专题1.导数的概念及其运算

合集下载

专题01 导数的运算(解析版)

专题01 导数的运算(解析版)

专题01 导数的运算1.基本初等函数的导数公式基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q ,α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x2.导数的运算法则若f ′(x ),g ′(x )存在,则有[cf (x )]′=cf ′(x );[f (x )±g (x )]′=f ′(x )±g ′(x );[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0);3.复合函数的定义及其导数(1)一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )与u =g (x )的复合函数,记作y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【方法总结】导数运算的原则和方法基本原则:先化简、再求导; 具体方法:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ;(2)y =cos x ex ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).解析 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=⎝⎛⎭⎫cos x e x′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x . (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12x sin4x , ∴y ′=-12sin 4x -12x ·4cos 4x =-12sin 4x -2x cos 4x .(4)令u =2x -5,y =ln u .则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5. [例2] (1) (2020·全国Ⅲ)设函数f (x )=e x x +a.若f ′(1)=e4,则a =________.答案 1 解析 f ′(x )=e x (x +a )-e x (x +a )2=e x (x +a -1)(x +a )2,则f ′(1)=a e (a +1)2=e4,整理可得a 2-2a +1=0,解得a =1.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .答案 -74 解析 ∵f (x )=2x 2-3xf ′(1)+ln x ,∴f ′(x )=4x -3f ′(1)+1x ,将x =1代入,得f ′(1)=4-3f ′(1)+1,得f ′(1)=54.∴f (x )=2x 2-154x +ln x ,∴f (1)=2-154=-74.(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x 答案 C 解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2 022=4×505+2,∴f 2 022(x )=f 2(x )=cos x -sin x .故选C .(4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( ) A .f (x )=sin x +cos x B .f (x )=ln x -2x C .f (x )=x 3+2x -1 D .f (x )=x e x答案 AB 解析 对于A :f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,∵x ∈⎝⎛⎭⎫0,π2,∴f ″(x )<0,f (x )在⎝⎛⎭⎫0,π2上是凸函数,故A 正确.对于B :f ′(x )=1x -2,f ″(x )=-1x 2<0,故f (x )在⎝⎛⎭⎫0,π2上是凸函数,故B 正确;对于C :f ′(x )=3x 2+2,f ″(x )=6x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故C 错误;对于D :f ′(x )=(x +1)e x ,f ″(x )=(x +2)e x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故D 错误.故选AB . (5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x答案 C 解析 由选项知f (x )的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x ,即⎣⎡⎦⎤f (x )x ′=1+1x ,故f (x )x =x +ln x +c (c 为待定常数),即f (x )=x 2+(ln x +c )x .又f (1)≥1,则c ≥0,故选C .【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2 C .(5x )′=5x log 5x D .(x 2cos x )′=-2x sin x 1.答案 B 解析 (log 2x )′=1x ln 2,故B 正确. 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 2.答案 B 解析 y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12x D .(e x -ln x +2x 2)′=e x -1x +4x3.答案 BCD 解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则 知B ,C ,D 正确,故选BCD .4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .4.答案 1cos 2x -2x 3 解析 f ′(x )=(sin x )′·cos x -sin x ·(cos x )′cos 2x +(x -2)′=cos 2x +sin 2x cos 2x +(-2)x -3=1cos 2x -2x3. 5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x , 则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x5.答案 D 解析 由题意,f (x )=x sin x ,f 1(x )=f ′(x )=sin x +x cos x ,f 2(x )=f ′1(x )=cos x +cos x -x sin x = 2cos x -x sin x ,f 3(x )=f ′2(x )=-3sin x -x cos x ,f 4(x )=f ′3(x )=-4cos x +x sin x ,f 5(x )=f ′4(x )=5sin x +x cos x ,…,据此可知f 2 019(x )=-2 019sin x -x cos x ,f 2 021(x )=2 021sin x +x cos x ,所以f 2019(x )+f 2 021(x )=2sin x ,故选D .6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e6.答案 B 解析 f ′(x )=2 021+ln x +x ×1x=2 022+ln x ,又f ′(x 0)=2 022,得2 022+ln x 0=2 022,则ln x 0=0,解得x 0=1.7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .7.答案 2 解析 f ′(x )=-(ax -1)′(ax -1)2+e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1, 则a =2.8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = . 8.答案 e 2解析 f ′(x )=12x -3·(2x -3)′+a e -x +ax ·(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( ) A .-2 B .2 C .-94 D .949.答案 C 解析 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x ,所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.10.答案 -4 解析 ∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),∴f ′(1)=-2,∴f ′(0)=2f ′(1)=2×(-2)=-4. 11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= .11.答案 1+e 解析 因为f (ln x )=x +ln x ,所以f (x )=x +e x ,所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e .12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)·2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2D .-212.答案 C 解析 因为f ′(x )=f ′(1)·2x ln 2+2x ,所以f ′(1)=f ′(1)·2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2·2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2.13.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1xD .f (x )=e x +x13.答案 BC 解析 对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意.14.f (x )=3e x +1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( )A .1B .2C .3D .414.答案 C 解析 f ′(x )=-3e x (e x +1)2+3x 2,f ′(-x )=-3e x(e x +1)2+3x 2,所以f ′(x )为偶函数,f ′(2019)-f ′(-2019) =0,因为f (x )+f (-x )=31+e x +x 3+31+e -x -x 3=31+e x +3e x1+e x=3,所以f (2020)+f (-2020)+f ′(2019)-f ′(-2019)=3.故选C .15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______.15.答案 8 解析 因为f ′(x )=4ax 3-b sin x +7,所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7.所以f ′(x )+f ′(-x )=14.又f ′(2 020)=6,所以f ′(-2 020)=14-6=8. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2. 16.解析 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ·1x =⎝⎛⎭⎫ln x +1x e x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.(3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12·11+2x ·(1+2x )′=11+2x.(5)由已知f (x )=x -ln x +2x -1x 2.所以f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3.。

导数的概念及其意义、导数的运算

导数的概念及其意义、导数的运算
ln
π
3
π
3
( x 2e x )'=( x 2+2 x )e x ,故B错误;
cos 2 −

1


'=-2 sin 2 −
1
'=1+ 2 ,故D正确.

,故C错误;
3. (2024·陕西西安模拟)已知函数 f =ln x +f' 1 x 2-3,则f' 1

-1 .

因为 f =ln x +f' 1


ln(2+1)
[解] y'=




'
ln(2+1) ′ −′ln(2+1)
2
′· −ln(2+1)
(2+1)
2+1
2
2
−ln(2+1)
2+1
2
2−(2+1)ln(2+1)

.
2
(2+1)
e +1
(5) y = ;
e −1
e (e −1)−(e +1)e
0有两不相等的实根,故Δ= a 2+4 a >0,解得 a >0或 a <-4.
例4

过点(0,-1)作曲线 f ( )=ln x ( x >0)的切线,则切点坐标
( e ,1) .

由 f ( )=ln x ( x >0),得 f ( x )=ln x 2=2ln x ,
2
则f'( x )= ,设切点坐标为( x 0,2ln

2ln 0 +1

导数及其应用知识点总结

导数及其应用知识点总结

导数及其应用知识点总结导数及其应用是微积分中的重要概念,它可以用来描述一个函数在其中一点的变化率,进而用于求解曲线的切线、求解最值、优化问题等。

在学习导数及其应用的过程中,我们需要掌握导数的定义、导数的计算法则、导数与函数性质的关系以及导数在几何和物理问题中的应用等知识点。

一、导数的定义1.函数在其中一点的导数:函数f(x)在点x=a处的导数定义为:f'(a) = lim(h→0) (f(a+h)-f(a))/h2.函数的导函数:函数f(x)在定义域上每一点的导数所构成的新函数,被称为函数f(x)的导函数,记作f'(x)。

二、导数的计算法则1.常数法则:对于常数k,有:(k)'=0。

2.幂函数法则:对于幂函数y=x^n,其中n为常数,则有:(x^n)'=n*x^(n-1)。

3.基本初等函数法则:对于基本初等函数(如幂函数、指数函数、对数函数、三角函数和反三角函数),可以通过求导法则求得其导函数。

4.乘积法则:对于函数u(x)和v(x),有:(u*v)'=u'*v+u*v'。

5.商数法则:对于函数u(x)和v(x),有:(u/v)'=(u'*v-u*v')/v^26.复合函数法则:对于复合函数y=f(g(x)),有:y'=f'(g(x))*g'(x)。

三、导数与函数性质的关系1.导函数与函数的单调性:若函数f(x)在区间I上可导,则f'(x)在I上的符号与f(x)在I上的单调性一致。

2.导函数与函数的极值:若函数f(x)的导函数在点x=a处存在,且导数的符号在x=a左侧从正数变为负数,那么函数在点x=a处取得极大值;若导数的符号在x=a左侧从负数变为正数,那么函数在点x=a处取得极小值。

3.导函数与函数的凹凸性:函数f(x)的导函数f''(x)的符号与函数f(x)的凹凸性一致。

1.导数概念及运算

1.导数概念及运算

例4. 过点P(1,2)作曲线 y = 2 x 2 + 2 的切线,则切线 P(1,2)作曲线 的切线, 方程是______________. 方程是______________. y = x +1
1.已知点 1.已知点(x1,y1)是切点时, k切线 = f ′( x1 ) 已知点( 是切点时, 2.已知点 2.已知点(x1,y1)不是切点时, 已知点( 不是切点时, 设切点坐标为( 则:设切点坐标为(x0,y0), ′( x0 ) 且 k = y1 − y0 k切 线 = f 切线
ln 2 − 1.
3. . (海南文)曲线 y = e 在点 (2,e ) 处的切线与坐
x 2
处的切线与坐标轴所围三角形的面积为(
D

9 2 A. e 4
B. 2e
2
C. e
2
e D. 2
2
二.导数的运算
1.常用函数的导数 常用函数的导数
( 1)
C ′ = 0( C为常数 )
( 2)
′ = nx n −1 n ∈ Q ( ) (x )
注意: 注意:
x1 − x0
小结:用导数方法求曲线的切线方程有以下类型 小结:用导数方法求曲线的切线方程有以下类型: (1)已知切点,求切线方程 (求曲线在某点处的切线 已知切点, 求曲线在 已知切点 求曲线 某点处的切线); (2)未知切点 求切线方程 求曲线过某点的切线 未知切点,求切线方程 求曲线过 未知切点 求切线方程(求曲线 某点的切线): 若已知点不在曲线上,则要求出切点 或切点横坐标); 则要求出切点(或切点横坐标 若已知点不在曲线上 则要求出切点 或切点横坐标 若已知点是曲线上的点,则要分此点是切点或 则要分此点是切点 若已知点是曲线上的点 则要分此点是切点或不是切点 讨论. 讨论

导数的概念几何意义及其运算

导数的概念几何意义及其运算

导数的概念几何意义及其运算导数是微积分中的重要概念,用于描述函数在其中一点上的变化率。

它的几何意义可以通过切线来进行解释,并且有一些运算规则可以用来求解导数。

首先,我们来看一下导数的定义和几何意义。

给定一个函数f(x),如果x的变化引起f(x)的变化,那么这个变化率可以用导数来表示。

导数的定义如下:如果函数f(x)在点x上有定义,那么它在这一点的导数可以表示为:f'(x) = lim(h->0) (f(x+h) - f(x))/h这个定义表示的是在x点附近,当x的增量趋近于0时,f(x)的增量与x的增量之比的极限。

换句话说,导数描述了函数在x点附近的平均而微小的变化率。

几何上,导数表示了函数曲线在一个点上的切线的斜率。

切线是曲线在其中一点附近与曲线最为接近的直线,所以导数就是曲线在这一点上的斜率。

如果导数为正,曲线向上倾斜,而如果导数为负,曲线向下倾斜。

导数的运算有一些规则可以用来求导。

下面是一些常用的导数运算规则:1. 常数规则: 对于常数k,导函数为0,即d/dx (k) = 0。

2. 幂规则: 如果f(x) = x^n,其中n是任意实数,那么导数为f'(x) = nx^(n-1)。

3.和、差、积法则:如果函数f(x)和g(x)都可导,那么它们的和、差和积的导数可以通过以下规则得到:d/dx (f(x) + g(x)) = f'(x) + g'(x)d/dx (f(x) - g(x)) = f'(x) - g'(x)d/dx (f(x) * g(x)) = f'(x) * g(x) + f(x) * g'(x)4.商法则:如果函数f(x)和g(x)都可导,并且g(x)在其中一点x上的值不为0,那么它们的商的导数可以通过以下规则求得:d/dx (f(x) / g(x)) = (f'(x) * g(x) - f(x) * g'(x)) / g(x)^2这些运算规则可以帮助我们快速求解导数,从而帮助我们更好地理解函数的变化率。

导数的概念及其意义、导数的运算

导数的概念及其意义、导数的运算

B.(x2ex)′=x(x+2)ex D.x-1x′=1-x12
答案:BC
解析:A 项ln1x′=-ln12x·(ln x)′=-xln12x; D 项x-1x′=1+x12.
2.已知 f(x)=coesx x,则 f′(x)=________.
答案:-sin
x+cos ex
x
解析:f′(x)=coesx
答案:C 解析:由题意可知 y′=2cos x-sin x,则 y′|x=π=-2.所以曲线 y =2sin x+cos x 在点(π,-1)处的切线方程为 y+1=-2(x-π),即 2x +y+1-2π=0,故选 C.
6.[2019·全国Ⅰ卷]曲线 y=3(x2+x)ex 在点(0,0)处的切线方程为 ________.
答案:C 解析:∵f(x)=2xf′(1)+ln x,∴f′(x)=2f′(1)+1x, ∴f′(1)=2f′(1)+1,∴f′(1)=-1.
2.[选修二·P18 A 组 T6]曲线 y=1-x+2 2在点(-1,-1)处的切线 方程为________.
答案:2x-y+1=0 解析:∵y′=x+222,∴y′|x=-1=2.∴所求切线方程为 2x-y+1 =0.
4.设 f(x)=ln(3-2x)+cos 2x,则 f′(0)=________.
答案:-23 解析:因为 f′(x)=-3-22x-2sin 2x,所以 f′(0)=-23.
三、走进高考 5.[2019·全国Ⅱ卷]曲线 y=2sin x+cos x 在点(π,-1)处的切线方 程为( ) A.x-y-π-1=0 B.2x-y-2π-1=0 C.2x+y-2π+1=0 D.x+y-π+1=0
微点 2 未知切点求切线方程 [例 2] 已知函数 f(x)=xln x,若直线 l 过点(0,-1),并且与曲线 y=f(x)相切,则直线 l 的方程为________.

高考数学-导数-专题复习课件

高考数学-导数-专题复习课件

)
v0t
,求1物gt体2 在时刻
2
时的瞬t0时速度.
解析:
s(t)
v0
1 2
g
2t
v0
gt
∴物体在 t时0 刻瞬时速度为 s(t0 ) v0 gt0. 题型四 导数的几何意义及几何上的应用
【例4】(12分)已知曲线 y 1 x3 4 .
33
(1)求曲线在点P(2,4)处的切线方程; (2)求过点P(2,4)的曲线的切线方程.
x0
x0
x0
典例分析
题型一 利用导数求函数的单调区间
【例1】已知f(x)= e-xax-1,求f(x)的单调增区间.
分析 通过解f′(x)≥0,求单调递增区间.
解 ∵f(x)= -aexx -1,∴f′(x)= -a. ex 令f′(x)≥0,得 ≥ae. x 当a≤0时,有f′(x)>0在R上恒成立; 当a>0时,有x≥ln a. 综上,当a≤0时,f(x)的单调增区间为(-∞,+∞); 当a>0时,f(x)的单调增区间为[ln a,+∞).
分析 (1)在点P处的切线以点P为切点.关键是求出切线斜率k=f′(2). (2)过点P的切线,点P不一定是切点,需要设出切点坐标.
解(1)∵y′= ,…x2……………………………2′ ∴在点P(2,4)处的切线的斜率 k y |x..23′ 4. ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2), 即4x-y-4=0……………………………………….4′ (2)设曲线 y 1 x过3 点4 .P(2,4)的切线相切于点
33
则切线的斜率 k y |xx0……x02…. …………..6′
∴切线方程为
y
(1 3

第一节++导数的概念及其运算讲义-2025届高三数学一轮复习

第一节++导数的概念及其运算讲义-2025届高三数学一轮复习

第一节 导数的概念及其运算【课标要求】了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达, 体会导数的内涵与思想。

体会极限思想。

通过函数图象直观理解导数的几何意义,能根据导数定义求函数y=c,y=x ,x y x y x y ===,,32的导数,能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(f(ax+b) 的导数。

会使用导数公式表.教学目标:1.了解导数的概念,理解导数的几何意义;2.掌握基本初等函数的导数,能够用导数公式和导数的四则运算法则求简单函数的导数,理解简单的复合函数的导数。

教学重点:导数的运算及导数的几何意义。

教学难点:正确求导及曲线切线的理解教学过程:环节1:知识检测2.已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f ′(2)<f (3)-f (2)C .0<f ′(3)<f (3)-f (2)<f ′(2)1.某市一天12小时内的气温变化图如图所示,则在区间[0,4]内温度的平均变化率为________℃/h.D .0<f (3)-f (2)<f ′(2)<f ′(3)环节2:知识梳理1.函数的平均变化率及其意义(1)函数y=f(x)在区间[]21x x 的平均变化率: 平均变化率为=∆∆=∆∆x fx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212(2)函数y =f (x )的平均变化率反映了函数f (x )在区间[]21x x 上的变化快慢, (3)函数y =f (x )的图象在点A(()()()()2211,,,x f x B x f x A 割线的斜率,是曲线倾斜程度的“数量化”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的概念及其运算考纲导视(一)考纲要求:1.了解导数概念的实际背景.2.理解导数的几何意义.3.能根据导数定义,求函数y =c ,y =x ,y =x 2,y =x 1的导数.4.能利用给出的8个基本初等函数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数[仅限于形如f (ax +b )的复合函数]的导数.(二)考纲研读:1.函数y =f (x )在点x 0处的导数记为f ′(x 0),它表示y =f (x )在点P (x 0,y 0)处切线的斜率,即k = f ′(x 0).导数源于物理,位移、速度的导数都有明显的物理意义.2.对于多项式函数的导数,可先利用导数的运算法则将其转化成若干个与8个基本初等函数有关的和差积商形式,再进行求导.基础过关(一)要点梳理:1.函数y =f (x )从x 1到x 2的平均变化率:函数y =f (x )从x 1到x 2的平均变化率为fx 2-fx 1x 2-x 1,若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平均变化率可表示为Δy Δx. 2.函数y =f (x )在x =x 0处的导数:(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0 fx 0+Δx -fx 0Δx =lim Δx →0 Δy Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0),即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0fx 0+Δx -fx 0Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).(3)物理意义:在物理学中,如果物体运动的规律是 s =s (t ),那么该物体在时刻 t 0 的瞬时速度 v =s ′(t 0);如果物体运动的速度随时间变化的规律是 v =v (t ),则该物体在时刻 t 0 的瞬时加速度为 a =v ′(t 0)。

3.函数f (x )的导函数:称函数f ′(x )=lim Δx →0fx +Δx -fx Δx 为f (x )的导函数,导函数有时也记作y ′.(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎡⎦⎤fx gx ′=f xgx -fxg x g 2x(g (x )≠0).6.复合函数的导数:复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为 y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.7.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.(二)基础自测:1.已知函数 f (x )=4π2x 2,则 f ′(x )=答案:8π2x2.已知曲线y =42x 的一条切线的斜率为21,则切点的横坐标为 答案:13.一个物体的运动方程为 s =1-t +t 2,其中 s 的单位是米,t 的单位是秒,那么物体在 3 秒末的瞬时速度是 米/秒答案:5考点突破考点一.导数的概念:【例1】设f (x )在0x 处可导,下列式子中与)('0x f 相等的是 ( )(1)x x x f x f x ∆∆--→∆2)2()(lim 000; (2)xx x f x x f x ∆∆--∆+→∆)()(lim 000; (3)x x x f x x f x ∆∆+-∆+→∆)()2(lim 000(4)x x x f x x f x ∆∆--∆+→∆)2()(lim 000。

A .(1)(3) B .(1)(2) C .(2)(3) D .(1)(2)(3)(4)答案:A【互动探究1】()()()等于则可导在设xx x f x x f x x f x 3lim ,0000--+→( )A .()02x f 'B .()0x f 'C .()03x f 'D .()04x f '答案:D考点二.导数的运算:【例2】求下列函数的导数:(1)y =e x ·ln x ; (2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; (3)y =sin 2⎝⎛⎭⎫2x +π3; (4)y =ln(2x +5). 思维启迪:求函数的导数,首先要搞清函数的结构;若式子能化简,可先化简再求导.解 (1)y ′=(e x ·ln x )′=e x ln x +e x ·1x =e x (ln x +1x). (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3. (3)设y =u 2,u =sin v ,v =2x +π3,则y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·2 =4sin ⎝⎛⎭⎫2x +π3·cos ⎝⎛⎭⎫2x +π3=2sin ⎝⎛⎭⎫4x +2π3. (4)设y =ln u ,u =2x +5,则y ′x =y ′u ·u ′x ,因此y ′=12x +5·(2x +5)′=22x +5.【互动探究2】1.求下列各函数的导数:(1)y =11-x +11+x; (2)y =cos 2x sin x +cos x ; (3)y =(1+sin x )2; (4)y =ln x 2+1. 解 (1)∵y =11-x +11+x =21-x,∴y ′=⎝⎛⎭⎫21-x ′=--x -x 2=2-x 2. (2)∵y =cos 2x sin x +cos x=cos x -sin x ,∴y ′=-sin x -cos x . (3)设u =1+sin x ,则y =(1+sin x )2,由y =u 2与u =1+sin x 复合而成.因此y ′=f ′(u )·u ′=2u ·cos x =2cos x (1+sin x ).(4)y ′=(ln x 2+1)′=1x 2+1·(x 2+1)′=1x 2+1·12(x 2+1)-12·(x 2+1)′=x x 2+1. 2.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于 ( )A .e 2B .e C.e1 D .ln2 答案 B解析 f (x )的定义域为(0,+∞),f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e.考点三.导数的几何意义【例3】(2011年全国)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为____.答案:解析 ∵f ′(x )=-2e -2x ,k =f ′(0)=-2e 0=-2,∴切线方程为y -2=-2(x -0),即y =-2x +2.如图,∵y =-2x +2与y =x 的交点坐标为(23,23),y =-2x +2与x 轴的交点坐标为(1,0),∴S =12×1×23=13. 【互动探究3】 (2011 年江西)曲线 y =e x 在点 A (0,1)处的切线斜率为 答案:1考点四.过点求切线方程应注意该点是否为切点【例4】已知曲线y =13x 3+43. (1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.[分析] (1)在点P 处的切线以点P 为切点.(2)过点P 的切线,点P 不一定是切点,需要设出切点坐标.[解析] (1)∵y ′=x 2,∴在点P (2,4)处的切线的斜率k =y ′| x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0. (2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43, 则切线的斜率k =y ′| x =x 0=x 20.∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0.∴x 30+x 20-4x 20+4=0. ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0.∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2.故所求的切线方程为4x -y -4=0或x -y +2=0.【互动探究4】已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l .(1)求使直线l 和y =f (x )相切且以P 为切点的直线方程;(2)求使直线l 和y =f (x )相切且切点异于P 的直线方程.[解析] (1)由f (x )=x 3-3x 得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0, ∴所求的直线方程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 20-3. 又直线过(x 0,y 0),P (1,-2),故其斜率可表示为 y 0--x 0-1=x 30-3x 0+2x 0-1, 又x 30-3x 0+2x 0-1=3x 20-3, 即x 30-3x 0+2=3(x 20-1)(x 0-1),解得x 0=1(舍去)或x 0=-12, 故所求直线的斜率为k =3×(14-1)=-94, ∴y -(-2)=-94(x -1),即9x +4y -1=0. =0,y =x 所围成的三角形面积为定值,且此定值为6.。

相关文档
最新文档