6.5 超静定结构在支座移动时的内力计算
建筑力学教材课件第八章 超静定结构的内力分析

⑶求系数和自由项
11
1 1 2 256 4 4 4 4 4 4 EI 2 3 3EI 1 1 1280 80 4 4 EI 3 3EI
1P
⑷求解多余力
⑸绘制内力图 各杆端弯矩可按 M X 1 M 1 M P 计算,最后弯矩图如图8-7c所示。
图(a)所示刚架有两个刚结点,现在两个刚结点
都发生了角位移和线位移,但在忽略杆件的轴向变形
时,这两个线位移相等,即独立的结点线位移只有一 个,因此用位移法求解时,该结构的基本未知量是两 个角位移C和 D 以及一个线位移Δ。
(b)
同理,图( b)所示排架有三个铰结点,其水 平线位移相同,故该结构的基本未知量是一个线位 移Δ。
M 1M P 1 1 ql 2 3l ql 4 dx l EI EI 3 2 4 8 EI
同理可用 M 1 图与 M P 图相图乘计算 1P ,得
1P
将11 和1P 之值代入力法基本方程由此求出:
X1 1P
11
ql 4 l 3 3ql / 8 EI 3EI 8
• 即:n次超静定结构力法的基本方程,通常称为力法典型方程。这一 方程组的物理意义为:基本结构在全部多余未知力和荷载共同作用下, 在去掉多余联系处沿各多余未知力方向的位移,应与原结构相等。 • 典型方程中,多余未知力系数主对角线上称为主系数,其物理意义为: 当单位力单独作用时,在其自身方向上所引起的位移,恒为正且不为 零。其它系数称为副系数,其物理意义为:当单位力单独作用时,所 引起方向的位移。各式最后一项称为自由项,它是荷载单独作用时所 引起的方向的位移。副系数和自由项的值可能为正、负或零。
高等工程力学1 超静定结构内力计算

M i 、Qi、N i ——任取的基本体系在单位力作用下的内力图,而单位力是加在 要求位移的截面上的;
—RK—基本体系支座k在单位力作用下的反力;
cK——k支座的实际位移。 公式(1-7)的前三项表示基本体系在荷载和多余未知力的作用下的位移,后
三项表示基本体系在温度变化和支座移动情况下引起的位移。
1 超静定结构内力计算
⑵ 有结点线位移的情况 计算这类结构时;原利用公式(1-11)考虑各结点的弯矩平衡外,还需考虑 相应杆端剪力的平衡。取适当的截面截出结构的一部分,通常是截断各柱的柱顶 端。取出横梁。考虑剪力平衡,建立剪力平衡方程,即
Qx 0
(1-12)
补充了剪力平衡方程后,方程式的数目仍然与未知数的数目相等,方程式总是 可以求解的。
1 超静定结构内力计算
§1.1.1力法的基本原理(续4)
由力法方程解出未知力X1、X2、…Xn后,超静定结构的内力可根据叠加原理 用下式计算:
M M1X1 M2X2 MnXn MP Q Q1 X 1 Q2 X 2 Qn X n QP N N1X1 N2 X 2 Nn X n NP
§1.2.4利用典型方程求解结构的位移和内力(续1)
同理附加链杆处的反力也为零,即
R2 R21 R22 R2P 0
或写成
r11Z1 r12Z2 R1P 0 r21Z1 r22Z2 R2P 0
对于有n个基本未知数的结构,位移法典型方程式为:
r11Z1 r12 Z2 r1n Zn R1P 0 r21Z1 r22 Z2 r2n Zn R2P 0
§1.2.1等截面直杆的转角位移方程式(续1)
AB杆产生位移后,杆端的总弯矩为
M AB
M
/ AB
M
结构力学二5-超静定结构的内力与位移计算

X1=1
X2=1
M2
P
X3=1
M3
MP
另一解法
P X1 X2 X3
M1
13 31 0
2 P 3 P 0
11 X 1 12 X 2 1P 0 21 X 1 22 X 2 23 X 3 0 X X 0 32 2 33 3
i 1X1+ i 2X2+
… …
+ 1iXi+
+ i iXi+
… …
+ 1nXn+△1P=0
+ i nXn+△iP=0
…………………………………………………………… n1X1+ n2X2+ … + niXi+ … + nnXn+△nP=0
这便是n次超静定结构的力法典型(正则)方程。式中 Xi为多余未知力, i i为主系数,i j(i≠j)为副系数, △iP 为常数项(又称自由项)。
4. 力法典型(正则)方程系数和自由项的计算
典型方程中的各项系数和自由项,均是基本结构在已知力 作用下的位移,可以用计算位移的方法计算。对于平面结构 ,这些位移的计算公式为
对不同结构选取不同项计算。系数和自由项求得后, 代入典型方程即可解出各多余未知力。
力法的计算步骤和示例 1. 示例 n=2(二次超静定) 选择基本结构如图示 C
3. 力法方程及系数的物理意义 (1)力法方程的物理意义为:基本结构在全部多余未知 力和荷载共同作用下,基本结构沿多余未知力方向上的位移 ,应与原结构相应的位移相等。 (2)系数及其物理意义:下标相同的系数 i i 称为主系数( 主位移),它是单位多余未知力 单独作用时所引起的沿 其自身方向上的位移,其值恒为正。 系数 i j(i≠j)称为副系数(副位移),它是单位多余未知力 单独作用时所引起的沿 Xi方向上的位移,其值可能为 正、为负或为零。据位移互等定理,有 i j= j i △i P称为常数项(自由项)它是荷载单独作用时所引起的沿Xi 方向的位移。其值可能为正、为负或为零。 上述方程的组成具有规律性,故称为力法典型方程。
自考结构力学 超静定结构的内力和位移

D11 d 11 X 1 d 11 X 1 D1P 0
D11 X 1 D1 p 0
一、力法基本思路 有多余约束是超静定与静定的根本区别,因此,解决 多余约束中的多余约束力是解超静定的关键。
力法的基本体系
D1=0 D11=1
D11 + D1P =0 d11x1+ D1P =0
作单位和荷载弯矩图
FP F Pa
求系数、建立力法方程并求解
X2 5 FP X1 4 FP 0 仅与刚 X1 6 4 96 11 度相对 X1 5X2 FP 3F 值有关 P 0 X2 4 6 16 88
4 FP X1 11 X 2 3 FP 88
基本方程的物理意义?
X1
X2
a
b
l
a
b
基本结构在支座位移和基本未知力共同作用下,在基本 未知力作用方向上产生的位移与原结构的位移完全相等。
d11 X 1 d12 X 2 D1c 0 d 21 X 1 d 22 X 2 D 2 c
h
X1 1
1
1 l
X2 1
注意
q
1、基本体系有多种选择;
X1
q
q
X1
EI
1
q q
D1 p
q
X1 X1
D1 p
)d
d 11 X 1
11
X1
X1
(a) 2、系数和自由项的计算 3、采用叠加法绘制内力图
(b)
(c)
基本原理举例
例1. 求解图示单跨梁 原结构
待解的未知问题
建筑力学第六章超静定结构内力计算资料

n1Χ1 n2 Χ 2 ni X i nn Χ n ΔnF 0从左上方
至右下方的一条主对角线上的系数δii称为主系数, 它表示Xi=1时,引起的基本结构上沿Xi方向上的位 移,它可利用 图M自1 乘求得,其值恒为正值;主对 角线两侧的系数δij(i≠j)称为副系数,它表示Xj =1时, 引起的基本结构上沿Xi方向上的位移,它可利用 图与 图M互i 乘求M得j。
Δ1=0
上式称为基本结构应满足 的原结构的位移条件,设 Δ1F[图(c)]和Δ11[图(d)]分别表示 荷载q与多余末知力X1单独作 用于基本结构上时,引起的B 点沿X1方向上的位移。由叠加 原理,有
Δ1 =Δ11 +Δ1F =0
(b)基本结构
X1
=
(c)
+
(d)
X1
由于X1是末知力,若以δ11表示X1=1单独作用 于基本结构时引起的B点沿X1方向上的位移,即 Δ11 = δ11·X1 ,则
6.3.1 位移法的基本概念
位移法是以结构的结点位移作为基本未知量, 由平衡条件建立位移法方程求解结点位移,利用 杆端位移和杆端内力之间的关系计算杆件和结构 的内力,从而把超静定结构的计算问题转化为单 跨超静定梁的计算问题。
为了说明位移法的基本概念,我们来研究图 (a)所示的等截面连续梁。
此梁在均布荷载作用下的变形情况如图虚线所 示。。 由于B点为刚性结点,所以,汇交于此点的各 杆在该端将发生相同的转角B 。
多余未知力X1求出后,将已求得的多余力X1与 荷载q共同作用在基本结构上, 就可以按求解静定结
构的方法,求出原结构的其余反力和内力,最后绘
出原结构的弯矩图,如图(c)所示。
超静定结构的最后弯矩图
超静定结构内力计算

超静定结构内力计算首先,需要明确的是,超静定结构与静定结构的计算方法基本相同,都是通过力平衡和力矩平衡方程来计算结构内力。
下面以一简支梁为例,介绍超静定结构内力计算的方法。
假设有一简支梁,梁长为L,受到均布载荷q,支座A、B处有横向支撑。
我们需要计算梁上任意一点x处的弯矩和剪力。
首先,对于简支梁,力平衡方程可得:∑Fx=0=>RA+RB=0(1)∑Fy=0=>VA+VB-qL=0(2)力矩平衡方程可得:∑Mz=0=>-qLx+VBx=0(3)(x为横坐标)由以上方程可以得到:RA=-RB=-qL/2,VA=-VB=qL/2接下来,我们可以使用能量方法计算结构内力。
能量方法是利用结构所受外界实际工作等于内力做的虚功,通过对外界做功和结构内工作的平衡,求解得到内力。
我们将简支梁分解为多个力学小段,每一小段的长度为Δx。
考虑梁上一小段AB,以A点为起点,Δx位置为B点。
对这一小段,外界对结构所做的虚功为:δWext = -VAdy (4) (dy为小段长度)其中,结构内力V由能量方法得到。
结构内力杆件AB的内工作为:dU = VAdy (5)因为外界做的虚功等于内工作,可得:-δWext = dU将式(4)和式(5)代入上式,得:VAdy = -VAdy对上式进行积分,得:∫VAdy = -∫VAdy∫VAdy = -(∫VAdy)由于简支梁内力为常数,所以可以将其从积分符号中移出,得:V∫Ady = -V∫Ady即:VAΔy=-VAΔy可以看出,对于简支梁而言,外界虚功和结构内工作的积分是相等的。
通过上述分析,我们可以发现,能量方法实际上是在计算外界对结构做的虚功,而虚功就是外界力对结构的作用力乘以作用距离的积分。
所以能量方法的基本思想是通过积分计算外界对结构的虚功,然后根据虚功等于内工作的原理,推导出结构的内力。
总结起来,超静定结构的内力计算方法主要是使用力平衡和力矩平衡方程,利用能量方法计算结构内力。
最新建筑力学第六章超静定结构内力计算

因为δ11和Δ1F均为已知力作于静定结构时,引起 的B点沿X1方向上的位移,所以由静定结构的位移计 算方法可以求得。因此解力法方程可求出多余未知
力X1。
为了具体计算位移δ11和Δ1F,可分别绘出基本 结构在荷载q和X1=1单独作用下的MF图和 M图1 [图(a, b)],然后用图乘法计算。
构的方法,求出原结构的其余反力和内力,最后绘
出原结构的弯矩图,如图(c)所示。
超静定结构的最后弯矩图
ql 2 8
ql 2
M,也可利用已经绘出的
M
图
1
和 MF 图 按 叠 加 原 理 绘 出 , A
8
B
即MM1X1MF。
M图 (c)
综上所述,力法是以多余未知力作为基本未知 量,以去掉多余约束后的静定结构作为基本结构, 根据基本结构在多余约束处与原结构完全相同的位 移条件建立力法方程,求解多余未知力,从而把超 静定结构的计算问题转化为静定结构的计算问题。
同理可用M 1 图乘MF图计算Δ1F
Δ 1F E 1 I1 3l1 2q2l4 3l8 qE 4lI
(a) MF 图
将δ11和Δ1F代入力法方程,可解得多余未知力
X1。
Χ1
1F 1 1
3ql 8
X1
(b)M1图
所得末知力X1为正号,表示反力X1的方向与所
设的方向相同。
多余未知力X1求出后,将已求得的多余力X1与 荷载q共同作用在基本结构上, 就可以按求解静定结
X2 、X3方向上的位移[图(f)]。
对于n次超静定结构,用力法分析时,去掉n
个多余约束,代之以n个多余未知力,当原结构在
用力法计算超静定结构在支座移动和温变化时的内力

l
M1 图
X1=1
得
l3 3EI
X 1 q l a
由此求得
X1
3EI l2
(q
a) l
弯矩叠加公式为:
M M1X1
3EI (q a )
l
l
M图
X1
q
A
C q
B a
l/2
l/2
l
q
q
X1 a
基本体系之一
q
q
D1c
FRA 1
l
M1 图
X1=1
(2)第二种解法
取支座A的反力偶作为多余未知力X1, 其力法方程为
计算支座移动引起n次超静定结构的内力时,力法程中 第 i个方程的一般形式可写为
n
ij X j Δic Ci
j 1
ij为柔度系数
Ci,表示原结构在Xi方向的实际位移
Dic,表示基本结构在支座移动作用下在Xi方向的位移
【例7-9】图示单跨超静定梁AB,已知EI为常数,左端支座转动角度为q ,
右端支座下沉位移为a,试求在梁中引起的自内力。
)
10
(
1 2
1
l
)
2.5
(1 l
l)
10
(
2 l
l)
100 22.5 77.5
代入典型方程,可得
77.5EI/l
A
B
X1
Δ1t
11
77.5EI
l
()
最后弯矩图M M1 X1 ,如图所示。
77.5EI/l 77.5EI/l
C
D
77.5EI/l
M图
由计算结果可知,在温度变化时,超静定结构的内力与反力与各 杆件刚度的绝对值成正比。因此,加大截面尺寸并不是改善自内 力状态的有效途径。另外,对于钢筋混凝土梁,要特别注意因降 温可能出现裂缝的情况(对超静定梁而言,其低温一侧受拉而高 温一侧受压)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M1
B
B
X1
B 1C
B 11
X1
B
X1 1
方法二:
4.求X1:
X1
1C δ11
l θ l3 3EI
3EIθ l2
δ11 X1 1C 0
δ11
l3 3EI
1C l θ
即:
X1
3iθ l
线刚度:i
EI l
5.按静定结构分析方法求作内力图:
θ
A
EI
B
l
X1 方法一
A
B
3iθ
M图(kN m)
B
3iθ M图 (kN m)
基本结构为 悬臂梁时的 解法…
θ
A
B
X1
方法二: 解: 1.选基本结构:
2.列力法基本方程:
θ
A
EI
l
不够准确 θ A
δ1111XX11 11PC0 0
物理意义!
3.求11和Δ1C:
δ11
1 EI
(12ll32li l θ
θ
A
A
A
l
第六章 用力法计算超静定结构
6.5 超静定结构在支座移动时的计算
建筑工程系
6.5 超静定结构在支座移动时的计算
已知结构A端发生转角q,作M图。
θ
A
EI
B
解: 方法一:
l
1.选基本结构: X1
A
B
2.列力法基本方程: 11X1 1P 0
δ11 X1 θ
物理意义!
6.5 超静定结构在支座移动时的计算
X1 3iθ
方法二
θ
A
B
3iθ
X1
M图(kN m)
3iθ X1 l
重温点馨提小示 结
1. 力法方程右端项可以不为零;
δ11 X1 θ
2.选择基本结构时,宜撤去有支座移动的约束。
已知结构A端发生转角q,求作M图:
3.求11:
X11
δ11
11 2
l
EI (21l31) 3EI
4.求X1:
3EIθ X1 l
令
i
EI l
X1 3iθ
A
B
1
M1
i——杆件的线刚度 (单位杆长的抗弯刚度)
6.5 超静定结构在支座移动时的计算
X1 3iθ
5.按静定结构分析方法求作内力图:
A θ EI