2.1连续信号的频域分析
连续时间信号的时域分析和频域分析

时域与频域分析的概述
时域分析
研究信号随时间变化的规律,主 要关注信号的幅度、相位、频率 等参数。
频域分析
将信号从时间域转换到频率域, 研究信号的频率成分和频率变化 规律。
02
连续时间信号的时
域分析
时域信号的定义与表示
定义
时域信号是在时间轴上取值的信号, 通常用 $x(t)$ 表示。
表示
时域信号可以用图形表示,即波形图 ,也可以用数学表达式表示。
05
实际应用案例
音频信号处理
音频信号的时域分析
波形分析:通过观察音频信号的时域波形,可 以初步了解信号的幅度、频率和相位信息。
特征提取:从音频信号中提取出各种特征,如 短时能量、短时过零率等,用于后续的分类或 识别。
音频信号的频域分析
傅里叶变换:将音频信号从时域转换 到频域,便于分析信号的频率成分。
通信系统
在通信系统中,傅里叶变 换用于信号调制和解调, 以及频谱分析和信号恢复。
时频分析方法
01
短时傅里叶变换
通过在时间上滑动窗口来分析信 号的局部特性,能够反映信号的 时频分布。
小波变换
02
03
希尔伯特-黄变换
通过小波基函数的伸缩和平移来 分析信号在不同尺度上的特性, 适用于非平稳信号的分析。
将信号分解成固有模态函数,能 够反映信号的局部特性和包络线 变化。
频域信号的运算
乘法运算
01
在频域中,两个信号的乘积对应于将它们的频域表示
相乘。
卷积运算
02 在频域中,两个信号的卷积对应于将它们的频域表示
相乘后再进行逆傅里叶变换。
滤波器设计
03
在频域中,通过对频域信号进行加权处理,可以设计
信号与系统第4章 连续信号的频域分析

1
信号与系统
出版社 理工分社
4.1 周期信号的傅里叶级数
所有具有各自不同频率的正弦函数 sin nΩt(n =1,2,…)和余弦函数 cosnΩt(n =0,1,2, …)在时间区间( t0,t0+2π /Ω)范围内构成一个 完备的正交函数集。同样,所有虚指数函数ejnΩt (n = ±0,±1,±2,…)在此时间范围内也构成 一个正交函数集。傅里叶提出,一个周期信号可以 用以上两种正交函数集中相互正交的若干函数的线 性组合来表示。或者说,可以将周期信号分解为这 些正交函数的加权和。
35
信号与系统
出版社 理工分社
4.6.1 帕塞瓦尔定理 对周期功率信号 f(t),假设其傅里叶系数为 Fn,则其平均功率为
对能量信号 f(t),假设其傅里叶变换为 F( jω),则其能量为
36
信号与系统
出版社 理工分社
这说明,式(4.6.1)右边的每一项代表周期 信号中每个复简谐分量的平均功率,而式中右边的 积分是根据时域表达式计算信号平均功率的定义式 。因此,式(4.6.1)所示周期信号的帕塞瓦尔定 理说明,周期信号的平均功率等于各分量的平均功 率之和。考虑到 |Fn|为偶函数,并且由式(4.1.6 )可知 |Fn|=An/2,代入式(4.6.1)还可以得到周 期功率信号帕塞瓦尔定理的另一种描述,即
33
信号与系统
出版社 理工分社
③非周期信号只有傅里叶变换和频谱密度。而 周期信号既有频谱,也有频谱密度,它们之间可以 通过式(4.5.4)进行转换。
④周期信号的频谱密度都是由冲激函数构成的 。此外,许多不满足绝对可积条件的信号,如果存 在傅里叶变换,其频谱密度中一般都含有冲激函数 ,如单位阶跃信号。
图 4.5.1 复简谐信号、余弦信号和正弦信号的频谱图
连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。
本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。
2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。
傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。
具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。
3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。
频率响应是系统对不同频率输入信号的响应情况。
通过系统函数H(ω)可以计算系统的频率响应。
系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。
4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。
通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。
常用的频域分析方法包括功率谱密度估计、谱线估计等。
5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。
通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。
6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。
通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。
进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。
7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。
频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。
总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。
频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。
连续信号的频域分析

第四章 连续信号的频域分析将信号分解为若干不同频率的正弦信号或虚指数信号,实质上是将信号在频率域上进行分解,因此根据这种基本思想对信号和系统的分析称为频域分析。
这种分解过程是通过傅里叶级数和傅里叶变换这一数学工具来实现的。
本章首先介绍连续信号的傅里叶级数和傅里叶变换,熟悉信号频谱的概念。
基本要求1.基本要求♦ 了解傅里叶级数和傅里叶变换的定义及其物理含义; ♦ 掌握信号频谱和频谱密度的概念; ♦ 了解连续谱和离散谱的特点和区别; ♦ 掌握傅里叶变换的常用性质;♦ 掌握周期信号傅里叶变换的求解方法。
2.重点和难点♦ 傅里叶变换的性质及其应用知识要点1.周期信号的傅里叶级数 (1)傅里叶级数展开式三角形式:∑∑∞=∞=+Ω+=Ω+Ω+=1010)cos(2)]sin()cos([2)(n n n n n n t n A A t n b t n a a t f ϕ(4-1) 指数形式: ∑∑∞-∞=+Ω∞-∞=Ω==n t n nn t n n n FF t f )j(j e e )(ϕ (4-2)其中⎰+Ω=Tt t n t t n t f Ta 00d cos )(2,n =0,1,2,? (4-3) ⎰+Ω=Tt t n t t n t f Tb 00d sin )(2,n =1,2,? (4-4)且nn n n n n a b b a A a A arctg, ,2200-=+==ϕ (4-5)⎰+Ω-=Tt t t n n t t f T F 00d e )(1j (4-6) (2)两种形式之间的转换关系0)( e 21j ≥=n A F n n n ϕ (4-7)并且|F n |为偶函数,?n 为奇函数,即||||n n F F -=,||||n n -=ϕϕ (4-8)(3)傅里叶级数的物理含义通过傅里叶级数可以将任意周期信号f (t )分解为若干个正弦信号(三角形式)或复简谐信号(指数形式)的叠加。
实验二 连续信号与系统的频域分析

(2)绘出f(t)的时域波形及频谱图。
f(t) 1
(2)电路的系统函数为 H(jω)
1 j 1 j
(b)用MATLAB求系统的单位冲激响应。
(c) 当输入为 f (t) sint sin3t t
求系统的稳态响应。
程序清单: syms w t; Hw=(1-j*w)/(1+j*w); ht=ifourier(Hw,t); ft=sin(t)+sin(3*t); Fw=fourier(ft); Yw=Fw*Hw; yt=ifourier(Yw,t);
函数fourier()——傅立叶正变换 函数ifourier()——傅立叶逆变换
3、连续时间系统的响应
已知某电路的系统传递函数为 H(jω)=1/(0.08(jω)2+0.4jω+1)
用MATLAB绘制系统的幅频特性曲线和相频特性曲线,并分
析该系统的频率特性。 系统频率特性
H(j)=|H(j)|ej() |H(j)|——系统的幅频特性
for i=1:9
a(i)=subs(an,n,i); % 计算系数a1~a9,存于数组a中 end
a0=double(a0);a=double(a); %转换成数值型
stem(0,a0,i,a); %绘f(t)的频谱图
2、非周期信号的分析 (1)已知某一连续时间信号为
f t e2 t
试绘出它的时域波形及相应的频谱图。
信号与系统课件:连续信号与系统的频域分析

双边谱指的是当 n 为任何值时( -∞< n <∞ ), 和 θn 随频
率 nω 0变化的图形。
连续信号与系统的频域分析
若某周期信号傅里叶级数为
连续信号与系统的频域分析
图 3.3-1 周期信号频谱
连续信号与系统的频域分析
【例 3.3-1 】 试画出图 3. 2-1 所示的周期方波信号
的单边频谱和双边频谱。
A 2 =8 , A 3 =0 , A 4 =2 ,相位 φ 1 =-180° , φ 2 =0° ,
φ 3 =0° , φ 4 =90° 。于是 f ( t )的单边频谱如图 3. 3 4 所
示。
连续信号与系统的频域分析
图 3.3-4 信号 f ( t )的单边谱
连续信号与系统的频域分析
由单边频谱和双边频谱的关系,可得 f (t )的双边频谱如
种简洁形式:
连续信号与系统的频域分析
两种表达式中的系数的关系为
由式( 3. 2-5 )可知, A n 是 n 的偶函数; φ n 是 n 的奇函数。
连续信号与系统的频域分析
也可由式(3. 2-4 )得到式( 3. 2-2 ),系数的关系为
连续信号与系统的频域分析
式( 3. 2-4 )表明,任意周期信号可以分解为直流和许
指函数 ej ωt 为基本信号,将任意连续信号分成一系列不同频
率的正弦信号或虚指函数信号线性组合,并加分析。对周期
信号的分解工具是傅里叶级数,对非周期信号的分解工具是
傅里叶变换。利用信号的正弦分解思想,系统的响应可看做
各不同频率正弦信号产生响应的叠加,这种思想将时域映射
到频域,揭示了信号内在的频率特性以及信号时间特性与频
信号的频域分析

信号的频域分析任一信号可以在时域对其进行分析和描述,利用傅立叶变换理论也可以对其进行频域分析,以便更好地对信号进行存储、传输和处理,达到提取有用信号的目的。
信号可分为四大类,与之对应存在四种类型的傅立叶变换,成为信号频谱分析的基础。
归纳如下表:四种信号的变化规律为:周期信号的频谱是离散的、互为谐波关系的;非周期信号的频谱是连续的;离散信号的频谱是为周期的;连续信号的频谱是非周期的。
所谓信号的频谱分析就是利用傅立叶变换的分析方法,找出与信号时域波形对应的频谱函数的幅度、相位以及能量或功率的分布规律等,以便在频域提取信号的特征。
实际工程中,通过积分公式求取复杂信号的频谱函数本身就比较困难,何况在许多情况下只是记录了实际信号的一段波形或数据,而没有对应的解析表达式。
若对这些信号进行频谱分析,就必须利用离散傅里叶变换(DFT)。
DFT表征一个在时域为N点有限长的序列x(n) 经过傅里叶变换到频域成为另一个N点有限长序列X (k ),即 :∑-=-=12)()(N n kn Njen x k X π=∑-=1)(N n kn Nwn x离散傅里叶反变换(IDFT )定义为∑-==102)(1)(N k kn N j e k X N n x π∑-=-=1)(1N k knNwk X N可见,由于DFT 变换对在时域、频域都是离散的,可以通过计算机实现数值 计算。
而且DFT 存在快速算法FFT ,可以高速、高效地完成DFT 运算。
Matlab 中 提供了相应函数以实现DFT 变换对的计算,调用格式为:X=fft(x)其按照基2时间抽取快速算法计算序列x (n )的傅里叶变换,当x (n) 的长度为2 的整数次幂或者x(n)为实序列时,计算的时间会大大缩短。
X=fft(x,n)其是补零或截短的n 点傅里叶变换,当x(n)的长度小于n 时,在x(n)的尾部补零使 x(n)的长度达到n 点;当x(n)的长度大于n 时,将x(n)截短使x(n)的长度成n 点; 然后对补零或截短的数据进行快速傅里叶变换。
第二章离散时间傅立叶变换DTFT

jX I (e j ) FT[xo (n)] xo (n)e jn n
即序列对称、反对称分解,频域作实部、虚部的分解
证明
由:
xe (n)
1 2
[x(n)
x(n)]
xo (n)
1 2
[x(n)
x(n)]
有:
FT [ xe
(n)]
1 2
[X
(e
j
)
X
* (e
j
)]
X
R
(e
j
)
FT[xo (n)]
RN (n)e jn e jn
nn01 e jN 1 Nhomakorabeae je (e jN / 2 jN / 2 e jN / 2 ) e j / 2 (e j / 2 e j / 2 )
e j(N 1) / 2 sin( N / 2) sin( / 2)
| X (e j ) | sin(N / 2) sin( / 2)
n
2
内容:时域、频域能量守恒。 即信号时域的总能量等于频域的总能量。
X (e j ) 2 称为能量谱密度
证明:
2
x(n) x(n)x*(n)
x*(n)[ 1
X (e j )e jnd)]
n
n
n
2
1 X (e j ) x (n)e jnd
2
n
1 X (e j ) X *(e j )d
[x(n)
x(n)]
例 x(n)=anu(n); 0<a<1; 求其偶函数xe(n) 和奇函数xo(n)。
解: 序列x(n)
共轭对称部分xe(n)
共轭反对称部分xo(n)
2.3 周期序列的离散傅立叶级数 及傅立叶变换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连续信号的频域分析
取样函数定义为
sin x Sa ( x ) x
这是一个偶函数,且x→0时,Sa(x)=1;当x=kπ时,Sa(kπ)=0。 据此,可将周期矩形脉冲信号的复振幅写成取样函数的形式,即
E n Fn Sa T 2
连续信号的频域分析
Sa(x) 1
例如,可取 t0=0 ,t0=-T/2等等。显然, an 为 nw的偶函数, bn为nw的奇函数, 即
an a n bn bn
连续信号的频域分析
连续信号的频域分析
例 2.2-1 求图示信号的傅里叶级数展开式。
图 2.2-1
连续信号的频域分析
解 据式(2.2-6),在本题中我们取t0=0,则有
6
4 5°
n
4 5°
3 0°
3 0° 2 0° 1 0°
1 5°
图 2.3-1 例 2.3-1
3(b )o源自245
6
(a) 振幅谱; (b) 相位谱
连续信号的频域分析 2
1 .5 1 0 .4 1
|Fn | 1 .5 1 0 .4
4 5 6
0 .2
2
0 .2
3
- 6- 5 - 4 - 3- 2 - o (a )
连续信号的频域分析
A0 1 2
1 0 1 10 2 20
A1 3 A2 2 A3 0.4 A6 0.8
其余
3 45 6 30
0 A n
An 连续信号的频域分析 3 3 2
2
1 0 .4 o
0 .8
2
3
(a )
4
5
式中,相关系数Fn
连续信号的频域分析 指数傅里叶级数还可以从三角傅里叶级数直接导出。因为 cos θ=(e
jθ+e-jθ)/2,将这一关系应用于式 (3.2-9) ,并考虑到A 是n的偶函 n
数,φn是n的奇函数,即An=A-n,φn=-φ-n,则式(3.2-9)可写为
连续信号的频域分析
2 An 2 Fn T
试画出f(t)的振幅谱和相位谱。 解 f(t)为周期信号,题中所给的 f(t)表达式可视为 f(t) 的傅里
叶级数展开式。据
A0 f (t ) An cos(nt n ) 2 n 1
可知,其基波频率Ω=π(rad/s),基本周期T=2 s,ω=2π、3π、 6 π分别为二、 三、六次谐波频率。且有
(F A 为 n n ) nΩ
的实函数的特殊情况下,其复振幅 n(Fn) 与变量 (nΩ) 的关系也 A n ( Fn )
可以用一个图绘出。
连续信号的频域分析
例 2.3-1
f (t ) 1 3 cos(t 10) 2 cos(2t 20) 0.4 cos(3t 45) 0.8 cos(6t 30),
F ( j ) F ( )e
j ( )
习惯上将F(ω)~ω的关系曲线称为非周期信号的幅度频谱 (F(ω) 并不是幅度!),而将φ(ω)~ω曲线称为相位频谱,它们都是ω的
连续函数。
连续信号的频域分析
f(t)为实函数时,根据频谱函数的定义式不难导出:
F ( j )
n
cos(nt n )
连续信号的频域分析
2.3 周期信号的频谱
或
连续信号的频域分析
2.3.1 周期信号的频谱
( F ) 一般为 nΩ 的复函数,因而描 周期信号的复振幅 A n n
述其特点的频谱图一般要画两个,一个称为振幅频谱,另一 个称为相位频谱。所谓振幅频谱为以ω为横坐标,以振幅为纵 坐标所画出的谱线图; 而相位频谱则为以 ω 为横坐标,以相 位为纵坐标所得到的谱线图。 在信号的复振幅
4 5° 3 0° 1 5° - 6- 5 - 4- 3 - 2 - o -1 0° -2 0° -3 0° -4 5° (b )
n
4 5° 3 0° 2 0° 1 0°
2
3
4
5
6
-1 5° -3 0° -4 5°
图 3.3-2 例 3.3-1 信号的 (a) 振幅谱; (b) 相位谱
T
t (a )
o
4
f(t) E E 10 o τ T t (b )
Fn
o
2 τ
图 2.3-6 不同τ (a) τ=T/5; (b) τ=T/10
连续信号的频域分析
f(t) E E 5 Fn
=
2 T 2
4
τ o τ - 2 2
T
2T
t (a )
o
f(t) E E 10 τ oτ - 2 2 T t (b )
Ω的整数倍频率上,即含有Ω的各次谐波分量,而决不含有非
Ω的谐波分量。 第三为收敛性,此频谱的各次谐波分量的振幅虽然随 nΩ 的变化有起伏变化,但总的趋势是随着 nΩ的增大而逐渐减小。 当nΩ→∞时,|Fn|→0。
连续信号的频域分析
f(t) E E 5 2 Fn
=
2 T
τ o τ - 2 2
Fn
=
2 T 2
4
o
图 2.3-7 不同T
(a) T=5τ; (b) T=10 τ
连续信号的频域分析
周期矩形脉冲信号含有无穷多条谱线,也就是说,周期 矩形脉冲信号可表示为无穷多个正弦分量之和。在信号的传 输过程中,要求一个传输系统能将这无穷多个正弦分量不失 真地传输显然是不可能的。实际工作中,应要求传输系统能 将信号中的主要频率分量传输过去,以满足失真度方面的基 本要求。周期矩形脉冲信号的主要能量集中在第一个零点之
2 2 a0 x(t )dt E dt E T 0 T
T
T 2 0
这表明信号f(t)的直流分量为a0/2=E/2。
2 2 a0 x(t )dt E dt E T 0 T
T
T 2 0
2 2 2 E sin nwt a0 x(t ) cos nwdt E cos nwt dt T 0 T T nw
连续信号的频域分析
当x(t)为t的偶函数时,由于x(t)cosnwt为t的偶函数,w(t) sinnwt为t的奇函数。据式有
即当x(t)为偶函数时,其傅里叶级数展开式中只可能有直流分 量及cos nwt分量, 而无sin nwt分量。
连续信号的频域分析
2指数形式的傅里叶级数
t0 T
t0
0 jnwt jmwt (e ) (e ) dt T
内, 因而,常常将ω=0~
号的频带宽度。记为
2 这段频率范围称为矩形脉冲信
连续信号的频域分析
2.3.3 周期信号的功率
周期信号的能量是无限的,而其平均功率是有界的,因而 周期信号是功率信号。为了方便,往往将周期信号在1Ω电阻上 消耗的平均功率定义为周期信号的功率。显然,对于周期信号 f(t), 无论它是电压信号还是电流信号,其平均功率均为
式中,w=2π/T称为基波角频率,a0/2,an和bn为加权系数。 S 上式就是周期信号x(t)在(t0, t0+T)区间的三角傅里叶级数展开
式。由于x(t)为周期信号,且其周期T与三角函数集中各函数
的周期T相同,故上述展开式在(-∞, ∞)区间也是成立的。
连续信号的频域分析
可得加权系数:
连续信号的频域分析
mn mn
式中,T=2π/Ω为指数函数公共周期,m、n为整数。任意函数
x(t)可在区间(t0, t0+T)内用此函数集表示为
x(t ) F0 F1e F2e
j 2 t
jt
F2e
n
j 2 t
F1e
jt
F e
n
jnt
连续信号的频域分析
连续信号的频域分析
2.3.2
E f (t ) 0
当t
2
T T 当 t , t 2 2 2 2
f (t) E
-T
T τ o τ - - 2 2 2
T 2
T
2T
t
图 3.3-3 周期矩形脉冲信号
连续信号的频域分析
为得到该信号的频谱,先求其傅里叶级数的复振幅。
f (t )e jt dt f (t ) costdt j
f (t ) sin tdt
R ( ) jX ( )
式中:
R( ) f (t ) costdt X ( ) f (t ) sin tdt
F ( j ) F ( )e j ( ) R( ) jX ( )
一般来说Fn亦为一复数,即
t0 T
t0
f (t )e
jnt
dt
1 1 j n j n Fn An An e Fn e 2 2
f (t )
n jnt F e n n
Fn e j ( nt n )
F0
n
2 F
-3 -2
-
o
2
3
x
图 2.3-4 Sa(x)函数的波形
连续信号的频域分析
Fn E T 2 o 3
4
图 2.3-5 周期矩形脉冲信号的频谱
连续信号的频域分析
由图 2.3-5 可以看出,此周期信号频谱具有以下几个特点: 第一为离散性,此频谱由不连续的谱线组成,每一条谱线 代表一个正弦分量,所以此频谱称为不连续谱或离散谱。 第二为谐波性,此频谱的每一条谱线只能出现在基波频率