空间向量及其运算(经典)

合集下载

空间向量及其加减、数乘和数量积运算

空间向量及其加减、数乘和数量积运算

8. 6 空间向量及其加减、数乘和数量积运算1.空间向量的有关概念(1) ___________________________________ 空间向量:在空间,我们把具有和的量叫做空间向量.(2) _________________________ 零向量:规定的向量叫做零向量.(3) __________________ 单位向量:的向量称为单位向量.(4) ___________________________________ 相反向量:与向量a 的向量,称为a 的相反向量,记为-a.(5) _________________________ 相等向量:的向量称为相等向量.(6) 空间向量的加法运算满足交换律及结合律:a+ b=__________ ;(a + b) + c = _______________ .2.空间向量的数乘运算⑴向量的数乘:实数入与空间向量a的乘积?a仍然是一个向量,称为向量的数乘.①当X _ 0时,入a与向量a方向相同;当X __ 0时,入a与向量a方向相反.②入a的长度是向量a的长度的________ 倍.(2) 空间向量的数乘运算满足分配律及结合律:①分配律:X(a+b)= __________ .②结合律:X宙)= _________ .(3) 共线向量:如果表示空间向量的有向线段所在的直线_____________________ ,则这些向量叫做共线向量或平行向量.⑷共线向量定理:对空间任意两个向量a, b(b z 0), a // b的充要条件是______________________ .⑸空间直线I的方向向量:和直线I _________ 的非零向量a叫做直线I的方向向量.⑹空间直线的向量表示:I为经过已知点A且平行于已知非零向量a的直线,对空间任意一点0,点P在直线I上的充要条件是___________________________________ ,特别地,如果 a = AB,则上式可以化为OP = 0A + tAB,或_________________ ,这也是空间三点A, B, P共线的充要条件.(7) 共面向量: _______________ 的向量叫做共面向量.(8) 空间共面向量定理:如果两个向量a, b 不共线,那么向量p 与向量a, b 共面的充要条件是推论:对空间任意一点0和不共线的三点A, B, C,满足向量关系式 _______________________________ ,其中__________ ,则点P 与点A, B, C 共面.3.空间向量的数量积运算(1) 空间向量的数量积:已知两个非零向量a, b,则 ___________________ 叫做a, b的数量积,记作a b,通常规定,0w〈a, b〉w n对于两个非零向量a, b, a丄b? ____________ .(2) 空间零向量与任何向量的数量积为.(3) a a = |a||a|cos〈 a, a>= ______ .(4) 空间向量的数量积满足如下的运算律:①(X) • b= __________ ;②ab= __________ (交换律);③ a (b+ c) = ________________ (分配律).自查自纠1. (1)大小方向⑵长度为0 (3)模为1⑷长度相等而方向相反⑸方向相同且模相等(6)b+ a a + (b+ c)2. (1)①〉v ②|入| (2)① 扫+?b ②(入卩)a(3) 互相平行或重合(4)存在实数入使a= ^bO)P= (i-t)oA+to)B (7)平行于同一个平面3. (1)|a||b|cos〈a, b> a b= 0 (2)0⑶|a|1 2 3 (4)① «a b) ② b a ③a b+ a cO 在长方体ABCD-A1BQ1D1 中,BA + Be + D D1=( )A. D1B1B.D1BD.B D1~--> —> —> —> —> —>解:BA+ BC+ DD1=CD + BC + DD1 =BD + DD1=BD1,故选D.电平行六面体ABCD-A1B1C1D1中,M为AC和BD的交点,若A B = a, AD = b, A A1 =等的是()11 11A . - 2a + 2b+ c B. 2a + ?b—c1 1 1 1C. —?a+ ?b—cD. —2 a—? b+ c解:BlM = B?B + BM = —c+ 1BD = —c+ 2(b—a) = —*a + 2b—c,故选C.nOB = OC,且/ AOB = Z AOC =三贝U cos〈3⑸平行⑹存在实数t,使齐=O +1aC.(8)存在惟一的有序实数对—> —> —> —>OP = xOA + yOB +(x, y),使p= x a + y bx+ y+ z= 1C.DB1c,则下列式子中与B1M相©如图所示,已知空间四边形OABC, ,BC >的值为()o解:设0A = a , OB = b , OC = c ,由已知条件〈a , b 〉=〈 a , c 〉= n 且 |b |= |c |, OA • BC = a (c — b )= a c — a b 3 11 f f=2|a ||c |— 2|a ||b |= 0,所以 cos 〈OA , BC 〉= 0•故选 A.已知空间四边形 OABC ,点M , N 分别是OA , BC 的中点,且OA = a , OB = b , OC = c ,用a , b , c 表示向 量 MN = ________ .解:如图所示,MN = *(MB + MC)= *[(OB — OM)+ (OC — OM)] = ^(OB + OC — 2O)M)= g(OB + OC — OA)=g(b + c —a ).故填 2(b + c — a ).(2017鞍山市育英中学月考)已知在正方体 ABCD-A i B i C i D i 中,侧面CCQ i D 的中心是F ,若A F = A D + mAB + nAA r ,贝H m = ________ , n = ________ .解:因为A F = A D + D F = A D + ^(D C + D D i )=A D +2(AB + A ^i ) = A D + ~A B + ^A X I ,所以 m = n =*.故填2; 4 5.类型一空间向量的运算GE (20i7枣阳市鹿头中学月考)如图所示,在空间几何体 ABCD-A i B i C i D i 中,各面为平行四边形, 设AA i = a , AB = b , AD = c , M , N , P 分别是AA i , BC , CQ i 的中点,试用 a , b , c 表示以下各向量:4 AP ;5 MP + NC i .解:(i)因为 P 是 C i D i 的中点,所以 AP = AA i + A i D i + D i P = a + AD + 2D i C i = a + c +?AB = a + c +^b. ⑵因为M 是AA i 的中点, 所以 IMP = MA + A P =苏》+A P =—a + a + c + 丁 b = 2a + ;b + c .-f f f i -f f i -f f又 NG = NC + CC i =尹c + AA i = 2AD + AA i方类解析1=2。

空间向量知识点总结公式

空间向量知识点总结公式

空间向量知识点总结公式一、空间向量的定义在三维空间中,空间向量通常用坐标表示,其中一个点P的坐标为(x,y,z),另一个点Q的坐标为(a,b,c),那么PQ的空间向量为向量(a-x,b-y,c-z)。

二、空间向量的运算1. 空间向量的加法运算若有两个向量A(a1,b1,c1)和B(a2,b2,c2),则它们的和为C(a1+a2,b1+b2,c1+c2)。

2. 空间向量的减法运算若有两个向量A(a1,b1,c1)和B(a2,b2,c2),则它们的差为C(a1-a2,b1-b2,c1-c2)。

3. 空间向量的数乘运算若有一个向量A(a,b,c),一个实数k,则kA为(ka,kb,kc)。

4. 空间向量的数量积数量积指两个向量的数量乘积,设A(a1,b1,c1)和B(a2,b2,c2),则它们的数量积为a1a2+b1b2+c1c2。

5. 空间向量的向量积向量积又称为叉积,设A(a1,b1,c1)和B(a2,b2,c2),则它们的向量积为(b1c2-c1b2,c1a2-a1c2,a1b2-b1a2)。

6. 空间向量的混合积定义为A·(B×C),其中A、B、C分别为三个向量,其中A·表示数量积,B×C表示向量积。

三、空间向量的坐标表示空间向量通常有两种常见的表示方法,即点坐标表示和参数方程表示。

1. 点坐标表示点坐标表示指的是根据两个点的坐标来表示一条向量。

设两点P(x1,y1,z1)和Q(x2,y2,z2),则以P为起点Q为终点的向量为(x2-x1,y2-y1,z2-z1)。

2. 参数方程表示参数方程表示指的是以一个点为起点,以一个方向向量为方向,通过参数t来表示。

设点P(x0,y0,z0)是向量的起点,向量v=(a,b,c)是方向向量,那么向量的参数方程为X=x0+at,Y=y0+bt,Z=z0+ct。

四、空间向量的应用1. 物理学中的运动学在物理学中,空间向量常常用于描述物体在三维空间中的运动和位置,如速度、加速度等。

空间向量及其运算 课件

空间向量及其运算    课件

共线向量与共面向量
1.共线向量 (1) 定 义 : 表 示 空 间 向 量 的 有 向 线 段 所 在 的 直 线 互__相__平__行__或__重__合__,则这些向量叫做_共__线__向__量___或平行向量; (2)共线向量定理:对于空间任意两个向量 a,b(b≠0), a∥b 的充要条件是存在实数 λ 使__a_=__λ_b____.
【思路探究】 (1)空间向量中,零向量是怎样定义的? (2)怎样判断两个向量相等?(3)四边形 ABCD 满足什么条件
时,才有A→B+A→D=A→C? 【自主解答】 ①正确;②正确,因为A→C与A→1C1的大小
和方向均相同;③|a|=|b|,不能确定其方向,所以 a 与 b 的 方向不能确定;④中只有当四边形 ABCD 是平行四边形时,
2.共面向量 (1)定义:平行于__同__一__个__平__面___的向量叫做共面向量. (2)共面向量定理:若两个向量 a,b 不共线,则向量 p 与向量 a,b 共面的充要条件是存在唯一的有序实数对(x,y), 使_p_=__x__a_+__y_b__.
推论 空间一点 P 位于平面 ABC 内的充要条件是存在有 序实数对(x,y),使_A→_P__=__x_A→_B_+__y_A→_C__;或对空间任一定点 O,
才有A→B+A→D=A→C.
综上可知,正确命题为①②. 【答案】 ①②
1.在空间中,零向量、单位向量、向量的模、相等向 量、相反向量等概念和平面向量中相对应的概念完全相同.
2.由于向量是由其模和方向确定的,因此解答空间向 量有关概念问题时,通常抓住这两点来解决.
3.零向量是一个特殊向量,其方向是任意的,且与任 何向量都共线,这一点说明了共线向量不具备传递性.
【思路探究】 (1)E→H与F→G共线吗?怎样证明?

《空间向量及其运算》课件

《空间向量及其运算》课件

向量的模的运算律
模的加法运算律
$|overset{longrightarrow}{a} + overset{longrightarrow}{b}| = |overset{longrightarrow}{a}| + |overset{longrightarrow}{b}|$ 当且仅当 $overset{longrightarrow}{a}$ 与 $overset{longrightarrow}{b}$ 同向。
模的数乘运算律
$|lambdaoverset{longrightarrow}{a}| = |lambda||overset{longrightarrow}{a}|$,其 中 $lambda$ 是标量。
特殊向量的模的性质
零向量的模
$|overset{longrightarrow}{0}| = 0$。
向量的加法结合律
向量加法满足结合律,即对于任意三个向量 $overset{longrightarrow}{a}$、 $overset{longrightarrow}{b}$和 $overset{longrightarrow}{c}$,有 $(overset{longrightarrow}{a} + overset{longrightarrow}{b}) + overset{longrightarrow}{c} = overset{longrightarrow}{a} + (overset{longrightarrow}{b} + overset{longrightarrow}{c})$。
模的等式
当且仅当 $overset{longrightarrow}{a}$与 $overset{longrightarrow}{b}$同向 或反向时,有 $|overset{longrightarrow}{a}| = |overset{longrightarrow}{b}|$。

空间向量知识点归纳总结(经典)

空间向量知识点归纳总结(经典)

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示•同向等长的有向线段表示同一或相等的向量。

(2) 向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB = OA+ AB = a+b .BA = OA-OB = a-b .OP = λa(λGR)运算律:⑴加法交换律:a + b =b + a ⑵加法结合律:(^ + fe) + c = + + c)⑶数乘分配律:+ b) = λa + λb运算法则:三角形法则、平行四边形法则.平行六面体法则 3. 共线向量。

(1) 如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,N 平行于方,记作N 〃b 。

(2 )共线向量定理:空间任意两个向量万、b (方≠6),ababAB = λAC OC = XOA+ yOB(^^x + y = l) a 土(1) 定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2) 共面向量定理:如果两个向量",5不共线,0与向量久5共面的条件是存在实数—♦兀」'使p = xa + yb 9(3) 四点共面:若A 、B 、C 、P 四点共面<=>AP = xAB + yAC共面向量©OP = XOA + yOB +zOC(其中兀 + y + z = 1)在一个唯一的有序实数组x,y,Z f使p = xa+ yb +zc 9—♦若三向量GbE不共面,我们把{a.b,c}叫做空间的一个基底,a,b,c叫做基向量, 空间任意三个不共面的向量都可以构成空间的一个基底。

推论:设o,4,5C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数X,y.Z f使OP = XOA + yOB + zOC O6.空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系0 —厂Z中,对空间任一点A,存在唯一的有序实数组(兀”Z), 使OA = xi + yi+忑,有序实数组(x,y,z)叫作向量A在空间直角坐标系O-XK中的坐标, 记作A(X,y,z), X叫横坐标,y叫纵坐标,Z叫竖坐标。

空间向量及其运算(内容详细,题目典型,适合新授课)

空间向量及其运算(内容详细,题目典型,适合新授课)
(3).空间向量的数乘运算满足分配律及结合律
即: (a b) a b ( ) a a a ( )a ( )a
四、空间向量加法与数乘向量运算律
化简( AB CD) ( AC BD)
解: 方法一: 将减法转化为加法进行 化简 AB CD AB DC ( AB CD ) ( AC BD) AB DC AC BD AB DC CA BD AB BD DC CA AD DA 0
五、共线向量: 1.空间共线向量:如果表示空间向量的
有向线段所在直线互相平行或重合,则这些 向量叫做共线向量(或平行向量),记作 a // b 零向量与任意向量共线.
2.空间共线向量定理:对空间任意两个 向量 a, b(b o), a // b 的充要条件是存在实 数使 a b
由此可判断空间中两直线平行或三点共线问题
你能对(3)(4)结论进行推广吗?
四、空间向量加法与数乘向量运算律
A1 A2 A2 A3 An 1 An _____ A1 An
(3) A1 A2 A2 A3 A3 A4 A1 A4
A1 An A2 A3
An-1

A 4 首尾相接的若干向量之和,等于由起始向量的起 点指向末尾向量的终点的向量.
B
b
a
O
A
O′
结论:空间任意两个向量都可以平移到同一个平面内, 内,成为同一平面内的两个向量。
一、空间向量的基本概念
说明 ⒈空间向量的运算就是平面向量运算的推广.
2.凡是只涉及空间任意两个向量的问题,平面向量 中有关结论仍适用于它们。
一、空间向量的基本概念

空间向量及其运算(共22张PPT)

空间向量及其运算(共22张PPT)
向量场的点乘
两个向量场进行点乘运算,得到一个标量场,其 每个标量是原来两个向量场的对应向量的点乘结 果。
向量场的几何意义
向量场表示了空间中某一点受到的力或速度等物理量的分布情况,可以通 过图形表示出来。
向量场的方向表示了该点受到的力的方向或速度的方向,向量的大小表示 了力的大小或速度的大小。
通过观察图形可以直观地了解向量场的分布情况,从而更好地理解物理现 象和问题。
向量的模
向量的模定义为从起点到终点距离的 长度,记作|a|。
向量的模具有以下性质:|a + b| ≤ |a| + |b|,|a - b| ≤ |a| + |b|,|λa| = |λ||a| (λ为实数)。
向量的加法
向量的加法定义为同起点同终点的向量相加,即a + b = b + a(交换律),(λ + μ)a = λa + μa(结合律)。
向量场具有方向性和大小,表 示了空间中某一点受到的力或 速度等物理量的分布情况。
向量场的运算律
1 2 3
向量场的加法
将两个向量场叠加,得到一个新的向量场,其每 个向量是原来两个向量场的对应向量的和。
向量场的数乘
将一个标量与一个向量场中的每个向量相乘,得 到一个新的向量场,其每个向量是原来向量场的 对应向量与该标量的乘积。
向量在其他领域的应用
经济学
在经济学中,例如在市场分析和供需关系中,可以使用向量来表示不同因素之间的关系,通过向量的运算来分析 这些因素之间的关系。
生物学
在生物学中,例如在生态学和生物力学中,可以使用向量来描述生物体的运动、方向和力的作用,通过向量的运 算来分析这些力的作用和影响。
THANKS

空间向量及其运算

空间向量及其运算

空间向量及其运算1.空间向量(1)定义:空间中既有大小又有方向的量称为空间向量. (2)模(或长度):向量的大小. (3)表示方法:①几何表示法:可以用有向线段来直观的表示向量,如始点为A 终点为B 的向量,记为AB →,模为|AB →|.②字母表示法:可以用字母a ,b ,c ,…表示,模为|a |,|b |,|c |,…. 2.【几类特殊的向量】(1)零向量:始点和终点相同的向量称为零向量,记作0. (2)单位向量:模等于1的向量称为单位向量.(3)相等向量:大小相等、方向相同的向量称为相等向量. (4)相反向量:方向相反,大小相等的向量称为相反向量.(5)平行向量:方向相同或者相反的两个非零向量互相平行,此时表示这两个非零向量的有向线段所在的直线平行或重合.通常规定零向量与任意向量平行. (6)共面向量:一般地,空间中的多个向量,如果表示它们的有向线段通过平移后,都能在同一平面内,则称这些向量共面. 3.空间向量的线性运算类似于平面向量,可以定义空间向量的加法、减法及数乘运算.图1 图2(1)如图1,OB →=OA →+AB →=a +b ,CA →=OA →-OC →=a -b . (2)如图2,DA →+DC →+DD 1→=DB 1→.即三个不共面向量的和,等于以这三个向量为邻边的平行六面体中,与这三个向量有共同始点的对角线所表示的向量.(3)给定一个实数λ与任意一个空间向量a ,则实数λ与空间向量a 相乘的运算称为数乘向量,记作λa .其中:①当λ≠0且a ≠0时,λa 的模为|λ||a |,而且λa 的方向:(ⅰ)当λ>0时,与a 的方向相同;(ⅰ)当λ<0时,与a 的方向相反. ②当λ=0或a =0时,λa =0.(4)空间向量的线性运算满足如下运算律:对于实数λ与μ,向量a 与b ,有①λa +μa =(λ+μ)a ;②λ(a +b )=λa +λb . 4.空间向量的数量积 (1)空间向量的夹角如果〈a ,b 〉=π2,那么向量a ,b 互相垂直,记作a ⊥b . (2)空间向量数量积的定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积(或内积),记作a·b . (3)数量积的几何意义 ①向量的投影如图所示, 过向量a 的始点和终点分别向b 所在的直线作垂线,即可得到向量a 在向量b 上的投影a ′.②数量积的几何意义:a 与b 的数量积等于a 在b 上的投影a ′的数量与b 的长度的乘积,特别地,a 与单位向量e 的数量积等于a 在e 上的投影a ′的数量.规定零向量与任意向量的数量积为0. (4)空间向量数量积的性质:①a ⊥b ⇔a ·b =0;②a ·a =|a |2=a 2;③|a ·b |≤|a ||b |;④(λa )·b =λ(a ·b );⑤a ·b =b ·a (交换律);5.共面向量定理如果两个向量a,b不共线,则向量a,b,c共面的充要条件是存在唯一的实数对(x,y),使c=x a+y b.思考1:平面向量基本定理中对于向量a与b有什么条件,在空间中能成立吗?【名师提醒】平面向量基本定理中要求向量a与b不共线,在空间中仍然成立.【新高二数学专题】考点一概念的辨析【例1】(2020·全国高二课时练习)下列命题中,假命题是()A.同平面向量一样,任意两个空间向量都不能比较大小B.两个相等的向量,若起点相同,则终点也相同C.只有零向量的模等于0D.共线的单位向量都相等【新高二数学专题】1.(2020•龙岩期末)在平行六面体中,与向量相等的向量共有A. 1个B. 2个C. 3个D. 4个2.(2020·全国高二课时练习)在下列命题中:①若向量,a b共线,则,a b所在的直线平行;②若向量,a b所在的直线是异面直线,则,a b一定不共面;③若三个向量,a b c,三个向量一定也共面;,两两共面,则,a b c④已知三个向量,a b c=++.,,则空间任意一个向量p总可以唯一表示为p xa yb zc 其中正确命题的个数为()A.0B.1C.2D.3考点二 空间向量的线性运算【例2】2020·江西赣州.高二期中(理))在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,则EF 等于()A .1223EF AC AB AD →→→→=+-B .112223EF AC AB AD →→→→=--+C .112223EF AC AB AD →→→→=-+D .112223EF AC AB AD →→→→=-+-【新高二数学专题】1.(多选题)已知平行六面体ABCD A B C D ''''-,则下列四式中其中正确的有( ) A .AB CB AC -= B .AC AB B C CC ''''=++ C .AA CC ''=D .AB BB BC C C AC '''+++=2.(2020·宝山.上海交大附中高二期末)在平行六面体1111ABCD A BC D -中,M 为11AC 与11B D 的交点,若,AB a AD b ==,1AA c =,则与BM 相等的向量是( )A .1122a b c ++B .1122a b c --+C .1122a b c -+D .1122-++a b c3.(2020·张家口市宣化第一中学高二月考)如图,在空间四边形ABCD 中,设E ,F 分别是BC ,CD 的中点,则AD +12(BC -BD )等于( )A .ADB .FAC .AFD .EF 考点三 空间向量的共线、共面问题【例3】如图所示,在空间四边形ABCD 中,点E ,F 分别是AB ,CD 的中点,请判断向量EF 与AD +BC 是否共线?【例4】(2020•珠海期末)已知A ,B ,C 三点不共线,点M 满足.,,三个向量是否共面点M 是否在平面ABC 内【新高二数学专题】1.(2020·全国高二)O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++,若P ,A ,B ,C 四点共面,则实数t =______. 2.(2020•日照期末)如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且,.求证:向量,,共面.3.(2020·浙江高二期末)在棱长为1的正方体1111ABCD A BC D -中,,,E F G 分别在棱1,,BB BC BA 上,且满足134BE BB =,12BF BC =,12BG BA =,O 是平面1B GF ,平面ACE 与平面11B BDD 的一个公共点,设BO xBG yBF zBE =++,则x y z ++= A.45B.65C.75D.85考点四 空间向量的数量积【例5】 (2020·山东高二期末(理))在棱长为2的正四面体ABCD 中,E ,F 分别是BC ,AD 的中点,则(AE CF ⋅= ) A .0B .2-C .2D .3-【例6】 (2020·全国高二课时练习)已知平行六面体ABCD ﹣A ′B ′C ′D ′中,AB =4,AD =3,AA ′=5,∠BAD =90°,∠BAA ′=∠DAA ′=60°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§8.5 空间向量及其运算1.空间向量的有关概念名称 概念 表示 零向量 模为0的向量 0 单位向量 长度(模)为1的向量 相等向量 方向相同且模相等的向量 a =b相反向量 方向相反且模相等的向量 a 的相反向量为-a共线向量 表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.(1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . 推论 如图所示,点P 在l 上的充要条件是 OP →=OA →+t a①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a ,则①可化为OP →= OA →+tAB →或OP →=(1-t )OA →+tOB →.(2)共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=OM →+xMA →+yMB →或OP →=xOM →+yOA →+zOB →,其中x +y +z =__1__. (3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,把{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b . ②两向量的数量积已知空间两个非零向量a ,b ,则|a||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a·b ,即a·b =|a||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及应用 (1)数量积的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23 . 设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|=(a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2.1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两非零向量a ,b 共面.( √ ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × )(3)对于非零向量b ,由a ·b =b ·c ,则a =c . ( × ) (4)两向量夹角的范围与两异面直线所成角的范围相同.( × ) (5)若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0. ( √ ) (6)|a |-|b |=|a +b |是a 、b 共线的充要条件.( × )2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的 交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A.-12a +12b +cB.12a +12b +c C.-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.已知正方体ABCD -A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AE →=AA 1→+xAB →+yAD →,则x ,y 的值分别为( )A.x =1,y =1B.x =1,y =12C.x =12,y =12D.x =12,y =1答案 C解析 如图,AE →=AA 1→+A 1E →=AA 1→+12A 1C 1→=AA 1→+12(AB →+AD →).4.同时垂直于a =(2,2,1)和b =(4,5,3)的单位向量是_______________________. 答案 ⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23 解析 设与a =(2,2,1)和b =(4,5,3)同时垂直的单位向量是c =(p ,q ,r ),则⎩⎪⎨⎪⎧p 2+q 2+r 2=1,2p +2q +r =0,4p +5q +3r =0,解得⎩⎪⎨⎪⎧ p =13,q =-23,r =23,或⎩⎪⎨⎪⎧p =-13,q =23,r =-23,即同时垂直于a ,b 的单位向量为⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23.5.如图,在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点, E 为AD 的中点,则OE →=________(用a ,b ,c 表示). 答案 12a +14b +14c解析 OE →=12OA →+12OD →=12OA →+14OB →+14OC →=12a +14b +14c .题型一 空间向量的线性运算例1 三棱锥O —ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示MG →,OG →. 思维启迪 利用空间向量的加减法和数乘运算表示即可. 解 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →. 思维升华 用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.(1)化简A 1O →-12AB →-12AD →=________;(2)用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________. 答案 (1)A 1A →(2)12AB →+12AD →+AA 1→解析 (1)A 1O →-12AB →-12AD →=A 1O →-12AC →=A 1O →-AO →=A 1A →. (2)OC 1→=OC →+CC 1→ =12AB →+12AD →+AA 1→. 题型二 共线定理、共面定理的应用例2 已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、 DA 的中点,(1)求证:E 、F 、G 、H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).思维启迪 对于(1)只要证出向量EG →=EF →+EH →即可;对于(2)只要证出BD →与EH →共线即可;对于(3),易知四边形EFGH 为平行四边形,则点M 为线段EG 与FH 的中点,于是向量OM →可由向量OG →和OE →表示,再将OG →与OE →分别用向量OC →,OD →和向量OA →,OB →表示. 证明 (1)连接BG , 则EG →=EB →+BG → =EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →, 由共面向量定理的推论知: E 、F 、G 、H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(3)找一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG . 由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形. 所以EG ,FH 交于一点M 且被M 平分.故OM →=12(OE →+OG →)=12OE →+12OG →=12⎣⎡⎦⎤12(OA →+OB →)+12⎣⎡⎦⎤12(OC →+OD →) =14(OA →+OB →+OC →+OD →). 思维升华 (1)证明点共线的方法证明点共线的问题可转化为证明向量共线的问题,如证明A ,B ,C 三点共线,即证明AB →,AC →共线,亦即证明AB →=λAC →(λ≠0). (2)证明点共面的方法证明点共面问题可转化为证明向量共面问题,如要证明P ,A ,B ,C 四点共面,只要能证明P A →=xPB →+yPC →或对空间任一点O ,有OA →=OP →+xPB →+yPC →或OP →=xOA →+yOB →+zOC (x +y +z =1)即可.共面向量定理实际上也是三个非零向量所在直线共面的充要条件.如图,正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 上的点,F 是AC 上的点,且A 1E =2EB ,CF =2AF ,则EF 与平面A 1B 1CD 的位置关系为________. 答案 平行解析 取AB →=a ,AD →=b ,AA 1→=c 为基底,易得EF →=-13(a -b +c ),而DB 1→=a -b +c ,即EF →∥DB 1→,故EF ∥DB 1, 且EF ⊄平面A 1B 1CD ,DB 1⊂平面A 1B 1CD , 所以EF ∥平面A 1B 1CD . 题型三 空间向量数量积的应用例3 如图所示,已知空间四边形AB -CD 的各边和对角线的长都等于 a ,点M 、N 分别是AB 、CD 的中点. (1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 所成角的余弦值.思维启迪 两条直线的垂直关系可以转化为两个向量的垂直关系;利用|a |2=a ·a 可以求线段长;利用cos θ=a ·b |a ||b |可求两条直线所成的角.(1)证明 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p 、q 、r 三向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0. ∴MN →⊥AB →.即MN ⊥AB .同理可证MN ⊥CD . (2)解 由(1)可知MN →=12(q +r -p ),∴|MN →|2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )] =14[a 2+a 2+a 2+2(a 22-a 22-a 22)] =14×2a 2=a 22. ∴|MN →|=22a .∴MN 的长为22a .(3)解 设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·(q -12p )=12(q 2-12q ·p +r ·q -12r ·p ) =12(a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60°) =12(a 2-a 24+a 22-a 24)=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华 (1)当题目条件有垂直关系时,常转化为数量积为零进行应用;(2)当异面直线所成的角为α时,常利用它们所在的向量转化为向量的夹角θ来进行计算.应该注意的是α∈(0,π2],θ∈[0,π],所以cos α=|cos θ|=|a ·b ||a ||b |;(3)立体几何中求线段的长度可以通过解三角形,也可依据|a |=a 2转化为向量求解.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求向量a 与向量b 的夹角的余弦值; (2)若k a +b 与k a -2b 互相垂直,求实数k 的值. 解 (1)∵a =(1,1,0),b =(-1,0,2), ∴a ·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2, |b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010. (2)方法一 ∵k a +b =(k -1,k,2). k a -2b =(k +2,k ,-4), 且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0, ∴k =2或k =-52,∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.方法二 由(1)知|a |=2,|b |=5,a ·b =-1, ∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2 =2k 2+k -10=0, 得k =2或k =-52.“两向量同向”意义不清致误典例:(5分)已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.易错分析 将a ,b 同向和a ∥b 混淆,没有搞清a ∥b 的意义:a ·b 方向相同或相反. 解析 由题意知a ∥b ,所以x 1=x 2+y -22=y 3,即⎩⎪⎨⎪⎧y =3x ①x 2+y -2=2x ② 把①代入②得x 2+x -2=0,(x +2)(x -1)=0, 解得x =-2,或x =1当x =-2时,y =-6;当x =1时,y =3.当⎩⎪⎨⎪⎧x =-2y =-6时,b =(-2,-4,-6)=-2a , 两向量a ,b 反向,不符合题意,所以舍去.当⎩⎪⎨⎪⎧ x =1y =3时,b =(1,2,3)=a ,a 与b 同向,所以⎩⎪⎨⎪⎧x =1y =3. 答案 1,3温馨提醒 (1)两向量平行和两向量同向不是等价的,同向是平行的一种情况.两向量同向能推出两向量平行,但反过来不成立,也就是说,“两向量同向”是“两向量平行”的充分不必要条件;(2)若两向量a ,b 满足a =λb (b ≠0)且λ>0则a ,b 同向;在a ,b 的坐标都是非零的条件下,a ,b 的坐标对应成比例.方法与技巧1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基础.2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利用数量积运算可以解决一些距离、夹角问题.3.利用向量解立体几何题的一般方法:把线段或角度转化为向量表示,用已知向量表示未知向量,然后通过向量的运算或证明去解决问题. 失误与防范1.向量的数量积满足交换律、分配律,但不满足结合律,即a·b =b·a ,a ·(b +c )=a·b +a·c 成立,(a·b )·c =a·(b·c )不一定成立.2.求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.A 组 专项基础训练 (时间:40分钟)一、选择题1.空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A.垂直B.平行C.异面D.相交但不垂直答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1), ∴AB →=-3CD →,∴AB →与CD →共线,又AB →与CD →没有公共点. ∴AB ∥CD .2.已知O ,A ,B ,C 为空间四个点,又OA →,OB →,OC →为空间的一个基底,则 ( ) A.O ,A ,B ,C 四点不共线 B.O ,A ,B ,C 四点共面,但不共线 C.O ,A ,B ,C 四点中任意三点不共线 D.O ,A ,B ,C 四点不共面 答案 D解析 OA →,OB →,OC →为空间的一个基底,所以OA →,OB →,OC →不共面,但A ,B ,C 三种情况都有可能使OA →,OB →,OC →共面.3.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )A.2,12B.-13,12C.-3,2D.2,2答案 A解析 由题意知:⎩⎪⎨⎪⎧ λ+16=22λ,2μ-1=0,解得⎩⎪⎨⎪⎧ λ=2,μ=12或⎩⎪⎨⎪⎧λ=-3,μ=12.4.空间四点A (2,3,6)、B (4,3,2)、C (0,0,1)、D (2,0,2)的位置关系是( ) A.共线B.共面C.不共面D.无法确定 答案 C解析 ∵AB →=(2,0,-4),AC →=(-2,-3,-5),AD →=(0,-3,-4).假设四点共面,由共面向量定理得,存在实数x ,y ,使AD →=xAB →+yAC →,即⎩⎪⎨⎪⎧ 2x -2y =0, ①-3y =-3, ②-4x -5y =-4, ③由①②得x =y =1,代入③式不成立,矛盾.∴假设不成立,故四点不共面.5.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为( ) A.0 B.12 C.32 D.22 答案 A解析 设OA →=a ,OB →=b ,OC →=c ,则|b |=|c |,〈a ,b 〉=〈a ,c 〉=π3,BC →=c -b , ∴OA →·BC →=a ·(c -b )=a ·c -a ·b=|a ||c |cos π3-|a ||b |cos π3=0, ∴OA →⊥BC →,∴cos 〈OA →,BC →〉=0.二、填空题6.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.答案 60°解析 由题意得,(2a +b )·c =0+10-20=-10.即2a ·c +b ·c =-10,又∵a ·c =4,∴b ·c =-18,∴cos 〈b ,c 〉=b ·c |b |·|c |=-1812×1+4+4=-12, ∴〈b ,c 〉=120°,∴两直线的夹角为60°.7.已知a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值为________.答案 355解析 b -a =(1+t,2t -1,0),∴|b -a |=(1+t )2+(2t -1)2= 5⎝⎛⎭⎫t -152+95,∴当t =15时,|b -a |取得最小值355.8.如图所示,已知P A ⊥平面ABC ,∠ABC =120°,P A =AB =BC =6,则PC 等于________.答案 12解析 因为PC →=P A →+AB →+BC →,所以PC →2=P A →2+AB →2+BC →2+2AB →·BC →=36+36+36+2×36cos 60°=144.所以|PC →|=12.三、解答题9.已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上是否存在一点E ,使得OE →⊥b (O 为原点)?解 (1)∵a =(1,-3,2),b =(-2,1,1),∴2a +b =(0,-5,5),∴|2a +b |=02+(-5)2+52=5 2.(2)假设存在点E ,其坐标为E (x ,y ,z ),则AE →=λAB →,即(x +3,y +1,z -4)=λ(1,-1,-2),∴⎩⎪⎨⎪⎧ x =λ-3y =-λ-1z =-2λ+4,∴E(λ-3,-λ-1,-2λ+4),∴OE →=(λ-3,-λ-1,-2λ+4).又∵b =(-2,1,1),OE →⊥b ,∴OE →·b =-2(λ-3)+(-λ-1)+(-2λ+4)=-5λ+9=0,∴λ=95,∴E (-65,-145,25), ∴在直线AB 上存在点E (-65,-145,25),使OE →⊥b . 10.如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长;(2)求BD 1与AC 夹角的余弦值.解 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12. (1)|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×(12+12+12)=6, ∴|AC 1→|=6,即AC 1的长为 6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b)=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66. ∴AC 与BD 1夹角的余弦值为66. B 组 专项能力提升(时间:30分钟)1.若向量c 垂直于不共线的向量a 和b ,d =λa +μb (λ、μ∈R ,且λμ≠0),则( ) A.c ∥dB.c ⊥dC.c 不平行于d ,c 也不垂直于dD.以上三种情况均有可能答案 B解析 由题意得,c 垂直于由a ,b 确定的平面.∵d =λa +μb ,∴d 与a ,b 共面.∴c ⊥d .2.以下命题中,正确的命题个数为 ( ) ①若a ,b 共线,则a 与b 所在直线平行;②若{a ,b ,c }为空间一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ③若空间向量m 、n 、p 满足m =n ,n =p ,则m =p ;④对空间任意一点O 和不共线三点A 、B 、C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P 、A 、B 、C 四点共面.A.1B.2C.3D.4答案 B解析 由共线向量知a 与b 所在直线可能重合知①错;若a +b ,b +c ,c +a 共面,则存在实数x ,y ,使a +b =x (b +c )+y (c +a )=y a +x b +(x +y )c , ∵a ,b ,c 不共面,∴y =1,x =1,x +y =0,∴x ,y 无解,∴{a +b ,b +c ,c +a }能构成空间的一个基底,∴②正确;由向量相等的定义知③正确;由共面向量定理的推论知,当x +y +z =1时,P ,A ,B ,C 四点共面,∴④不正确.故选B.3.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为________.答案 25解析 以D 为原点,DA 、DC 、DD 1为x 、y 、z 轴正半轴建立空间直角坐标系,则A (1,0,0),A 1(1,0,1),B 1(1,1,1),B (1,1,0),C (0,1,0),∴M (1,12,1),N (1,1,12), ∴AM →=(0,12,1), CN →=(1,0,12), ∴cos 〈AM →,CN →〉=AM →·CN →|AM →|·|CN →|=12(12)2+12× 12+(12)2=25.4.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)求以AB →,AC →为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标.解 (1)由题意可得:AB →=(-2,-1,3),AC →=(1,-3,2),∴cos 〈AB →,AC →〉=AB →·AC→|AB →||AC →|=-2+3+614×14=714=12.∴sin 〈AB →,AC →〉=32,∴以AB →,AC →为边的平行四边形的面积为S =2×12|AB →|·|AC →|·sin 〈AB →,AC →〉=14×32=7 3.(2)设a =(x ,y ,z ),由题意得⎩⎪⎨⎪⎧ x 2+y 2+z 2=3-2x -y +3z =0x -3y +2z =0,解得⎩⎪⎨⎪⎧ x =1y =1z =1或⎩⎪⎨⎪⎧x =-1y =-1z =-1,∴向量a 的坐标为(1,1,1)或(-1,-1,-1).5.直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别为AB 、BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明 设CA →=a ,CB →=b ,CC ′→=c ,根据题意,|a |=|b |=|c |,且a·b =b·c =c·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=-12c 2+12b 2=0.∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |.AC ′→·CE →=(-a +c )·⎝⎛⎭⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22·52|a |2=1010. 即异面直线CE 与AC ′所成角的余弦值为1010.。

相关文档
最新文档