二次函数的图像专项练习题
中考数学总复习《二次函数图像与坐标轴的交点问题》练习题-附带答案

中考数学总复习《二次函数图像与坐标轴的交点问题》练习题-附带答案一、单选题(共12题;共24分)1.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①抛物线与x轴的另一个交点是(5,0);②4a+c>2b;③4a+b=0;④当x>-1时y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个2.二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()A.1B.-1C.2D.-2 3.已知二次函数y=x2−x+14m−1的图象与x轴有交点,则m的取值范围是()A.m≤5B.m≥2C.m<5D.m>2 4.二次函数y=x2-2x-2与坐标轴的交点个数是()A.0B.1C.2D.3 5.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤6.如图,抛物线y=ax2+bx+c交x轴于(-1,0),(3,0),则下列判断错误的是().A.图象的对称轴是直线x=1B.当x>1时y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根分别是-1和3D.当y<0时x<-17.若抛物线y=x2﹣2x+m与x轴有两个交点,则m的取值范围是()A.m<﹣1 B.m<1C.m>﹣1D.m>1 8.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X﹣1013y﹣1353①ac<0;②当x>1时y的值随x值的增大而减小.③3是方程ax2+(b﹣1)x+c=0的一个根;④当﹣1<x<3时ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个9.二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()A.m≥﹣2B.m≥2C.m≥0D.m>4 10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1B.2C.3D.4 11.已知抛物线y=ax2﹣2ax+a﹣c(a≠0)与y轴的正半轴相交,直线AB∥x轴,且与该抛物线相交于A(x1,y1)B(x2,y2)两点,当x=x1+x2时函数值为p;当x=x1+x2q.则p﹣q的值为()2时函数值为A.a B.c C.﹣a+c D.a﹣c 12.函数y=ax2+bx+c的图象如图所示,那么关于x的一元二次方程ax2+bx+c﹣4=0的根的情况是()A.有两个不相等的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根二、填空题(共6题;共6分)13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.14.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x+m)2+n的顶点在线段AB上,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标的最大值为.15.若抛物线y=x2与直线y=x+2的交点坐标为(﹣1,1)和(2,4),则方程x2﹣x﹣2=0的解为.16.已知二次函数y=x2-2x-3与x轴交于A、B两点,在x轴上方的抛物线上有一点C,且∥ABC的面积等于10,则C点坐标为.17.抛物线y=(m﹣1)x2+2x+ 12m图象与坐标轴有且只有2个交点,则m=.18.若二次函数y=kx2−4x+3的函数值恒大于0,则k取值范围是.三、综合题(共6题;共56分)19.已知二次函数y=x2-(m+2)x+2m-1(1)求证:不论m取何值,该函数图象与x轴总有两个公共点;(2)若该函数的图象与y轴交于点(0,3).①求函数图象与x轴的交点坐标;②当0<x<5时求y的取值范围.20.(1)解方程:x2−x+13=3(x2+1)+5x;(2)求二次函数y=2x2−5x的图象与x轴的交点坐标.21.已知二次函数y=mx2﹣5mx+1(m为常数,m>0),设该函数的图象与y轴交于点A,该图象上的一点B与点A关于该函数图象的对称轴对称.(1)求点A,B的坐标;(2)点O为坐标原点,点M为该函数图象的对称轴上一动点,求当M运动到何处时∥MAO的周长最小.22.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5).(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标.23.已知函数y=mx2﹣6x+1(m是常数).(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;(2)若该函数的图象与x轴只有一个交点,求m的值.24.已知二次函数y=ax2﹣4ax+1(1)写出二次函数图象的对称轴:;(2)如图,设该函数图象交x轴于点A、B(B在A的右侧),交y轴于点C.直线y=kx+b经过点B、C.①如果k=﹣13,求a的值②设点P在抛物线对称轴上,PC+PB的最小值为√13,求点P的坐标.参考答案1.【答案】B2.【答案】A3.【答案】A4.【答案】D5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】A10.【答案】C11.【答案】A12.【答案】C13.【答案】0或114.【答案】815.【答案】﹣1或216.【答案】(4,5)或(-2,5)17.【答案】﹣1或2或018.【答案】k>4 319.【答案】(1)解:令y=0,则x2−(m+2)x+2m−1=0,∴△=[−(m+2)2]−4(2m−1)=m2+4m+4−8m+4=m2−4m+8=(m−2)2+4≥4∴△>0,∴方程总有两个不相等的实数根,即抛物线与x轴总有两个交点;(2)解:①∵函数的图象与y轴交于点(0,3).∴2m−1=3,∴m=2,∴抛物线的解析式为:y=x2−4x+3,当x2−4x+3=0,∴(x−1)(x−3)=0,∴x1=1,x2=3,所以抛物线与x 轴的交点坐标为:(−1,0),(−3,0). ②∵y =x 2−4x +3=(x −2)2−1,∴ 抛物线的开口向上,当x =2时函数的最小值为−1, 当x =0时 当x =5时∴ 当0<x <5时y 的取值范围为:−1≤y <8.20.【答案】(1)解:将方程化为一般式,得x 2+3x −5=0.∵Δ=b 2−4ac =32−4×1×(−5)=29>0.∴x =−3±√292×1=−3±√292.解得x 1=−3+√292,x 2=−3+√292.(2)解:把y =0代入y =2x 2−5x 中得2x 2−5x =0. 解得x 1=0,x 2=52.∴二次函数y =2x 2−5x 的图象与x 轴的交点坐标是(0,0)和(52,0).21.【答案】(1)解:当x=0时y=1,则点A 的坐标为(0,1)∵抛物线对称轴为x= 5m 2m = 52∴B 点坐标为(5,1)(2)解:设直线OB 解析式为y=kx ,把B (5,1)代入可得5k=1,解得k= 15 ∴直线OB 解析式为y= 15 x由轴对称的性质可知当点M 运动到直线OB 与二次函数对称轴的交点时∥MAO 的周长最小.当x= 52时y= 12∴M 点的坐标为( 52, 12 )22.【答案】(1)解:由顶点A (﹣1,4),可设二次函数关系式为y=a (x+1)2+4(a≠0).∵二次函数的图象过点B (2,﹣5) ∴点B (2,﹣5)满足二次函数关系式 ∴﹣5=a (2+1)2+4 解得a=﹣1.∴二次函数的关系式是y=﹣(x+1)2+4(2)解:令x=0,则y=﹣(0+1)2+4=3∴图像与y轴的交点坐标为(0,3);令y=0,则0=﹣(x+1)2+4解得x1=﹣3,x2=1故图像与x轴的交点坐标是(﹣3,0)、(1,0)23.【答案】(1)解:当x=0时y=1.所以不论m为何值,函数y=mx2﹣6x+1的图象都经过y轴上一个定点(0,1);(2)解:①当m=0时函数y=mx2﹣6x+1的图象与x轴只有一个交点;②当m≠0时若函数y=mx2﹣6x+1的图象与x轴只有一个交点,则方程mx2﹣6x+1=0有两个相等的实数根所以∥=(﹣6)2﹣4m=0,m=9.综上,若函数y=mx2﹣6x+1的图象与x轴只有一个交点,则m的值为0或9 24.【答案】(1)直线x=2(2)解:①当x=0时y=1∴点C的坐标为(0,1).将(0,1)代入y=kx+b,得:b=1.∵k= −1 3∴y=−13x+1当y=0时有−13x+1=0解得:x=3∴点B的坐标为(3,0).将B(3,0)代入y=ax2﹣4ax+1,得:9a﹣12a+1=0解得:a=3;②当PC+PB取最小值时点P是直线BC与直线x=2的交点,且PC+PB的最小值=BC= √13.∵OC=1∴在Rt∥OBC中OB= 2√3∴此时点B的坐标为(2√3,0)将点B的坐标代入y=kx+1得:2√3k+1=0解得:k=−√36∴此时直线BC的解析式为:y=−√36x+1∵当x=2时.∴点P的坐标为(2,3−√33)。
二次函数的图像和性质练习题(含答案)

1.下列函数中是二次函数的为 A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x2D .y =x 3+2x -32.抛物线y =2x 2+1的的对称轴是 A .直线x =14B .直线x =14-C .x 轴D .y 轴3.抛物线y =-(x -4)2-5的顶点坐标和开口方向分别是 A .(4,-5),开口向上B .(4,-5),开口向下C .(-4,-5),开口向上D .(-4,-5),开口向下4.抛物线y =-x 2不具有的性质是 A .对称轴是y 轴B .开口向下C .当x <0时,y 随x 的增大而减小D .顶点坐标是(0,0)5.已知点(-1,2)在二次函数y =ax 2的图象上,那么a 的值是 A .1B .2C .12D .-126.已知抛物线y =ax 2(a >0)过A (-2,y 1)、B (1,y 2)两点,则下列关系式一定正确的是 A .y 1>0>y 2B .y 2>0>y 1C .y 1>y 2>0D .y 2>y 1>07.当函数y =(x -1)2-2的函数值y 随着x 的增大而减小时,x 的取值范围是 A .x >0B .x <1C .x >1D .x 为任意实数8.对于二次函数2(3)4y x =--的图象,给出下列结论:①开口向上;②对称轴是直线3x =-;③顶点坐标是34--(,);④与x 轴有两个交点.其中正确的结论是 A .①②B .③④C .②③D .①④9.一种函数21(1)53m y m x x +=-+-是二次函数,则m =__________.10.把二次函数y =x 2-4x +3化成y =a (x -h )2+k 的形式是__________.11.将抛物线y =2(x -1)2+2向左平移3个单位,那么得到的抛物线的表达式为__________. 12.如图,抛物线y =ax 2-5ax +4a 与x 轴相交于点A ,B ,且过点C (5,4).(1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的表达式.13.已知:抛物线2y x bx c =-++经过(30)B ,、(03)C ,两点,顶点为A . 求:(1)抛物线的表达式;(2)顶点A 的坐标.14.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.15.在平面直角坐标系中,将抛物线y=-12x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是A.y=-12x2-x-32B.y=-12x2+x-12C.y=-12x2+x-32D.y=-12x2-x-1216.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+a的图象大致是A.B.C D.17.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b <;⑤()(0)a b m am b m +>+≠,其中正确的结论有A .2个B .3个C .4个D .5个18.二次函数y =x 2-2x -3,当m -2≤x ≤m 时函数有最大值5,则m 的值可能为__________. 19.若直线y =ax -6与抛物线y =x 2-4x +3只有一个交点,则a 的值是__________.20.如图,已知二次函数y =ax 2+bx +8(a ≠0)的图象与x 轴交于点A (-2,0),B (4,0),与y 轴交于点C .(1)求抛物线的解析式及其顶点D 的坐标; (2)求△BCD 的面积;(3)若直线CD 交x 轴与点E ,过点B 作x 轴的垂线,交直线CD 与点F ,将抛物线沿其对称轴向上平移,使抛物线与线段EF 总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).21.(2018·四川成都)关于二次函数2241y x x =+-,下列说法正确的是A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-322.(2018·湖北黄冈)当a ≤x ≤a +1时,函数y =x 2-2x +1的最小值为1,则a 的值为A .-1B .2C .0或2D .-1或223.(2018·江苏连云港)已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t(s )满足函数表达式h =-t 2+24t +1.则下列说法中正确的是 A .点火后9 s 和点火后13 s 的升空高度相同 B .点火后24 s 火箭落于地面 C .点火后10 s 的升空高度为139 m D .火箭升空的最大高度为145 m24.(2018·山东德州)如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是A .B .C D .25.(2018·湖北恩施州)抛物线y =ax 2+bx +c 的对称轴为直线x =-1,部分图象如图所示,下列判断中:①abc >0;②b 2-4ac >0;③9a -3b +c =0;④若点(-0.5,y 1),(-2,y 2)均在抛物线上,则y 1>y 2;⑤5a -2b +c <0. 其中正确的个数有A.2 B.3 C.4 D.5 26.(2018·江苏淮安)将二次函数y=x2-1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是__________.27.(2018·山东淄博)已知抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为__________.1.【答案】B2.【答案】D【解析】∵抛物线y =2x 2+1中一次项系数为0,∴抛物线的对称轴是y 轴.故选D . 3.【答案】B【解析】∵抛物线的解析式为2(4)5y x =---, 10a =-<,∴抛物线的开口向下.抛物线2()y a x h k =-+的顶点坐标为(h ,k )∴抛物线2(4)5y x =---的顶点坐标为(4,-5).故选B . 4.【答案】C5.【答案】B【解析】∵点(-1,2)在二次函数2y ax =的图象上,∴2(1)2a ⋅-=,解得2a =.故选B . 6.【答案】C【解析】∵抛物线y =ax 2(a >0)的对称轴是y 轴,∴A (-2,y 1)关于对称轴的对称点的坐标为(2,y 1).又∵a >0,0<1<2,且当x =0时,y =0,∴0<y 2<y 1.故选C . 7.【答案】B【解析】对称轴是:x =1,且开口向上,如图所示,∴当x <1时,函数值y 随着x 的增大而减小.故选B . 8.【答案】D【解析】∵a =1>0,∴开口向上,①正确;∵x -3=0,∴对称轴为x =3,②错误;∵顶点坐标为:(3,-4),故③错误;∴在第四象限,所以与x 轴有两个交点,故④正确.故选D . 9.【答案】-1【解析】根据二次函数的二次项的次数是2,二次项的系数不等于零,可由21(1)53my m x x +=-+-是二次函数,得m 2+1=2且m −1≠0,解得m =-1,m =1(不符合题意要舍去).故答案为:-1. 10.【答案】y =(x -2)2-1【解析】y =x 2-4x +3=(x 2-4x +4)-4+3=(x -2)2-1,故答案为:y =(x -2)2-1. 11.【答案】y =2(x +2)2+2【解析】将抛物线y =2(x -1)2+2向左平移3个单位,那么得到的抛物线的表达式为y =2(x -1+3)2+2,即y =2(x +2)2+2.故答案为:y =2(x +2)2+2.13.【解析】(1)把(30)B ,、(03)C ,代入2y x bx c =-++,得9303b c c -++=⎧⎨=⎩,解得23b c =⎧⎨=⎩.故抛物线的解析式为223y x x =-++.(2)223y x x =-++=2(21)31x x --+++2(1)4x =--+, 所以顶点A 的坐标为(1,4).14.【解析】(1)∵二次函数y =ax 2+bx +c 的图象过A (2,0),B (0,-1)和C (4,5)三点,∴42011645a b c c a b c ++=⎧⎪=⎨⎪++=⎩, ∴a =12,b =-12,c =-1, ∴二次函数的解析式为y =12x 2-12x -1. (2)当y =0时,得12x 2-12x -1=0,解得x 1=2,x 2=-1, ∴点D 坐标为(-1,0). (3)图象如图,当一次函数的值大于二次函数的值时,x 的取值范围是-1<x <4. 15.【答案】A【解析】将抛物线y =-12x 2向下平移1个单位长度,得y =-12x 2-1,再向左平移1个单位长度,得到y =-12x +(1)2-1,即y =-12x 2-x -32.故选A .16.【答案】C【解析】∵二次函数图象开口向上,∴a >0,∵对称轴为直线x =-02ba,∴b <0,∴一次函数y =bx +a的图象经过一、二、四象限,故选C . 17.【答案】B18.【答案】0或4【解析】令y =5,可得x 2-2x -3=5,解得x =-2或x =4,所以m -2=-2或m =4,即m =0或4.故答案为:0或4. 19.【答案】2或-10【解析】由题意可知:x 2−4x +3=ax −6,整理得x 2−(4+a )x +9=0,∵只有一个交点,∴Δ=(4+a )2−4×1×9=0,解得a 1=2,a 2=−10.故答案为:2或-10.(3)如图,∵C(0,8),D(1,9),代入直线解析式y=kx+b,∴89bk b=⎧⎨+=⎩,解得18kb=⎧⎨=⎩,21.【答案】D【解析】∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误;该函数的对称轴是直线x=-1,故选项B错误;当x<-1时,y随x的增大而减小,故选项C错误;当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.22.【答案】D【解析】当y=1时,有x2-2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=-1,故选D.23.【答案】D【解析】A、当t=9时,h=136;当t=13时,h=144;所以点火后9 s和点火后13 s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24 s火箭离地面的高度为1 m,此选项错误;C、当t=10时h=141 m,此选项错误;D、由h=-t2+24t+1=-(t-12)2+145知火箭升空的最大高度为145 m,此选项正确.故选D.24.【答案】B【解析】A.由一次函数y=ax-a的图象可得:a<0,此时二次函数y=ax2-2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax-a的图象可得:a>0,此时二次函数y=ax2-2x+1的图象应该开口向上,对称轴x=-22a->0.故选项正确;C.由一次函数y=ax-a的图象可得:a>0,此时二次函数y=ax2-2x+1的图象应该开口向上,对称轴x=-22a->0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax-a的图象可得:a>0,此时二次函数y=ax2-2x+1的图象应该开口向上.故选项错误.故选B.25.【答案】B26.【答案】y=x2+2【解析】二次函数y=x2-1的顶点坐标为(0,-1),把点(0,-1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为:y=x2+2.27.【答案】2【解析】如图,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x-3=0,(x-1)(x+3)=0,x1=1,x2=-3,∴A(-3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,故答案为:2.。
中考数学专项复习《二次函数图像与坐标轴的交点问题》练习题及答案

中考数学专项复习《二次函数图像与坐标轴的交点问题》练习题及答案一、单选题1.抛物线y=kx2−7x−7的图象和x轴有交点,则k的取值范围是()A.k≥−74B.k≥−74且k≠0C.k>−74D.k>−74且k≠02.下列二次函数的图象与x轴没有交点的是()A.y=-3x2+2x B.y=x2-3x-4C.y=x2-4x+4D.y=x2+4x+53.已知抛物线y=ax2+bx+c(a≠0)与x轴交点为(﹣1,0)和(3,0),与y轴交点为(0,﹣2),则一元二次方程ax2+bx+c=0(a≠0)的根为()A.x1=﹣1,x2=3B.x1=﹣2,x2=3C.x1=1,x2=﹣3D.x1=﹣1,x2=﹣24.关于x的函数y=(a−2)x2+2x−1与x轴有交点,则a的取值范围是()A.a≥1B.a>1C.a>1且a≠2D.a≥1且a≠25.抛物线y=x2﹣2x+3与x轴的交点个数是()A.0B.1C.2D.36.如图,抛物线y=−x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是()A.−4<x<1B.−3<x<1C.x<−4或x>1D.x<−3或x>1 7.已知二次函数y=2(x+1)(x-a),其中a>0,若当x≤2时,y随x增大而减小,当x≥2时y随x增大而增大,则a的值是A.3B.5C.7D.不确定8.二次函数y=ax2﹣bx的图象如图,若方程ax2﹣bx+m=0有实数根,则m的最大值为()A.-3B.3C.-6D.09.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1.给出下列结论:①abc>0;②b2>4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有()A.1个B.2个C.3个D.4个10.二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)中x与y的部分对应值如下表:x﹣2﹣101234y50﹣3﹣4﹣305y<0,则x的取值范围是0<x<2;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧,则其中正确结论的个数是()A.0B.1C.2D.311.二次函数y=ax2+bx+c的图象如图所示,则下列关系式中错误的是()A.a>0B.b>0C.c>0D.b2-4ac>012.抛物线y=ax2+bx+c(a≠0)形状如图,下列结论:①b>0;②a-b+c=0;③当x<-1或x>3时,y>0.④一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根。
中考数学专项复习《二次函数图像与坐标轴的交点问题》练习题附答案

中考数学专项复习《二次函数图像与坐标轴的交点问题》练习题附答案一、单选题1.若函数y=x2−2x+b的图象与x轴有两个交点,则b的取值范围是()A.b≤1B.b>1C.0<b<1D.b<12.二次函数与y=kx2−8x+8的图象与x轴有交点,则k的取值范围是() A.k<2B.k<2且k≠0C.k≤2D.k≤2且k≠03.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是()A.有两个不相等的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根4.已知二次函数y=2(x+1)(x-a),其中a>0,若当x≤2时,y随x增大而减小,当x≥2时y随x增大而增大,则a的值是()A.3B.5C.7D.不确定5.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的()A.ac>0B.b2﹣4ac<0C.4a+2b+c<0D.b=2a6.如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中错误的有()A.1个B.2个C.3个D.4个7.若二次函数y=(m﹣1)x2+2x+1的图象与x轴有两个不同的交点,则m的取值范围是()A.m≤2B.m<2C.m≤2且m≠1D.m<2且m≠18.如图为抛物线y=ax2+bx+c的图象,A,B,C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是()A.a+b=﹣1B.a﹣b=﹣1C.b<2a D.ac<09.已知二次函数y=ax2+bx+c(a≠0)的图象如图,在下列代数式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0;其中正确的个数为()A.1个B.2个C.3个D.4个10.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确个数有().A.1个B.2个C.3个D.4个11.二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠012.如图,一次函数y1=2x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣2)x+c的图象可能是()A.B.C.D.二、填空题13.已知函数y= 12(m+3)x2+2x+1的图象与x轴只有一个公共点,则m的值为. 14.如图,是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,它与x轴的一个交点为A(3,0),根据图象,可知关于x的一元二次方程ax2+bx+c=0的解是.15.如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是.16.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y 轴截得的线段CD的长为.17.已知:y关于x的函数y=k2x2−(2k−1)x+1的图象与坐标轴只有两个不同的交点A、B,P 点坐标为(3,2),则△PAB的面积为.18.抛物线y=ax2+bx+c的顶点为D(−1,2),与x轴的一个交点A在点(−3,0)和(−2,0)之间,则以下结论:①b2−4ac<0;②a+b+c<0;③c−a=2;④方程ax2+bx+c−2=0有两个不相等的实数根,其中正确结论为.三、综合题19.设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y)的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成心=2(x-h)2-2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x-m(m是常数),若函数y1的表达式还可以写成y1=2(x-m)(x-m-2)的形式,当函数y=y1-y2的图象经过点(x0,0)时,求x0-m的值.20.已知函数y=x2-2kx+k2+1.(1)求证:不论k取何值,函数y>0;(2)若函数图象与y轴的交点坐标为(0,10),求函数图象的顶点坐标.21.已知二次函数y=x2+2bx−3b.(1)当该二次函数的图象经过点A(1,0)时,求该二次函数的表达式;(2)在(1) 的条件下,二次函数图象与x轴的另一个交点为点B,与y轴的交点为点C,点P从点A出发在线段AB上以每秒2个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动,直到其中一点到达终点时,两点停止运动,求△BPQ面积的最大值;(3)若对满足x≥1的任意实数x,都使得y≥0成立,求实数b的取值范围.22.已知关于x的方程x2﹣(m+2)x+2m﹣1=0.(1)求证:此方程有两个不相等的实数根;(2)若抛物线y=x2﹣(m+2)x+2m﹣1=0与x轴有两个交点都在x轴正半轴上,求m的取值范围;(3)填空:若x2﹣(m+2)x+2m﹣1=0的两根都大于1,则m的取值范围是.23.函数y=mx2﹣2mx﹣3m是二次函数.(1)如果该二次函数的图象与y轴的交点为(0,3),那么m=;(2)在(1)的条件下,结合图象当0<x<3时,求y的取值范围.24.已知抛物线y=ax2﹣bx+3经过点A(1,2),B(2,3).(1)求此抛物线的函数解析式.(2)写出该抛物线与坐标轴的交点坐标.参考答案1.【答案】D2.【答案】D3.【答案】C4.【答案】B5.【答案】C6.【答案】A7.【答案】D8.【答案】B9.【答案】A10.【答案】B11.【答案】D12.【答案】A13.【答案】m=﹣1或m=﹣314.【答案】3或﹣115.【答案】x<﹣1或x>316.【答案】2017.【答案】1或1218.【答案】②③19.【答案】(1)解:由题意,得y1=2(x-1)(x-2).图象的对称轴是直线x= 3 2(2)解:由题意,得y1=2x2-4hx+2h2-2∴b+c=2h2-4h-2=2(h-1)2-4∴当h=1时,b+c的最小值是-4.(3)解:由题意,得y=y1-y2=2(x-m)(x-m-2)-(x-m)=(x-m)[2(x-m)-5]∵函数y的图象经过点(x0,0)∴(x0-m)[2(x0-m)-5]=0∴x0-m=0,或x0-m= 52.20.【答案】(1)解:y=(x-k)2+1∵不论k取何值,(x-k)2≥0∴(x-k)2+1>0;即不论k取何值,函数y>0;(2)解:∵二次函数图象与y轴交于点(0,10)∴当x=0时,y=10∴k2+1=10,解得k=±3∴y=x2±9x+10=(x±3)2+1∴顶点坐标为(3,1)或(﹣3,1).21.【答案】(1)解:把A(1,0)代入y=x2+2bx−3b 得:0=12+2b−3b,解得:b=1∴该二次函数的表达式为:y=x2+2x−3;(2)解:令y=0代入y=x2+2x−3得:0=x2+2x−3解得:x1=1或x2=−3令x=0代入y=x2+2x−3得:y=-3∴A(1,0),B(-3,0),C(0,-3)设运动时间为t,则AP=2t,BQ=t∴BP=4-2t过点M作MQ△x轴∵OB=OC=3∴△OBC=45°∴△BMQ是等腰直角三角形∴MQ= √22BQ= √22t∴△BPQ的面积= 12BP⋅MQ=12(4−2t)⋅√22t= −√22(t−1)2+√22∴当t=1时,△BPQ面积的最大值= √22;(3)解:抛物线y=x2+2bx−3b的对称轴为:直线x=-b,开口向上设y=f(x)=x2+2bx−3b∵对x≥1的任意实数x,都使得y≥0成立∴{−b≤1f(1)≥0或{−b>1f(−b)≥0∴-1≤b≤1或-3≤b<-1∴-3≤b≤1.22.【答案】(1)证明:∵△=[﹣(m+2)]2﹣4(2m﹣1)=m2+4m+4﹣8m+4=m2﹣4m+8=(m﹣2)2+4∵(m﹣2)2≥0∴(m﹣2)2+4>0∴无论m取何实数时,此方程都有两个不相等的实数根(2)解:设抛物线y=x2﹣(m+2)x+2m﹣1=0与x轴两个交点的横坐标是x1,x2则x1+x2=m+2,x1•x2=2m﹣1.根据题意,得{m+2>02m−1>0解得m>1 2.即m的取值范围是m>1 2(3)m>223.【答案】(1)-1(2)解:由(1)可知函数的解析式为y=−x2+2x+3∵y=−x2+2x+3=−(x−1)2+4∴顶点坐标为(1,4)列表如下:x…-2-101234…y…-503430-5…描点、连线,函数图象如下:结合图象当 0<x <3 时, 0<y <3 .24.【答案】(1)解:将点A (1,2),B (2,3)代入y =ax 2﹣bx +3得 {a −b +3=24a −2b +3=3 解得 {a =1b =2∴抛物线的函数解析式为y =x 2−2x +3 (2)解:当x=0时,y =x 2−2x +3=3 ∴抛物线与y 轴的交点坐标为(0,3) 当y =0时,x 2−2x +3=0 解得x 1=3,x 2=-1∴抛物线与x 轴的交点坐标为(3,0)和(-1,0).故抛物线与坐标轴的交点坐标为(0,3)、(3,0)、(-1,0).。
中考数学《二次函数图像与坐标轴的交点问题》专项练习题及答案

中考数学《二次函数图像与坐标轴的交点问题》专项练习题及答案一、单选题1.如图,将二次函数y=31x2-999x+892的图形画在坐标平面上,判断方程31x2-999x+892=0的两根,下列叙述何者正确()A.两根相异,且均为正根B.两根相异,且只有一个正根C.两根相同,且为正根D.两根相同,且为负根2.已知抛物线y=ax2+bx+c(a<0)过A(-3,0)、O(1,0)、B(-5,y1)、C(5,y2)四点,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论正确的是()A.c<0B.a+b+c<0C.2a﹣b=0D.b2﹣4ac=04.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是() A.k≤2且k≠1B.k<2且k≠1C.k=2D.k=2或15.函数y=ax+1与抛物线y=ax2+bx+1(b≠0)的图象可能是().A.B.C.D.6.若关于x的一元二次方程(x-2)(x-3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是()A.0B.1C.2D.37.对于每个非零自然数n,抛物线y=x2-2n+1n(n+1)x+1n(n+1)与x轴交于A n,B n两点,以A n B n表示这两点间的距离,则A1B1+A2B2+…+A2009B2009()A.20092008B.20082009C.20102009D.200920108.二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3,且k≠0C.k≤3D.k≤3,且k≠010.如图,抛物线y=ax2+bx+c与x轴交于点(-1,0),对称轴为x=1,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.x=3是一元二次方程ax2+bx+c=0的一个根11.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;3.④a+b+cb−a的最小值为其中,正确结论的个数为()A.1个B.2个C.3个D.4个12.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤二、填空题13.已知函数y=ax2−2x+1的图象与x轴只有一个公共点,则a的值是.14.经过A(4,0),B(﹣2,0),C(0,3)三点的抛物线解析式是.15.如图,P是抛物线y=2(x﹣2)2对称轴上的一个动点,直线x=t平行y轴,分别与y=x、抛物线交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=.16.抛物线y=x2﹣4x+c与x轴交于A、B两点,已知点A的坐标为(1,0),则线段AB的长度为.17.抛物线y= 49(x-3)2与x轴的交点为A,与y轴的交点为B,则△AOB的面积为18.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.三、综合题19.如图,二次函数y=- 12x2+bx+c的图象经过A(2,0)、B(0,-4)两点(1)求二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.20.已知二次函数y=ax2+bx+8,经过点(1,9)和(6,−16).(1)求此二次函数解析式;(2)若此二次函数与x轴的交点为点A、点B,与y轴的交点为点C,求△ABC的面积. 21.在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n与x轴交于点A,B(A在B的左侧).(1)若抛物线的对称轴为直线x=﹣3,AB=4.求抛物线的表达式;(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标;22.已知二次函数y=(x-1)(x-m).(1)若二次函数的对称轴是直线x=3,求m的值.(2)当m>2,0≤x≤3时,二次函数的最大值是7,求函数表达式.23.已知抛物线y=ax2-2ax-3+2a2 (a<0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求抛物线的函数解析式;24.已知抛物线顶点坐标为(1,3),且过点A(2,1).(1)求抛物线解析式;(2)若抛物线与x轴两交点分别为点B、C,求线段BC的长度.参考答案1.【答案】A2.【答案】A3.【答案】C4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】D9.【答案】C10.【答案】D11.【答案】D12.【答案】C13.【答案】0或114.【答案】y=﹣38x2+ 34x+315.【答案】5±√52或1或316.【答案】217.【答案】618.【答案】x1=4,x2=﹣219.【答案】(1)解:分别把点A(2,0)、B(0,-4)代入y=−12x2+bx+c得{−12×22+2x+c=0c=−4解得:{b=3c=−4∴这个二次函数的解析式为:y=−12x2+3x−4(2)解:由(1)中抛物线对称轴为直线∴点C的坐标为:(3,0)∴AC=3−2=1∴△ABC的面积为:12⋅OB⋅AC=12×4×1=220.【答案】(1)解:把点(1,9)和(6,−16)代入函数解析式得{9=a+b+8−16=36a+6b+8解得a=-1, b=2. 所以二次函数的解析式为y=−x2+2x+8(2)解: 令y=0,得-x 2+2x+8=0, 解得x=-4或x=2 得A 、B 的坐标为(-4,0),(2,0) 则AB=6令x=0, 得y=8 ∴C 点坐标为(0,8),则OC=8 ∴S △ABC =12AB ×OC =12×6×8=24 .21.【答案】(1)解:∵抛物线的对称轴为直线x =﹣3,AB =4∴A 、B 两点到对称轴的距离相等,且为2 ∴A 点坐标为(-5,0),B 点坐标为(-1,0)把A 、B 两点的坐标分别代入函数解析式中,得: {−25−5m +n =0−1−m +n =0解得: {m =−6n =−5∴y =−x 2−6x −5(2)解:∵y =−x 2−6x −5 平移后过原点∴设平移后过原点的抛物线为 y =−x 2+bx 令 y =−x 2+bx =0 ,解得:x=0 ∴C (b ,0)且b>0∵y =−x 2+bx =−(x −b 2)2+b 24∴顶点P 的坐标为 (b 2,b 24) ∵△OCP 是等腰直角三角形 ∴b 2=b 24解得:b=2∴顶点P 的坐标为 (1,1)22.【答案】(1)解: 令y =0,即0=(x −1)(x −m) ,得x 1=1,x 2=m也即抛物线与x轴的交点坐标为(1,0),(m,0)∵(1,0),(m,0)关于抛物线对称轴对称,且对称轴是直线x=3∴1+m2=3,解得m=5(2)解:由(1)可知,抛物线的对称轴为直线x=1+m 2∵m>2,∴x=1+m 2>32∵a=1>0,且0≤x≤3时,二次函数的最大值是7∴当x=0时y max=7∴把(0,7)带入抛物线表达式得7=(0−1)(0−m)∴m=723.【答案】(1)解:∵抛物线y=ax2−2ax−3+2a2=a(x−1)2+2a2−a−3∴抛物线的对称轴为直线x=1;(2)解:由(1)可得y=a(x−1)2+2a2−a−3∵抛物线的顶点在x轴上∴2a2−a−3=0解得a1=32,a2=-1∵a<0∴a=-1∴抛物线的解析式为y=−x2+2x−1.24.【答案】(1)解:设抛物线解析式为y=a(x﹣1)2+3把A(2,1)代入得a•(2﹣1)2+3=1,解得a=﹣2所以抛物线解析式为y=﹣2(x﹣1)2+3(2)解:y=0时,﹣2(x﹣1)2+3=0解得x1=1+ √62,x2=1﹣√62所以BC=1+ √62﹣(1﹣√62)= √6。
人教版九年级上册数学《二次函数的图像和性质》综合练习题【含答案】

《二次函数的图象和性质》同步练习题一、选择题(共10小题)1.下列函数中是二次函数的为 ()A .B .C .D .31y x =-231y x =-22(1)y x x =+-323y x x =+-2.二次函数与一次函数,它们在同一直角坐标系中的图象大致是2y ax bx c =++y ax c =+ ()A .B .C .D .3.已知一次函数的图象经过一、二、四象限,则二次函数的顶点y kx b =+2y kx bx k =+-在第 象限.()A .一B .二C .三D .四4.抛物线的顶点坐标是 22(3)2y x =-+()A .B .C .D .(3,2)-(3,2)(3,2)--(3,2)-5.已知,二次函数满足以下三个条件:①,②,③2y ax bx c =++24b c a >0a b c -+<,则它的图象可能是 b c <()A .B .C .D .6.把抛物线向下平移2个单位长度,再向右平移1个单位长度,所得抛物线是2(2)y x =+ ()A .B .C .D .2(2)2y x =++2(1)2y x =+-22y x =+22y x =-7.将抛物线平移得到抛物线,则这个平移过程正确的是 2y x =2(3)y x =+()A .向左平移3个单位B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位8.二次函数的图象可能是 22y x x =-+()A .B .C .D .9.若点,,都在抛物线上,则下1(1,)M y -2(1,)N y 37(,)2P y 2241(0)y mx mx m m =-+++>列结论正确的是 ()A .B .C .D .123y y y <<132y y y <<312y y y <<213y y y <<10.二次函数与轴交点坐标为 23(2)5y x =--y ()A .B .C .D .(0,2)(0,5)-(0,7)(0,3)二、填空题(共4小题)11.请写出一个开口向上且与轴交点坐标为的抛物线的表达式: .y (0,1)12.若二次函数,当时,随的增大而减小,则的取值范围是 22()1y x k =-++2x - y x k .13.抛物线的对称轴是 .22247y x x =+-14.已知抛物线经过,,对于任意,点均不在抛2y ax bx c =++(0,2)A (4,2)B 0a >(,)P m n 物线上.若,则的取值范围是 .2n >m 三、解答题(共6小题)15.已知抛物线.2246y x x =--(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿轴向左平移个单位后经过原点,求的值.x (0)m m >m 16.如图,在中,,,,动点从点开始沿边ABC ∆90B ∠=︒12AB mm =24BC mm =P A向以的速度移动(不与点重合),动点从点开始沿边向以AB B 2/mm s B Q B BC C 的速度移动(不与点重合).如果、分别从、同时出发,那么经过多少4/mm s C P Q A B 秒,四边形的面积最小.APQC17.已知二次函数.243(0)y ax ax b a =-++≠(1)求出二次函数图象的对称轴;(2)若该二次函数的图象经过点,且整数,满足,求二次函数的表(1,3)a b 4||9a b <+<达式;(3)对于该二次函数图象上的两点,,,,设,当时,1(A x 1)y 2(B x 2)y 11t x t + 25x 均有,请结合图象,直接写出的取值范围.12y y t 18.在平面直角坐标系中,抛物线经过点和.xOy 2(0)y ax bx c a =++>(0,3)A -(3,0)B (1)求的值及、满足的关系式;c a b(2)若抛物线在、两点间从左到右上升,求的取值范围;A B a (3)结合函数图象判断,抛物线能否同时经过点、?若能,写出(1,)M m n -+(4,)N m n -一个符合要求的抛物线的表达式和的值,若不能,请说明理由.n 19.小明利用函数与不等式的关系,对形如12()()()0n x x x x x x --⋯->为正整数)的不等式的解法进行了探究.(n (1)下面是小明的探究过程,请补充完整:①对于不等式,观察函数的图象可以得到如表格:30x ->3y x =-的范围x 3x >3x <的符号y +-由表格可知不等式的解集为.30x ->3x >②对于不等式,观察函数的图象可以得到如表表格:(3)(1)0x x -->(3)(1)y x x =--的范围x 3x >13x <<1x <的符号y +-+由表格可知不等式的解集为 .(3)(1)0x x -->③对于不等式,请根据已描出的点画出函数的(3)(1)(1)0x x x --+>(3)(1)(1)y x x x =--+图象;观察函数的图象补全下面的表格:(3)(1)(1)y x x x =--+的范围x 3x >13x <<11x -<<1x <-的符号y +- 由表格可知不等式的解集为 .(3)(1)(1)0x x x --+>⋯⋯小明将上述探究过程总结如下:对于解形如为正整数)的12()()()0(n x x x x x x n --⋯⋯->不等式,先将,,按从大到小的顺序排列,再划分的范围,然后通过列表格的1x 2x ⋯n x x 办法,可以发现表格中的符号呈现一定的规律,利用这个规律可以求这样的不等式的解y 集.(2)请你参考小明的方法,解决下列问题:①不等式的解集为 .(6)(4)(2)(2)0x x x x ---+>②不等式的解集为 .2(9)(8)(7)0x x x --->20.函数是二次函数.223y mx mx m =--(1)如果该二次函数的图象与轴的交点为,那么 ;y(0,3)m(2)在给定的坐标系中画出(1)中二次函数的图象.答案一、选择题(共10小题)1.解:、是一次函数,故错误;A 31y x =-A 、是二次函数,故正确;B 231y x =-B 、不含二次项,故错误;C 22(1)y x x =+-C 、是三次函数,故错误;D 323y x x =+-D 故选:.B 2.解:一次函数和二次函数都经过轴上的,y (0,)c 两个函数图象交于轴上的同一点,排除、;∴y B C 当时,二次函数开口向上,一次函数经过一、三象限,排除;0a >D 当时,二次函数开口向下,一次函数经过二、四象限,正确;0a <A 故选:.A 3.解:一次函数的图象经过一、二、四象限,y kx b =+,,0k ∴<0b >△,2224()40b k k b k =--=+>抛物线与轴有两个交点,∴x、异号,k b 抛物线的对称轴在轴右侧,∴y 二次函数的顶点在第一象限.∴2y kx bx k =+-故选:.A 4.解:抛物线的顶点坐标是,22(3)2y x =-+(3,2)故选:.B 5.解:二次函数满足以下三个条件:①,②,③, 2y ax bx c =++24b c a >0a b c -+<b c <由①可知当时,则抛物线与轴有两个交点,当时,∴0a >240b ac ->x 0a <240b ac -<则抛物线与轴无交点;x 由②可知:当时,,1x =-0y <由③可知:,0b c -+>,必须,0a b c -+< ∴0a <符合条件的有、,∴C D 由的图象可知,对称轴直线,,,抛物线交的负半轴,C 02b x a=->0a <0b ∴>y ,则,0c <b c >由的图象可知,对称轴直线,,,抛物线交的负半轴,D 02b x a=-<0a <0b ∴<y ,则有可能,0c <b c <故满足条件的图象可能是,D 故选:.D 6.解:抛物线的顶点坐标是,向下平移2个单位长度,再向右平移1个单2(2)y x =+(2,0)-位长度后抛物线的顶点坐标是,(1,2)--所以平移后抛物线的解析式为:2(1)2y x =+-故选:.B 7.解:抛物线的顶点坐标为,抛物线的顶点坐标为,2y x =(0,0)2(3)y x =+(3,0)-点向左平移3个单位可得到,(0,0)(3,0)-将抛物线向左平移3个单位得到抛物线.∴2y x =2(3)y x =+故选:.A 8.解:,,22y x x =-+ 0a <抛物线开口向下,、不正确,∴A C 又对称轴,而的对称轴是直线, 212x =-=-D 0x =只有符合要求.∴B 故选:.B 9.解:观察二次函数的图象可知:.132y y y <<故选:.B 10.解:23(2)5y x =-- 当时,,∴0x =7y =即二次函数与轴交点坐标为,23(2)5y x =--y (0,7)故选:.C 二、填空题(共4小题)11.解:抛物线开口方向向上,且与轴的交点坐标为,y (0,1)抛物线的解析式为.∴21y x =+故答案为.21y x =+12.解:,22()1y x k =-++对称轴为,∴x k =-,20a =-< 抛物线开口向下,∴在对称轴右侧随的增大而减小,∴y x 当时,随的增大而减小,2x - y x ,解得,2k ∴-- 2k 故.2k 13.解:抛物线的对称轴是:,22247y x x =+-24622x =-=-⨯故.6x =-14.解:依照题意,画出图形,如图所示.当时,或,2n >0m <4m >当时,若点均不在抛物线上,则.∴2n >(,)P m n 04m 故.04m三、解答题(共6小题)15.解:(1)2246y x x =--22(2)6x x =--,22(1)8x =--故该函数的顶点坐标为:;(1,8)-(2)当时,,0y =202(1)8x =--解得:,,11x =-23x =即图象与轴的交点坐标为:,,x (1,0)-(3,0)故该抛物线沿轴向左平移3个单位后经过原点,x 即.3m =16.解:设经过秒,四边形的面积最小x APQC 由题意得,,,2AP x =4BQ x =则,122PB x =-的面积PBQ ∆12BQ PB =⨯⨯1(122)42x x =⨯-⨯,24(3)36x =--+当时,的面积的最大值是,3x s =PBQ ∆236mm此时四边形的面积最小.APQC 17.解:(1)二次函数图象的对称轴是;422a x a-=-=(2)该二次函数的图象经过点,(1,3),433a a b ∴-++=,3b a ∴=把代入,3b a =4||9a b <+<得.43||9a a <+<当时,,则.0a >449a <<914a <<而为整数,a ,则,2a ∴=6b =二次函数的表达式为;∴2289y x x =-+当时,,则.0a <429a <-<922a -<<-而为整数,a 或,3a ∴=-4-则对应的或,9b =-12-二次函数的表达式为或;∴23126y x x =-+-24169y x x =-+-(3)当时,均有,25x 12y y 二次函数的对称轴是直线,243(0)y ax ax b a =-++≠2x =,12y y ①当时,有,即∴0a >12|2||2|x x -- 12|2|2x x -- ,212222x x x ∴--- ,2124x x x ∴- ,25x ,241x ∴-- 该二次函数图象上的两点,,,,1(A x 1)y 2(B x 2)y 设,当时,均有,11t x t + 25x 12y y ∴115t t -⎧⎨+⎩ .14t ∴- ②当时,,即0a <12|2||2|x x -- 12|2|2x x -- ,或,1222x x ∴-- 1222x x -- ,或12x x ∴ 124x x - ,25x ,241x ∴--该二次函数图象上的两点,,,,1(A x 1)y 2(B x 2)y 设,当时,均有,11t x t + 25x 12y y 比的最大值还大,或比的最小值还小,这是不存在的,t ∴2x 1t + 24x -故时,的值不存在,0a <t 综上,当时,.0a >14t - 18.解:(1)抛物线经过点和. 2(0)y ax bx c a =++>(0,3)A -(3,0)B ,∴3093c a b c-=⎧⎨=++⎩,.3c ∴=-310a b +-=(2)由1可得:,2(13)3y ax a x =+--对称轴为直线,132a x a -=-抛物线在、两点间从左到右上升,当时,对称轴在点左侧,如图: A B 0a >A即:,解得:,1302a a -- 13a.、两点间从左到右上升,103a ∴< A B 当时,抛物线在、两点间从左到右上升,∴103a < A B (3)抛物线不能同时经过点、.(1,)M m n -+(4,)N m n -理由如下:若抛物线同时经过点、.则对称轴为:,(1,)M m n -+(4,)N m n -(1)(4)322m m x -++-==由抛物线经过点可知抛物线经过,与抛物线经过相矛盾,A (3,3)-(3,0)B 故:抛物线不能同时经过点、(1,)M m n -+(4,)N m n -19.解:(1)②由表格可知不等式的解集为或,(3)(1)0x x -->3x >1x <故或;3x >1x <③图象如右图所示,当时,,当时,,11x -<<(3)(1)(1)0x x x --+>1x <-(3)(1)(1)0x x x --+<由表格可知不等式的解集为或,(3)(1)(1)0x x x --+>3x >11x -<<故,,或;+-3x >11x -<<(2)①不等式的解集为或或,(6)(4)(2)(2)0x x x x ---+>6x >24x <<2x <-故或或;6x >24x <<2x <-②不等式的解集为或且,2(9)(8)(7)0x x x --->9x >8x <7x ≠故或且9x >8x <7x ≠20.解:(1)该函数的图象与轴交于点, y (0,3)把,代入解析式得:,∴0x =3y =33m -=解得,1m =-故答案为;1-(2)由(1)可知函数的解析式为,223y x x =-++,2223(1)4y x x x =-++=--+ 顶点坐标为;∴(1,4)列表如下:x 2-1-01234y5-034305-描点;画图如下:。
二次函数的图像与性质经典练习题(11套)附带详细答案

练习一21.二次函数的图像开口向____,对称轴是____,顶点坐标是___yax_,图像有最___点,x___时,y随x的增大而增大,x___时,y随x的增大而减小。
12222.关于,yx,y3x的图像,下列说法中不正确的是()yx3A.顶点相同B.对称轴相同C.图像形状相同D.最低点相同223.两条抛物线yx与在同一坐标系内,下列说法中不正确的是()yxA.顶点相同B.对称轴相同C.开口方向相反D.都有最小值24.在抛物线上,当y<0时,x的取值范围应为()yxA.x>0B.x<0C.x≠0D.x≥0225.对于抛物线yx与yx下列命题中错误的是()xA.两条抛物线关于轴对称B.两条抛物线关于原点对称C.两条抛物线各自关于y轴对称D.两条抛物线没有公共点26.抛物线y=-bx+3的对称轴是___,顶点是___。
127.抛物线y=-(x2)-4的开口向___,顶点坐标___,对称轴___,x_2__时,y随x的增大而增大,x___时,y随x的增大而减小。
28.抛物线y2(x1)3的顶点坐标是()A.(1,3)B.(1,3)C.(1,3)D.(1,3)为()9.已知抛物线的顶点为(1,2),且通过达式(1,10),则这条抛物线的表22A.y=3(x1)-2B.y=3(x1)+222C.y=3-2D.y=-3-2(x1)(x1)210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达yax式为()22A.y=a+3B.y=a-3(x2)(x2)22C.y=a(x2)+3D.y=a(x2)-324411.抛物线的顶点坐标是()yxxA.(2,0)B.(2,-2)C.(2,-8)D.(-2,-8)2212.对抛物线y=2(x2)-3与y=-2(x2)+4的说法不正确的是()A.抛物线的形状相同B.抛物线的顶点相同C.抛物线对称轴相同D.抛物线的开口方向相反213.函数y=a+c与y=ax+c(a≠0)在同一坐标系内的图像是图中的()x243243214.化yxx为y=xx为ya(x h)k的形式是____,图像的开口向____,顶点是____,对称轴是____。
二次函数的图像专项练习题

九年级第十三周材料二次函数基础定义知识点一:二次函数的定义形如yax2bxc(a0)【注意:二次项的系数a0;x的最高次幂为2】a1x例题:若ya1x3二次函数,则a的值为.2m1【变式训练】若ym1x2x1二次函数,则m的值为.知识点二:“一般式”化“顶点式”例题:yx24x52xx2x22x2x22x2 方法一:4522225(222)25(2)1yx22b4acbb4acb2x22方法二:1,(2)12,yx4x5(x)2a4a2a4a【变式训练】把下列二次函数化成顶点式2x2x2x①23yx;②yx121;③y2x47知识点三:开口方向,对称轴,顶点坐标,最大(小)值,增减性【温馨提示】形状相同,则二次项的系数a相等yax 2开口bxc方向对称轴顶点坐标最大(小)值y随x增大y随x增大而增大而减小a>0 a<0 向上最小值b2b4acbx24)a(,2aa向下最大值4ac4a4ac4a2b2bxxbbx2a2abbx2a2a【变式训练】完成下列表格函数开口方向对称轴顶点坐标y随x增大而增大时,x的取值范围最大(小)值y 2xx642y5(x1)1知识点四:二次函数与x轴交点的个数及交点的坐标,与y轴的交点坐标2,当△=b24ac>0,图像与x轴有两个交点;当△【温馨提示】1.对于二次函数yaxbxc2 =b4ac2=0,图像与x轴有一个交点;当△=b4ac <0,图像与x轴没有交点。
2.求二次函数y2ax bx c 与x轴的交点坐标就是令y=0,求出x1,x2,则交点坐标为(x1,0),2(x2,0);二次函数yaxbxc与y轴的交点坐标就是令x=0,求出y,则交点坐标为(0,y);【变式训练】完成下列表格1九年级第十三周材料函数与x轴交点个数与x轴交点坐标与y轴交点坐标5y 2xx61y 2xx2知识点五:二次函数图像的平移【温馨提示】二次函数图像的平移其实就是顶点的平移2x2x例题:二次函数yx61的图像经过怎样平移能够变成yx452x2x【分析】yx61的顶点坐标为(-3,-8),yx45的顶点坐标为(2,1).点(-3,2x-8)向右平移5个单位,再向上平移9个单位变成(2,1),所以yx61向右平移5个单位,再2x向上平移9个单位变成yx45【变式训练】完成下列表格平移前函数平移方式平移后函数22y(x3)4先向平移个单位,再向平移单位y(x2)32x2xyx21先向平移个单位,再向平移单位yx45知识点六:待定系数法求二次函数的解析式【温馨提示】一般知道三个点的坐标,设二次函数的解析式为yax2bxc,然后将三个点的坐标代2,得到一个三元一次方程组;如果知道两个点的坐标,其中一个点为顶点(m,n),则入yaxbxc22设二次函数的解析式为ya(xm)n,再把另一个点的坐标代入ya(xm)n 求出a的值;若知道三个点的坐标,其中有两个点(x1,0),(x2,0)在x轴上,则可设()()yaxx1xx,再把另2一个点的坐标代入()()yaxx1xx,求出a的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数基础定义知识点一:二次函数的定义形如)0(2≠++=a c bx ax y 【注意:二次项的系数0≠a ;x 的最高次幂为2】例题:若()311+++=-x xa y a 二次函数,则a 的值为 .【变式训练】若()12112+-+=+x x m y m二次函数,则m 的值为 .知识点二:“一般式”化“顶点式”例题:542++=x x y方法一:1)2(52)222(522225422222222++=+-+⋅⋅+=+-+⋅⋅+=++=x x x x x x x y方法二:144,222=--=-a b ac a b ,1)2(44)2(542222++=-++=++=x ab ac a b x x x y 【变式训练】把下列二次函数化成顶点式①322+-=x x y ; ②1122+-=x x y ; ③7422++=x x y知识点三:开口方向,对称轴,顶点坐标,最大(小)值,增减性 【温馨提示】形状相同,则二次项的系数a 相等【变式训练】完成下列表格知识点四:二次函数与x 轴交点的个数及交点的坐标,与y 轴的交点坐标【温馨提示】1.对于二次函数c bx ax y ++=2,当△=ac b 42->0,图像与x 轴有两个交点;当△=ac b 42-=0,图像与x 轴有一个交点;当△=ac b 42-<0,图像与x 轴没有交点。
2.求二次函数c bx ax y ++=2与x 轴的交点坐标就是令y =0,求出x 1,x 2,则交点坐标为(x 1,0),(x 2,0);二次函数c bx ax y ++=2与y 轴的交点坐标就是令x =0,求出y ,则交点坐标为(0,y );【变式训练】完成下列表格知识点五:二次函数图像的平移【温馨提示】二次函数图像的平移其实就是顶点的平移例题:二次函数162++=x x y 的图像经过怎样平移能够变成542+-=x x y【分析】162++=x x y 的顶点坐标为(-3,-8),542+-=x x y 的顶点坐标为(2,1).点(-3,-8)向右平移5个单位,再向上平移9个单位变成(2,1),所以162++=x x y 向右平移5个单位,再向上平移9个单位变成542+-=x x y【变式训练】完成下列表格知识点六:待定系数法求二次函数的解析式【温馨提示】一般知道三个点的坐标,设二次函数的解析式为c bx ax y ++=2,然后将三个点的坐标代入c bx ax y ++=2,得到一个三元一次方程组;如果知道两个点的坐标,其中一个点为顶点),(n m ,则设二次函数的解析式为n m x a y +-=2)(,再把另一个点的坐标代入n m x a y +-=2)(求出a 的值;若知道三个点的坐标,其中有两个点(x 1,0),(x 2,0)在x 轴上,则可设))((21x x x x a y --=,再把另一个点的坐标代入))((21x x x x a y --=,求出a 的值。
【变式训练】1、已知抛物线c bx ax y ++=2经过(-1,2)、(1,-1)、(0,3)三点,求抛物线的函数关系式。
2、已知二次函数的顶点坐标是(1,-2),且图像经过(3,5)三点,求二次函数的解析式。
二次函数图像基础练习题1.二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),此拋物线的对称轴是( )A .x =4 B. x =3 C. x =-5 D. x =-12.已知a -b +c=0 ,9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( )A.第一或第二象限B.第三或第四象限C.第一或第四象限D.第二或第三象限3.已知M ,N 两点关于y 轴对称,且点M 在双曲线y x=12上,点N 在直线y x =+3上,设点M 的坐标为(a ,b ),则二次函数y abx a b x =-++2()( )。
A. 有最小值92B. 有最大值-92C. 有最大值92D. 有最小值-924.抛物线1822-+-=x x y 的顶点坐标为( )(A )(-2,7) (B )(-2,-25) (C )(2,7) (D )(2,-9)5.在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )A .22y x x =--+B .22y x x =-+-C .22y x x =-++D .22y x x =++ 6.二次函数2365y x x =--+的图象的顶点坐标是( ) A .(18)-,B .(18),C .(12)-,D .(14)-,7.抛物线y=x 2一3x+2与y 轴交点的坐标是( )A .(0,2)B .(1,O)C .(0,一3)D .(0,O) 8.如图所示是二次函数2y ax bx c =++图象的一部分,图象过A 点(3,0),二次函数图象对称轴为1x =,给出四个结论:①24b ac >;②0bc <;③20a b +=;④0a b c ++=,其中正确结论是( ) A .②④B .①③C .②③D .①④9.二次函数2(1)2y x =--的图象上最低点的坐标是A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)10.已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac , a+b+c ,4a -2b+c , 2a+b ,2a -b 中,其值大于0的个数为( ) A .2 B 3 C 、4 D 、5Oyx1x =(30)A ,第8题图11.二次函数y=(x+1)2 +2的最小值是( )A B C D 2、 2 、1 、-3 、 312.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图3所示,下列结论:①abc >0 ②2a+b <0 ③4a -2b+c <0 ,其中正确结论的个数为( ) A 、0个 B 、3个 C 、2个 D 、112题 13题 15题13.小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2)1c >;(3)0b >;(4)0a b c ++>;(5)0a b c -+>. 你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个14.已知0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( )15.二次函数c bx ax y ++=2的图象如图6所示,则下列关系式不正确的是 A .a <0 B.abc >0 C.c b a ++>0D.ac b 42->016.在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为( )A .222-=x yB .222+=x yC .2)2(2-=x yD .2)2(2+=x y 17.抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( ) A .1x =B .1x =-C .3x =-D .3x =18.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示, 有下列四个结论:20040b c b ac <>->①②③④0a b c -+<, 其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个x1 y2 -1 1 O -1 Oyx1-1A . xyO 1-1B . xy O1-1xyO1-11O y31 O y x19.二次函数2(0)y ax bx c a =++≠的图象如图所示, 对称轴是直线1x =,则下列四个结论错误..的是( ) A .0c > B .20a b += C .240b ac -> D .0a b c -+>20.将抛物线y =2x 2向上平移3个单位得到的抛物线的解析式是( ) A .y =2x 2+3 B .y =2x 2-3 C .y =2(x +3)2 D .y =2(x -3)221.将抛物线22y x =向左平移1个单位,得到的抛物线是( ) A .22(1)y x =+B .22(1)y x =-C .221y x =+D .221y x =-22.图6(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图6(2)建立平面直角坐标系,则抛物线的关系式是( ) A .22y x =- B .22y x =C .212y x =-D .212y x =23.如图9, 已知抛物线212y x bx c =++与x 轴交于A (-4,0) 和B (1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式;(2)设E 是线段AB 上的动点,作EF //AC 交BC 于F ,连接CE ,当△CEF 的面积是△BEF面积的2倍时,求E 点的坐标;yO C A111-O xy(19题图) 图6(1) 图6(2)24.已知:如图,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式. (2)求ABC △的面积. (3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?2(2010湖南常德)如图9, 已知抛物线212y x bx c =++与x 轴交于A (-4,0) 和B (1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式;(2)设E 是线段AB 上的动点,作EF //AC 交BC 于F ,连接CE ,当△CEF 的面积是△BEF面积的2倍时,求E 点的坐标;3(2010广东东莞)已知二次函数c bx x y ++-=2的图象如图所示,它与x 轴的一个交点坐标为(-1,0),与y 轴的交点坐标为(0,3)⑴求出b ,c 的值,并写出此时二次函数的解析式;⑵根据图象,写出函数值y 为正数时,自变量x 的取值范围.6.如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l ,设P 是直线l 上一动点.(1)求点A 的坐标;(2)以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;xy 3-1 O xyO BC Al 0yx-1-2-1-2-4-312435123例2、已知抛物线y=x2+(1-2a)x+a2 (a≠0)与x轴交于两点A(x1,0),B(x2,0) ,(x1≠x2) (1)求a的取值范围,并证明A、B两点都在原点的左侧;(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值。