。
3. 讲解面面平行的性质定理:引导学生理解定理的含义,并学会运用。
4. 应用练习:布置具有代表性的练习题,巩固所学知识。
5. 课堂小结:总结本节课的主要内容和知识点。
6. 布置作业:布置课后作业,巩固所学知识。
六、教学活动1. 课堂讨论:邀请学生分享他们在生活中遇到的面面平行问题,以及他们是如何解决的。
2. 小组合作:将学生分成小组,每组解决一个面面平行问题,并展示他们的解题过程。
3. 游戏环节:设计一个面面平行的小游戏,让学生在游戏中加深对知识的理解。
七、课程评价1. 课堂参与度:观察学生在课堂讨论、小组合作和游戏环节的参与情况。
2. 作业完成情况:评估学生课后作业的完成质量。
3. 知识测试:通过笔试或口试,测试学生对面面平行知识的掌握程度。
八、教学资源1. 教材:选用权威、易懂的教材,为学生提供系统的知识体系。
2. 教具:准备相关的几何模型和道具,帮助学生直观地理解面面平行。
3. 网络资源:利用网络资源,为学生提供更多的学习资料和实践案例。
九、教学反思在课程结束后,教师应反思教学效果,思考如何改进教学方法,以提高学生的学习兴趣和效果。
高三数学复习线面平行与面面平行

§50. 线面平行与面面平行(教案)一、复习目标1、掌握直线与平面、平面与平面平行的定义、判定定理、性质定理,并能运用这些知识进行论证或解题.2、理解线线平行,线面平行,面面平行之间的关系,能进行三者之间的转化.二、课前预习1、若直线l∥平面α,则下列命题中,正确的是()A、l平行于α内的所有直线B、l平行于过l的平面与α的交线C、l平行于α内的任意直线D、l平行于α内的唯一确定的直线解:B2、α、β表示平面,a、b表示直线,则a∥α的充分条件是()A、α⊥β,且a⊥βB、α∩β=b,且a∥bC、a∥b,且b∥αD、α∥β,且a⊂β解:D3、已知a、b为异面直线,且a⊥α,b⊥β,则平面α与平面β的位置关系是A、α∥βB、α与β相交C、α与β重合D、α与β关系不确定解:B4、已知直线a、b,平面α、β、γ,有下面四个命题①若a⊥α,a⊥β,则α∥β.②若a∥α,b∥β,a∥β,a∥b,则α∥β.③若α∥γ,β∥γ,则α∥β④若α∩γ=a.β∩γ=b且a∥b,则α∥β.其中正确的命题是()A、①与②B、①与③C、③与④D、②与④解:B5、在长方体ABCD-A'B'C'D'中,经过其对角线BD'的平面分别与棱AA'、CC'相交于E、F两点,则四边形EBFD'的形状为__________.解:平行四边形三、典型例题例1、如果一个平面内的两条相交直线分别与另一个平面内两条直线平行,那么这两个平面平行.备课说明:复习命题形式的问题的证明步骤和证明两个平面平行的方法.例2、已知直线PQ、RT分别与两个平行平面α、β相交于P、Q和R、T,线段PQ、RT的中点分别为M、N,求证MN∥α.备课说明:复习证明线面平行的常用方法.例3、已知α∥β,γ∩β=a,求证:α与γ相交.备课说明:复习反证法及证明面面平行定理的应用.*例4、(提高题)已知A 、B 、C 、D 四点在平面α和β和之外,A 、B 、C 、D 在α上的射影A '、B '、C '、D '这四点在一直线上,A 、B 、C 、D 在平面β上的射影A ''、B ''、C ''、D '',且A ''B ''C ''D ''为平行四边形,求证:ABCD 是一个平行四边形.备课说明:共面问题、垂直问题、平行问题的综合应用,提高分析问题、转化问题的能力.四、反馈练习1、直线a ⊥平面α,直线b ∥α,则a 与b 的关系是( )A 、a ∥bB 、a ⊥bC 、a ,b 一定异面对面D 、a,b 一定相交 解:B2、α、β是两个不重合平面,l ,m 是两条不重合直线,那么α∥β的一个充分条件是( )A 、l ⊂α,m ⊂α,l ∥β,m ∥βB 、l ⊂α,m ⊂β,l ∥mC 、l ⊥α,m ⊥β,l ∥mD 、l ∥α,m ∥β,l ∥m解:Cα β P Q R T M N α β γ a3、设线段AB 、CD 是夹在两平行平面α、β之间的异面线段,点A 、C ∈α,B 、D ∈β,若M 、N 分别是AB 、CD 的中点,则有( )A 、MN=21(AC+BD) B 、MN>21(AC+BD) C 、MN<21(AC+BD) D 、MN 与21(AC+BD)大小关系不确定. 解:C4、以下七个命题:(1)垂直于同一条直线的两个平面平行;(2)平行于同一条直线的两个平面平行;(3)平行于同一平面的两个平面平行;(4)与同一条直线成等角的两个平面平行;(5)一个平面上不共线三点到同一平面的距离相等,则这两个平面平行;(6)两个平面分别与第三个平面相交所得的两条交线平行,则这两个平面平行.其中正确命题的序号是_______________.解:(1)、(3).5、在正方体ABCD-A 'B 'C 'D '中,点N 在BD 上,点M 在B 'C 上,且CM=DN .求证:MN ∥面AA 'B 'B .证明:(略)6、在正方体AC '中,E 、F 、G 、P 、Q 、R 分别是所在棱AB 、BC 、BB '、A 'D '、D 'C '、DD '的中点,求证:平面PQR ∥平面EFG 。
《直线与平面平行的判定》教案、导学案、课后作业

《8.5.2 直线与平面平行》教案第1课时直线与平面平行的判定【教材分析】在直线与平面的位置关系中,平行是一种非常重要的关系,本节内容既是直线与直线平行关系延续和提高,也是后续研究平面与平面平行的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。
【教学目标与核心素养】课程目标1.理解直线和平面平行的判定定理并能运用其解决相关问题.2.通过对判定定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.数学学科素养1.逻辑推理:探究归纳直线和平面平行的判定定理,找平行关系;2.直观想象:题中几何体的点、线、面的位置关系.【教学重点和难点】重点:直线与平面平行的判定定理及其应用.难点:直线与平面平行的判定定理,找平行关系.【教学过程】一、情景导入问题1.观察开门与关门,门的两边是什么位置关系.当门绕着一边转动时,此时门转动的一边与门框所在的平面是什么位置关系?【答案】平行.问题2.请同学门将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l 与桌面所在的平面具有怎样的位置关系?桌面内有与l 平行的直线吗?【答案】平行,有.问题3.根据以上实例总结在什么条件下一条直线和一个平面平行? 要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探. 二、预习课本,引入新课阅读课本135-137页,思考并完成以下问题 1、直线与平面平行的判定定理是什么?2、怎样用符号语言表示直线与平面平行的判定定理?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、直线与平面平行的判定定理四、典例分析、举一反三题型一直线与平面平行的判断定理的理解 例1 下列命题中正确的个数是( )①若直线a 不在α内,则a ∥α ②若直线l 上有无数个点不在平面α内,则l ∥α ③若直线l 与平面α平行,则l 与α内的任意一条直线都平行 ④若l 与平面α平行,则l 与α内任何一条直线都没有公共点 ⑤平行于同一平面的两直线可以相交A.1B.2C.3D.4【答案】B【解析】①a⊄α,则a∥α或a与α相交,故①不正确;②当l与α相交时,满足条件,但得不出l∥α,故②不正确;③若l∥α,则l与α内的无数条直线异面,并非都平行,故③错误;若l∥α,则l与α内的任何直线都没有公共点,故④正确;若a∥α,b∥α,则a与b可以相交,也可以平行或异面,故⑤正确.解题技巧(判定定理理解的注意事项)(1)明确判定定理的关键条件.(2)充分考虑各种可能的情况.(3)特殊的情况注意举反例来说明.跟踪训练一1.设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.α∥β,a⊂α,则a∥β【答案】D.【解析】A,B,C错;在D中,α∥β,a⊂α,则a与β无公共点,所以a∥β,故D正确.故选D.题型二直线与平面平行的判断定理的应用例2 在空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF∥平面BCD.【答案】证明见解析【解析】∵AE=EB,AF=FB,∴EF∥BD.EF⊄平面BCD,BD⊂平面BCD.∴ EF ∥平面BCD解题技巧: (判定定理应用的注意事项) (1)欲证线面平行可转化为线线平行解决.(2)判断定理中有三个条件,缺一不可,注意平行关系的寻求.常常利用平行四边形、三角形中位线、等比例线段、相似三角形.跟踪训练二1.如图,已知OA,OB,OC 交于点O,AD 12OB,E,F 分别为BC,OC 的中点.求证:DE∥平面AOC.【答案】证明见解析 【解析】 证明 在△OBC 中, 因为E,F 分别为BC,OC 的中点, 所以FE 12OB,又因为AD12OB,所以FE AD.所以四边形ADEF 是平行四边形. 所以DE ∥AF.又因为AF ⊂平面AOC,DE ⊄平面AOC. 所以DE ∥平面AOC. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本139页练习1、2、3题,143页习题8.5的4、5、6题.【教学反思】本节课,从内容上来说,学生基本掌握判定定理,但是在应用中,书写证明过程不太规范,需提高学生的逻辑思维能力.从方法上来说,通过本节课判定定理的学习,学生理解证明一条直线与一个平面平行,只要在这个平面内找出一条与此直线平行的直线就可以了,让学生初步感知空间问题可以转化为平面问题解决.《8.5.2 直线与平面平行》导学案第1课时直线与平面平行的判定【学习目标】知识目标1.理解直线和平面平行的判定定理并能运用其解决相关问题.2.通过对判定定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.核心素养1.逻辑推理:探究归纳直线和平面平行的判定定理,找平行关系;2.直观想象:题中几何体的点、线、面的位置关系.【学习重点】:直线与平面平行的判定定理及其应用.【学习难点】:直线与平面平行的判定定理,找平行关系.【学习过程】一、预习导入阅读课本135-137页,填写。
直线与平面平行的判定教案

直线与平面平行的判定教案直线与平面平行的判定教案范文直线与平面平行的判定教案1一、教学目标1.借助对图片、实例的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义。
2.通过直观感知,操作确认,归纳直线与平面垂直判定的定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念。
3.让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
二、教学重点、难点1.教学重点:操作确认并概括出直线与平面垂直的定义和判定定理。
2.教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用。
三、课前准备1.教师准备:教学课件2.学生自备:三角形纸片、铁丝(代表直线)、纸板(代表平面)、三角板四、教学过程设计1.直线与平面垂直定义的建构(1)创设情境①请同学们观察图片,说出旗杆与地面、高楼的侧棱与地面的位置有什么关系?②请把自己的数学书打开直立在桌面上,观察书脊与桌面的位置有什么关系?③请将①中旗杆与地面的位置关系画出相应的几何图形。
(2)观察归纳①思考:一条直线与平面垂直时,这条直线与平面内的直线有什么样的位置关系?②多媒体演示:旗杆与它在地面上影子的位置变化。
③归纳出直线与平面垂直的定义及相关概念。
定义:如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作:l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足。
用符号语言表示为:(3)辨析(完成下列练习):①如果一条直线垂直于一个平面内的无数条直线,那么这条直线就与这个平面垂直。
②若a⊥α,bα,则a⊥b。
在创设情境中,学生练习本上画图,教师针对学生出现的问题,如不直观、不标字母等加以强调,并指出这就叫直线与平面垂直,引出课题。
在多媒体演示时,先展示动画1使学生感受到旗杆AB所在直线与过点B的直线都垂直。
再展示动画2使学生明确旗杆AB所在直线与地面内任意一条不过点B 的直线B1C1也垂直,进而引导学生归纳出直线与平面垂直的定义。
高中数学课件:直线、平面平行的判定与性质

(2)连接FH,OH, ∵F,H分别是PC,CD的中点,∴FH∥PD. ∵PD⊂平面PAD,FH⊄平面PAD,∴FH∥平面PAD. 又∵O是AC的中点,H是CD的中点,∴OH∥AD, 又∵AD⊂平面PAD,OH⊄平面PAD, ∴OH∥平面PAD. 又FH∩OH=H,∴平面OHF∥平面PAD. 又∵GH⊂平面OHF,∴GH∥平面PAD.
的角为 60°,转化为三角形的一个角有关的问题 还缺少所需要用的三角形,可连接 AD,取 AD 的中 差什么 点 M,连接 ME,MF,得三角形 MEF,利用平行 找什么 关系可找到 ME 与 MF 所成的角,然后利用余弦定 理求解即可
[解题方略] 证明面面平行的常用方法
(1)面面平行的定义,即证两个平面没有公共点(不常用); (2)面面平行的判定定理:如果一个平面内有两条相交直线 都平行于另一个平面,那么这两个平面平行(主要方法); (3)利用垂直于同一条直线的两个平面平行(客观题常用); (4)如果两个平面同时平行于第三个平面,那么这两个平面 平行(客观题常用); (5)利用“线线平行”“线面平行”“面面平行”的相互转 化进行证明.
所以四边形BDC1D1为平行四边形, 所以BD1∥C1D. BD1⊄平面AC1D,C1D⊂平面AC1D, 所以BD1∥平面AC1D, 又因为A1B∩BD1=B, 所以平面A1BD1∥平面AC1D.
2.如图,四棱锥P-ABCD中,AD∥BC,AB=BC
=
1 2
AD,E,F,H分别为线段AD,PC,CD的
考法(二) 直线与平面平行性质定理的应用 [例2] 如图所示,四边形ABCD是平行四 边形,点P是平面ABCD外一点,M是PC的中 点,在DM上取一点G,过G和AP作平面交平面 BDM于GH. 求证:AP∥GH.
高中数学《线面平行与面面平行判定与性质》导学案

线面平行、面面平行的判定及性质一、直线与平面平行文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则直线与此平面平行.性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.二、平面与平面平行文字语言图形语言符号语言判定定理一个平面内有两条相交直线与另一个平面平行,则这两个平面平行性质定理如果两个平行平面时与第三个平面相交,那么它们的交线平行A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面解:由面面平行的定义可知选D.例2:若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a垂直解:A错误,a与α内的直线平行或异面.例3:已知不重合的直线a,b和平面α,①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,上面命题中正确的是________(填序号)。
解:①中a与b可能异面;②中a与b可能相交、平行或异面;③中a可能在平面α内,④正确。
例4:已知α、β是平面,m、n是直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β.②若m⊂α,n⊂α,m∥β,n∥β,则α∥β.③如果m⊂α,n⊄α,m、n是异面直线,那么n与α相交.④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β其中正确命题的个数是() A.1 B.2 C.3 D.4解:对于①,由定理“如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直”得知,①正确;对于②,注意到直线m ,n 可能是两条平行直线,此时平面α,β可能是相交平面,因此②不正确;对于③,满足条件的直线n 可能平行于平面α,因此③不正确;对于④,由定理“如果平面外一条直线平行于平面内一条直线,那么这条直线平行于这个平面”得知,④正确.综上所述,其中正确的命题是①④,选B. 例5:已知m ,n 表示两条不同直线,α,β,γ表示不同平面,给出下列三个命题:(1)⎩⎪⎨⎪⎧ m ⊥αn ⊥α⇒m ∥n ;(2)⎩⎪⎨⎪⎧ m ⊥αm ⊥n ⇒n ∥α (3)⎩⎪⎨⎪⎧m ⊥αn ∥α⇒m ⊥n 其中真命题的个数为 ( )A .0B .1C .2D .3解:若⎩⎪⎨⎪⎧ m ⊥α,n ⊥α,则m ∥n ,即命题(1)正确;若⎩⎪⎨⎪⎧ m ⊥α,m ⊥n ,则n ∥α或n ⊂α,即命题(2)不正确;若⎩⎪⎨⎪⎧m ⊥αn ∥α,则m ⊥n ,即命题(3)正确;综上可得,真命题共有2个.选C例6:已知m 、n 、l 1、l 2表示直线,α、β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则以下条件中,能推出α∥β的是 ( ) A .m ∥β且l 1∥α B .m ∥β且n ∥β C .m ∥β且n ∥l 2 D .m ∥l 1且n ∥l 2解:由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.例7:在下列条件中,可判断平面α与β平行的是( ).A. α、β都平行于直线lB. α内存在不共线的三点到β的距离相等C. l 、m 是α内两条直线,且l ∥β,m ∥βD. l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β 解:排除法,A中α、β可以是相交平面;B中三点可面平面两侧;C中两直线可以不相交.故选D,也可直接证明.例8:经过平面外的两点作该平面的平行平面可以作( ). A. 0个 B. 1个 C. 0个或1个 D. 1个或2个 解:这两点可以是在平面同侧或两侧.选C 。
面面平行判定定理教案

面面平行判定定理教案教学目标:1. 理解面面平行的概念及其判定定理。
2. 学会运用判定定理判断空间中两个平面是否平行。
3. 培养学生的空间想象能力和逻辑思维能力。
教学内容:一、面面平行的定义1. 引导学生回顾平面的定义,理解平面是由无数条直线组成的二维图形。
2. 引入面面平行的概念,即两个平面在空间中没有公共点,且它们的法向量相同或相反。
二、面面平行的判定定理1. 讲解判定定理一:若两个平面的法向量相同,则这两个平面平行。
2. 讲解判定定理二:若两个平面的法向量相反,则这两个平面平行。
3. 讲解判定定理三:若两个平面相交于一条直线,且这条直线的方向向量与其中一个平面的法向量相同,则这两个平面平行。
三、判定定理的应用1. 引导学生运用判定定理判断空间中两个平面是否平行。
2. 给出实例,让学生学会如何找到法向量和方向向量进行判断。
四、练习与巩固1. 布置一些判断面面平行的题目,让学生独立完成。
2. 引导学生总结判断面面平行的方法和技巧。
五、课堂小结1. 回顾本节课所学的内容,让学生掌握面面平行的定义和判定定理。
2. 强调面面平行在实际问题中的应用,激发学生的学习兴趣。
教学评价:通过课堂讲解、练习和巩固,评价学生对面面平行定义和判定定理的理解程度,以及运用判定定理判断空间中两个平面是否平行的能力。
六、面面平行的性质定理1. 引入性质定理:若两个平面平行,则它们之间的距离相等。
2. 解释性质定理的证明过程,引导学生理解并掌握。
七、性质定理的应用1. 讲解如何利用性质定理计算两个平行平面之间的距离。
2. 提供实际问题,让学生学会将性质定理应用于实际问题中。
八、面面平行的判定与性质的综合应用1. 引导学生理解面面平行的判定定理与性质定理之间的关系。
2. 通过实例,讲解如何综合运用判定定理和性质定理解决复杂问题。
九、课堂练习与讨论1. 布置一些有关面面平行的判定与性质的应用题目,让学生独立完成。
2. 组织学生进行小组讨论,分享解题心得和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:线面平行、面面平行
教学目标:掌握线面平行、面面平行的判定方法,并能熟练解决线面平行、面面平行的判定问题.
(一) 主要知识及主要方法:
1.线面平行的证明()1判定定理:如果平面外一条直线与这个平面内一条直线平行,那么这
条直线与这个平面平行;()2两平面平行的性质定理:
α∥β,a λα=I ,b γβ=I ⇒a
∥b .()3向量法. 方法1;AB ∥α⇔AB n AB α⎧⊥⎪⎨⎪⎩u u u r r à⇔0
AB n AB α⎧=⎪⎨
⎪⎩
u u u r r
g à 方法2;AB ∥α⇔AB CD AB CD αα⎧⎪
⎨⎪⎩
u u u r u u u r ∥àÔ
方法3;证明直线的方向向量与平面的两不共线向量是共面向量, 即利用平面向量基本定理进行证明.如图,
CD ∥α⇔CD xAC y AB CD α
⎧=+⎪⎨⎪⎩u u u r u u u r u u u r
à(其中{},x y 唯一且有序)
2.面面平行的证明:()1判定定理:如果一个平面内有两条相交直线都平行于另一个平
面,那么这两个平面平行. ()2垂直于同一条直线的两个平面平行;()3平行于同一个平
面的两个平面平行.()3设1n u r 、2n u u r 分别是平面α、β的法向量,若1n u r ∥2n u u r
,则α∥β
(二)典例分析:
问题1.(06北京)如图,在底面为平行四边形的四棱锥P ABCD -中,
AB AC ⊥,PA ⊥平面ABCD ,且 PA AB =,点E 是PD 的中点. ()1略; ()2求证:PB ∥平面AEC ;()3略.
问题2.如图,在正三棱锥S ABC -中,
D 、
E 、
F 分别是棱AC 、BC 、SC
上的点, 且2CD DA =,2CE ES =,2CF FB =,
G 是AB 的中点.()1求证:平面SAB ∥平面DEF ;
()2求证:SG ∥平面DEF
A B C α D
g g g g α A B C C
D
P
A
B
C
D E S A
C
D E
g
(三)走向高考:
1.(07全国Ⅱ)如图,在四棱锥S ABCD -中, 底面ABCD 为正方形,侧棱SD ⊥底面ABCD , E 、F 分别为AB SC ,的中点.
()1证明EF ∥平面SAD ;()2略.
S
A B
C
G
D E
F g
A
E
B
C
F
S
D。