超静定结构的解法
材料力学-力法求解超静定结构

力法求解超静定结构时,可以根据计算结果优化结构设计,提高结构的强度和稳定性。
结论与总结
力法是求解超静定结构的有效方法,通过合理应用材料力学基础和力法的原理,我们能够准确求解反力分布并 分析结构的应力情况。
样例分析
结构:桥梁
使用力法求解桥梁上的悬臂梁,计算主梁的支座反 力和悬臂梁的应力分布。
结构:楼房
将力法应用于楼房结构,确定楼板的支座反力并分 析楼梯的受力情况。
实用提示和技巧
1 标定自由度
在应用力法时,正确标定结构的自由度是成功求解反力的重要步骤。
2 验证计算结果
对计算得到的反力进行验证,确保结果的准确性,避免错误的设计决策。
材料力学-力法求解超静 定结构
超静定结构的定义
超静定结构是指具有不止一个不可靠支持反力的结构。它们挑战了传统的结构分析方法,需要使用力法进行求 解。
材料力学基础
材料力学研究材料的受力和变形规律,包括弹性力学、塑性力学和损伤力学。 这些基础理论为力法求解超静定结构提供了必要的工具。
力法的原理
力法是一种基于平衡原理和支座反力法则的结构分析方法。它通过对超静定结构施加虚位移,建立受力平衡方 程,求解未知反力。
超静定结构应用力法求解的步骤
1
确定结构类型
了解结构是否为超静定结构,并确定不
计算反力
2
可靠支持反力的个数。
根据力法原理,建立并求解受力平衡方
程,计算未知反力。
3
验证平衡
通过检查受力平衡方程是否满足等式的
确定应力分布
4
要求,验证计算的反力是否正确。
பைடு நூலகம்
根据已知反力和结构的几何特性,计算 并绘制应力分布图。
(整理)力法求解超静定结构的步骤:.

第八章力法本章主要内容1)超静定结构的超静定次数2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分))3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架)4)力法的对称性利用问题,对称结构的有关概念四点结论5)超静定结构的位移计算和最后内力图的校核6)§8-1超静定结构概述一、静力解答特征:静定结构:由平衡条件求出支反力及内力;超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。
二、几何组成特征:(结合例题说明)静定结构:无多余联系的几何不变体超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。
即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。
多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。
多余求知力:多余联系中产生的力称为三、超静定结构的类型(五种)超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构四、超静定结构的解法综合考虑三个方面的条件:1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程;2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。
即结构的变形必须符合支承约束条件(边界条件)和各部分之间的变形连续条件。
3、物理条件:即变形或位移与内力之间的物理关系。
精确方法:力法(柔度法):以多余未知力为基本未知量位移法(刚度法):以位移为基本未知量。
力法与位移法的联合应用:力法与位移法的混合使用:混合法近似方法:力矩分配法、矩阵位移法、分层总和法、D值法、反弯点法等本章主要讲力法。
五、力法的解题思路(结合例子)把不会算的超静定结构通过会算的基本结构来计算。
超静定结构的解法

n3
n 3 X1 X1 X 2 X 2 X 3 X 3
高速铁路新型板式轨道设计理论与力学性能研究《建筑力学》 第八章:超静定结构解法
8.1 超静定结构及超静定次数的确定
解除多余约束的几种情况: 1. 去掉一个支座链杆相当于解除一个约束。
可变体系 X1
X1
静定基不唯一
力法:以力为未知数求解超静定问题的方法。
求解超静定问题的方法有多种,力法是最基本、也是历史最悠 久的一种。它是以多余约束力为未知数,列出变形补充方程求解 后,其他未知力和变形等就可按静定结构来计算。
力法的基本思路:
1. 解除多余约束,使之成为静定结构——静定基; 2. 在静定基上施加与多余约束相对应的多余力——基本
课堂练习: 判定下列结构的超静定次数:
1
1
1
n3
3
n3
高速铁路新型板式轨道设计理论与力学性能研究《建筑力学》 第八章:超静定结构解法
8.1 超静定结构及超静定次数的确定
组成无多余约束几何不变体系的基本规则:
(1) 两刚片法则: 两个刚片用三根不共点的链杆相连,或者,两刚片用
一铰和一不通过铰心的链杆相连,可组成一个无多余约束 的几何不变体系。 (2) 三刚片法则(三角形法则):
X3
X1
X2
X1 X2 X3
高速铁路新型板式轨道设计理论与力学性能研究《建筑力学》 第八章:超静定结构解法
8.1 超静定结构及超静定次数的确定
解除多余约束的几种情况:
5.切断一根梁相当于解除三个约束。
或:切开一个闭合框相当于解除三个约束。
X1
X1
X1
X1
X2 X2 X3
第八章超静定结构解法

第八章超静定结构解法
超静定结构是指结构中的节点数超过了杆件数,即结构中的自由度超过了平衡条件的数量。
对于超静定结构的解法,需要进行位移计算和支反力计算。
位移计算可以通过以下步骤进行:
1.建立结构的刚度方程。
根据杆件的刚度和支座的自由度约束,可以建立结构的刚度矩阵。
刚度矩阵是一个n×n的矩阵,其中n是结构的自由度数量。
2.确定约束条件。
根据结构的支座约束,可以确定支座位移为零的约束条件。
3.应用边界条件。
将约束条件应用到刚度方程中,可以得到一个未知位移的方程组。
4.解未知位移。
通过解这个方程组,可以得到结构的未知位移值。
支反力计算可以通过以下步骤进行:
1.利用位移计算中得到的未知位移值,计算杆件的应力。
应力可以通过应变和材料的本构关系得到。
2.根据杆件的几何特征和应力,计算杆件的应力。
应力可以根据杆件的截面积和应力得到。
3.根据杆件的几何特征和应力,计算杆件的内力。
内力可以根据截面受力平衡的条件得到。
4.根据内力和支座约束,计算支座的反力。
反力可以通过力的平衡条件得到。
总的来说,超静定结构的解法需要进行位移计算和支反力计算。
在位移计算中,需要建立结构的刚度方程,并将约束条件以及边界条件应用到方程中,来解未知位移。
在支反力计算中,需要利用位移计算中得到的未知位移值,计算杆件的应力和内力,并根据杆件的几何特征和应力来计算支座的反力。
力法、位移法求解超静定结构讲解

力法、位移法求解超静定结构讲解
超静定结构是指在结构中存在多余的支座或者杆件,使得结构的自由度小于零,即结构无法通过静力学方法求解。
在这种情况下,我们需要采用力法或者位移法来求解结构的内力和位移。
力法是指通过假设结构内力的大小和方向,来求解结构的内力和位移的方法。
在力法中,我们需要假设结构内力的大小和方向,然后通过平衡方程和变形方程来求解结构的内力和位移。
力法的优点是计算简单,适用于简单的结构,但是对于复杂的结构,力法的假设可能会导致误差较大。
位移法是指通过假设结构的位移,来求解结构的内力和位移的方法。
在位移法中,我们需要假设结构的位移,然后通过平衡方程和变形方程来求解结构的内力和位移。
位移法的优点是适用于复杂的结构,可以准确地求解结构的内力和位移,但是计算较为繁琐。
在实际工程中,我们通常采用力法和位移法相结合的方法来求解超静定结构。
首先,我们可以通过力法来确定结构的内力大小和方向,然后再通过位移法来求解结构的位移。
这种方法可以充分利用力法和位移法的优点,减小误差,提高计算精度。
超静定结构的求解需要采用力法和位移法相结合的方法,通过假设结构的内力和位移,来求解结构的内力和位移。
在实际工程中,我们需要根据具体情况选择合适的方法,以保证计算精度和效率。
超静定结构的解法

力法的基本思路
超静定计算简图 解除约束转 化成静定的 基本结构承受荷 载和多余未知力
基本体系受力、变形解法已知
力法的基本思路
用已掌握的方法,分析单个基本未 知力作用下的受力和变形
位移包含基本未知力Xi
同样方法分析 “荷载”下的 受力、变形
为消除基本结构与原结构差别,建立位移协调条件
11 12 1P 1 21 22 2 P 2
11 X 1 1n X n 1 P 1 X X nn n nP n n1 1
或写作矩阵方程
δ X P
(3) 作基本结构在单位未知力和荷载(如果 有)作用下的弯矩(内力)图 M i , M P (4) 求基本结构的位移系数
小结:力法的解题步骤
(1) 确定结构的超静定次数和基本结构(体系)
超静定次数 = 基本未知力的个数
= 多余约束数
= 变成基本结构所需解除的约束数
(3 次)
或
(14 次)
或
(1 次)
(6 次)
(4 次)
确定超静定次数时应注意: (a) 切断弯曲杆次数3、链杆1,刚结变单铰1, 拆开单铰2。总次数也可由计算自由度得到。 (b) 一个超静定结构可能有多种形式的基本 结构,不同基本结构带来不同的计算工作量。 因此,要选取工作量较少的基本结构。 (c) 可变体系不能作为基本结构 (2) 建立力法典型方程
将未知问题转化为 已知问题,通过消除已 知问题和原问题的差别, 使未知问题得以解决。 这是科学研究的 基本方法之一。
由于从超静定转化为静定,将什么 约束看成多余约束不是唯一的,因此 力法求解的基本结构也不是唯一的。
9-简单超静定结构的解法解析

例4 两铸件用两钢杆1、2连接如图,其间距为 l=200mm。现需 将制造得过长e=0.11mm的铜杆3装人铸件之间,并保持三杆 的轴线平行且有等间距a。试计算各杆内的装配应力。已知: 钢杆直径d=10mm,铜杆横截面为20mm 30mm的矩形,钢的 弹性模量E=210GPa,铜的弹性模量E=100GPa。铸件很厚,其 变形可略去不计。
最后,补充方程变为
7 qa4 FNa3 FNl 12 EI EI EA
解得
FN
7qa4 A 12(Il Aa3 )
B
D
在静定问题中,只会使结构的几 何形状略有改变,不会在杆中产生 附加的内力。如1杆较设计尺寸过长, C 仅是A点的移动。
3
1 aa
2
A''
A'
e
A
在超静定问题中,由于有了多余 约束,就将产生附加的内力。
附加的内力称为装配内力,与之相 应的应力则称为装配应力,装配应力 是杆在荷载作用以前已经具有的应 力,也称为初应力。
土建工程中的预应力钢筋混凝土构件,就是利 用装配应力来提高构件承载能力的例子。
(2)温度应力
静定问题:由于杆能自由变形,由温度所引起的变 形不会在杆中产生内力。
超静定问题:由于有了多余约束,杆由温度变化所 引起的变形受到限制,从而将在杆中产生内力。这 种内力称为温度内力。
与之相应的应力则称为温度应力。
M x 0, M A M B M e 0
变形协调条件:根据原超静定杆的约束情况,基 本静定系在B端的扭转角应等于零, 即补充方程为
B 0
按叠加原理:
B BB BM 0
BB、BM分别为MB、Me 引起的在杆端B的扭转角。
线弹性时,物理关系(胡克定理)为
超静定结构的解法1位移法

P
力法计算,9个基本未知量
位移法计算, 1个基本未知量
4.3 位移法
一.单跨超静定梁的形常数与载常数
1.等截面梁的形常数 杆端位移引起的杆端内力称为形常数.
i=EI/l----线刚度
2.等截面梁的载常数 荷载引起的杆端内力称为载常数.
4.3 位移法
一.单跨超静定梁的形常数与载常数
4.3 位移法
一.单跨超静定梁的形常数与载常数 二.位移法基本概念 三.位移法基本结构与基本未知量
基本未知量:独立的 结点位移.包括角位移和线位移 基本结构:增加附加约束后,使得原结构的结点不能
发生位移的结构.
1.无侧移结构(刚架与梁不计轴向变形) 基本未知量为所有刚结点的转角 基本结构为在所有刚结点上加刚臂后的结构
MP
EA Z1=1
r11
M1
Z1
3i/l
5P/16
3i / l 2
R1P
r11
3i / l 2
Z1---位移法
基本未知量
r11 6i / l 2 R1P 5P / 16
Z1 5Pl 2 / 96i
M M1Z1 MP
Z1
q
EI
EI
Z1 q
Z1
=
Z1
=
Z1=1
Z1
q
+
Z1
q
EI
EI
Z1
位移法的基本结构 ----单跨梁系.
=
=
Z1
q
EI
EI
Z1
R1
q
EI
EI
ql 2 / 8
R1P
q
位移法的基本方程 ----平衡方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超静定结构的解法
迭代解法主要利用迭代计算的方法,在每次迭代中修正应力和应变的分布,直到趋于稳定。
该方法的基本步骤如下:
1.假设受力的初始状态,即假设一些节点处的节点位移和内力;
2.利用结构的几何约束和材料力学性质,计算一些节点处的内力和位移;
3.判断内力和位移是否满足力学静平衡条件,若满足则计算结束,否则进入下一步;
4.通过一定的修正方法,调整节点内力和位移;
5.重复步骤2至步骤4,直到内力和位移满足力学静平衡条件。
迭代解法的优点是通用性强,适用于各种超静定结构,但收敛速度较慢,计算量较大。
弹性势能法是利用结构的势能原理,将结构的力学行为转化为弹性势能的变化来求解结构的内力和位移。
该方法的基本步骤如下:
1.根据结构的受力情况和约束条件,建立适当的势能表达式;
2.利用力学静平衡方程,将势能表达式表示为内力和位移的函数;
3.求解势能的极值点,即通过对内力和位移偏导等于零,解得内力和位移的方程;
4.建立适当的边界条件,如位移边界条件和约束条件;
5.通过求解得到的方程,计算结构的内力和位移。
弹性势能法的优点是求解过程相对简单,收敛速度较快,但要求结构能够满足一定的连通性和对称性条件。
在解超静定结构的过程中,还可以采用其他方法来辅助计算,如虚功法、位移法、能量法等。
此外,有些超静定结构也可以通过变形补偿或者加固措施等方法使之退化为静定结构,进而采用常规的静力计算方法来求解。
总之,解超静定结构是一个相对复杂的过程,需要利用附加条件和弹性支承约束来求解。
通过迭代解法和弹性势能法等方法可以得到结构的内力和位移,为实际工程中的设计和分析提供重要的参考和依据。