任务二十七单跨超静定梁的内力计算及内力图绘制
快速准确绘制单跨静定梁内力图

快速准确绘制单跨静定梁内力图摘要:单跨静定梁的内力图是弯曲杆件强度、刚度计算及做超静定结构内力图的基础。
本文作者从四方面阐述,提出快速准确绘制单跨静定梁内力图的方法。
关键词:内力图;校核;截面内力;图线类型;叠加法一、引言弯曲变形是工程中常见的一种基本变形,以弯曲变形为主要变形的杆件称为梁。
例如房屋建筑中,梁受到楼面荷载和梁自重的作用,将发生弯曲变形;其它如阳台挑梁、梁式桥的主梁等,都是以弯曲变形为主的构件。
在对梁进行强度和刚度计算时,通常要先画出剪力图和弯矩图,以便清楚地看出梁的各个截面上剪力和弯矩的大小、正负以及最值所在截面的位置。
而单跨静定梁的内力图是弯曲杆件强度、刚度计算及做超静定结构内力图的基础,如果这一部分没有学好,弯曲杆件的强度、刚度就无从计算,超静定结构的内力图也就很难做出。
在多年的教学实践中,根据学生信息反馈,本人探索、研究、试行,提出快速准确绘制单跨静定梁内力图的方法以供学生和同行商榷。
二、支座反力计算一定要校核能否正确画出单跨静定梁的内力图,支座反力的对错是关键。
怎样求支座反力是静力学的主要内容,这里不再赘述。
总的来说,支座反力由静力平衡方程解出,求解过程中,在正确的受力图上,列出独立并包含最少未知量的方程,尽量避免解方程组,求出支座反力后一定要用同解方程校核。
例如图1所示简支梁:反力计算正确。
在这个例子中,大多数学生在第二步计算RB 时就用方程,即RB=10+10×2-RA,如果RA 算错了,则RB 肯定也会跟着出错,所以在教学中建议学生尽量用力矩方程求支座反力,用投影方程校核,保证计算正确。
三、熟练掌握截面法求指定截面内力要做出结构的内力图,还必须能正确计算出控制截面的内力。
所谓控制截面指的是:杆端截面、集中力、集中力偶作用面、分布荷载集度变化处。
用截面法求这些截面的内力是做内力图的基础。
这一部分比较容易掌握,许多教材介绍的也比较少,但大部分学生在做内力图时又算不出特定截面的内力,因此,这一部分应投入比较多的精力。
《建筑力学与结构》课件——第十章 超静定结构的内力计算

力法计算超静定结构
(2) 建立力法方程
11X 1 12X 2 1F 0 21X 1 22X 2 2F 0
建筑力学与结构
(3) 计算系数和自由项
δ11 4a3 / 3EI
1F 5qa4 / 8EI
2024/11/13
δ22 a3 / 3EI δ12 δ21 a3 / 2EI 2F qa4 / 4EI
M AB
M1X1
MF
l 3 ql 8
1 ql 2 2
1 ql 2 8
取多余未知力作为基本未知量,通过基本结构,利用
计算静定结构的位移,达到求解超静定结构的方法,称为力
法。
2024/11/13
13
力法计算超静定结构
2.力法的典型方程
建筑力学与结构
1 11 X1 12 X 2 1F 0 2 21 X1 22 X 2 2F 0
2024/11/13
14
力法计算超静定结构
建筑力学与结构 n次超静定结构
δ11 X 1 δ12 X 2 δ1i X i δ1n X n 1F 0 δ21 X1 δ22 X 2 δ2i X i δ2n X n 2F 0
…………………………………………..……
δn1 X1 δn2 X 2 δni X i δnn X n nF 0
2024/11/13
7超静定次数的确定来自建筑力学与结构 3.去掉一个固定支座或切断一根梁式杆,相当于去掉三个约束,用 三个约束反力代替该约束作用。
2024/11/13
8
超静定次数的确定
建筑力学与结构 4.将一刚结点改为单铰联结或将一个固定支座改为固定铰支座,相 当于去掉一个约束,用一个约束反力代替该约束作用。
各杆的杆端弯矩表达式
任务二十七单跨超静定梁的内力计算及内力图绘制

… nn X n nP 0 n n1 X 1 n2 X 2 … n3 X 3 根据位移互等定理可知副系数
五、 力法典型方程
该方程称为力法的典型方程 按前面求静定结构位移的方法求得典型方程中的系数和自由 项后,即可解得多余力Xi。
然后可按照静定结构的分析方法求得原结构的全部反力和内力。 …
M 3是反对称图形。
由图形相乘可知:
13 31
23 32
M 1 M 3 ds 0 EI
M 2 M 3 ds 0 EI
七、对称性的利用
故力法典型方程简化为
11 x1 12 x2 1P 0 21 x1 22 x2 2 P 0
图的相应纵标叠加,即可绘出
静定结构无异。它可用来分析任何类型的超静定结构。
四、 超静定次数的确定与基本结构
超静定次数(degree of static indeterminacy ):多余联系的 数目或多余力的数目 确定超静定次数最直接的方法就是在原结构上去掉多余联系, 直至超静定结构变成静定结构,所去掉的多余联系的数目,就是原 结构的超静定次数。
结构力学基本知识
超静定结构的内力计算
项目十
任务二十七 单跨超静定梁的内力计算及内力图绘制
教学内容 一、超静定结构的概念 二、力法的基本原理 三、力法的基本方程 四、超静定次数的确定与基本结构 五、 力法典型方程 六、力法的计算步骤和举例 七、对称性的利用
一、超静定结构的概念
静定结构 (statically determinate structure) 支座反力和各截面的内力都可以用静力平衡条件唯一确定,是没 有多余联系的几何不变体系。 超静定结构 (statically indeterminate structure )
本章主要介绍了单跨静定梁和多跨静定梁的内力分析计算1

图10
图11
图12
3.3.2
多跨静定梁的内力计算
由层次图可见,作用于基本部分上的荷载,并不 影响附属部分,而作用于附属部分上的荷载,会以支 座反力的形式影响基本部分,因此在多跨静定梁的内 力计算时,应先计算高层次的附属部分,后计算低层 次的附属部分,然后将附属部分的支座反力反向作用 于基本部分,计算其内力,最后将各单跨梁的内力图 联成一体,即为多跨静定梁的内力图。
例6 试作出如图13(a)所示的四跨静定梁的弯矩图和剪 力图。
解:(1) 绘制层次图,如图13(b)所示。
(2) 计算支座反力,先从高层次的附属部分开 始,逐层向下计算:
① EF段:由静力平衡条件得
∑ME=0: ∑Y=0: YF×4-10×2=0 YF=5kN YE=20+10-YF=25kN
解:(1)求支座反力 先假设反力方向如图所示,以 整梁为研究对象: ∑X=0: XA-P=0 XA=P=4kN ∑MB=0: YA*l-q*l*0.5*l=0 YA=0.5ql =0.5×3×4kN=6kN ∑Y=0: YA+YB=ql YB=ql-VA =(3×4-6) kN=6kN
即:
q′l′=ql q=q′l′/l=q′/cosα
下面以承受沿水平向分布的均布荷载的斜梁为例进 行内力分析,如图(b)所示。 根据平衡条件,可以求出支座反力为: XA=0, YA=YB=1/2ql
则距A支座距离为x的截面上的内力可由取隔离体求出。 如图(c)所示,荷载qx、YA,在梁轴方向(t方向)的分 力分别为qxsinα、YAsinα;在梁法线方向(n方向) 的分力分别为:qxcosα、YAcosα。则由平衡条件得: ∑T=0: YAsinα-qxsinα+NX=0 NX=(qx-1/2ql)sinα ∑N=0: YAcosα-qxcosα-QX=0 QX=(1/2ql-qx)cosα ∑MX=0: YAx-qx· x/2-MX=0 MX=1/2qx(1-x)
超静定结构自内力的计算

A
B
l
以上两过程的叠加
B
MBA
A
1 3i
M
AB
1 6i
M BA
l
A B
我们的任务是要由杆端位移求 杆端力,变换上面的式子可得:
B
1 6i
M AB
1 3i
M BA
l
M M
AB BA
4i A 2i A
2i B 4i B
6i 6i
l l
(1)
QAB
QBA
6i l
A
6i l
B
12i l2
θB
X2
Δ
X1=1
1
M1
1/l
1
M2
X2=1 1/l
X1
4i
A
2i B
6i l
X2
2i
A
4i B
6i l
可以将上式写成矩阵形式
M AB
4i
M
BA
2i
2i 4i
6i
l 6i
l
A B
QAB
6i l
6i l
12i l 2
1
4
2
3
几种不同远端支座的刚度方程
1
1
X2 1
0
0
X3 1
0 2C a
3C
0
支座移动时,结构中的位移以及 位移条件的校核公式如下:
i
Mi Mds EI
iC
Mi Mds EI
Ri ci
制造误差引起的内力计算: AB杆造长了1cm,如何作弯矩图?
A
10m 10m
X3 X1 X2
五.温度变化时超静定结构的计算
土木工程力学(本)综合练习2

说明:为了帮助大家复习,这份辅导材料一共有两部分内容。
第一部分为课程的考核说明,大家看完以后能明确考试重点和要求。
第二部分为综合练习和答案,供大家复习自测用。
土木工程力学(本)课程考核说明一、课程的性质土木工程力学(本)是中央广播电视大学土木工程专业的一门必修课,课程为5学分,开设一学期。
通过本课程的学习,使学生了解各类杆件结构的受力性能,掌握分析计算杆件结构的基本概念、基本原理和基本方法,为后续有关专业课程的学习及进行结构设计打下坚实的力学基础。
二、关于课程考核的有关说明1.考核对象中央广播电视大学土木工程(专科起点本科)专业的学生。
2.考核方式本课程采用形成性考核与终结性考试相结合的方式。
总成绩为100分,及格为60分。
形成性考核占总成绩的30%;终结性考试占总成绩的70%。
形成性考核由中央电大统一组织编写形成性考核册。
形成性考核册由4次形成性考核作业组成。
学员应按照教学进度及时完成各次计分作业。
每次形成性考核作业满分为100分,由教师按照学员完成作业的情况评定成绩,并按4次作业的平均成绩计算学员的形成性考核成绩。
学员形成性考核完成情况由中央电大和省电大分阶段检查。
终结性考试为半开卷笔试,由中央电大统一命题,统一组织考试。
3.命题依据本考核说明是依据2007年7月审定的土木工程力学(本)课程教学大纲编写的。
本课程所采用的文字教材为贾影主编,中央广播电视大学出版社出版的《土木工程力学(本)》教材。
本考核说明及本课程所采用的文字教材是课程命题的依据。
4.考试要求本课程考试重点是考核学员对结构分析的基本概念,基本理论和基本方法的掌握情况。
本考核说明对各章都规定了考核要求,按了解、理解和掌握三个层次说明学员应达到的考核标准。
了解是最低层次的要求,凡是属于了解的部分内容,要求对它们的概念、理论及计算方法有基本的认识。
理解是较高层次的要求,凡是属于理解的部分内容,要求在理解的基础上,能运用这一部分知识对结构的受力和变形有一正确的分析和判断。
单跨静定梁的内力计算

单跨静定梁的内力计算单跨静定梁的内力计算是结构工程中重要的计算内容之一。
静定梁是指在受力状态下,其内力可以通过静力学原理直接计算得出的梁结构。
而单跨静定梁是指只有一个支座的静定梁,是静力学中最简单的结构之一。
在计算单跨静定梁的内力时,首先需要明确梁的受力情况。
在单跨静定梁中,通常会受到集中力、均布载荷或者集中力和均布载荷的组合作用。
根据力的平衡条件和梁的几何特性,可以计算出梁的内力,包括弯矩和剪力。
在计算单跨静定梁的内力时,可以采用梁的截面法。
根据力的平衡条件,可以先计算出支座的水平力和垂直力,然后通过力和力矩的平衡条件计算出梁的内力。
在计算弯矩和剪力时,需要根据梁的几何形状和受力情况,采用力的平衡和力矩平衡的原理进行计算。
在计算单跨静定梁的内力时,需要注意以下几点:1. 确定梁的受力情况:包括集中力、均布载荷的大小和作用位置等。
2. 绘制梁的受力图:根据受力情况,绘制出梁的受力图,明确受力的方向和大小。
3. 采用力的平衡和力矩平衡的原理计算内力:根据力的平衡和力矩平衡的原理,计算出梁的内力,包括弯矩和剪力。
4. 考虑梁的内力图:根据计算出的内力,绘制出梁的内力图,明确各处的内力分布情况。
通过以上步骤,可以准确计算出单跨静定梁的内力,为梁的设计和施工提供重要的参考依据。
在实际工程中,计算出的内力可以用来确定梁的截面尺寸和材料的选择,确保梁的受力性能符合设计要求,保证梁的安全性和稳定性。
同时,计算出的内力也可以用来指导梁的施工和监测,确保梁的受力状态符合设计要求,提高梁的使用性能和寿命。
总的来说,单跨静定梁的内力计算是结构工程中的基础计算内容,通过合理的计算方法和步骤,可以准确计算出梁的内力,为梁的设计和施工提供重要的参考依据,确保梁的受力性能符合设计要求,提高梁的使用性能和寿命。
希望以上内容能够对您的工作和学习有所帮助。
简捷法绘制单跨静定梁的内力图分析.pdf

简捷法绘制单跨静定梁的内力图分析摘要:正确计算截面内力,快速绘制静定梁内力图十分重要,阐述了用简捷法作单跨静定梁的内力图的基本条件,并举例说明了内力图在集中力、集中力偶处的特点和规律,还强调了弯矩图中抛物线的开口方向以及控制截面的选择方法。
关键词:简捷法;剪力;剪力图;弯矩;弯矩图 梁的内力图绘制的目的是用图示方法形象地表示出剪力Q、弯矩M 沿梁长变化的情况,绘制梁的内力图是材料力学教材中的一个重点和难点内容,熟练、正确地绘制内力图是材料力学的一项基本功,也是后续课程结构力学的基础。
绘制梁内力图的方法有静力法、简捷法和叠加法,其中简捷法是利用剪力、弯矩和荷载集度之间的微分关系作图的一种简便方法,通常是用来确定梁的危险截面作为强度计算的依据,因此熟练掌握简捷法作梁的内力图是十分必要的。
1 简捷法绘制单跨静定梁的内力图的基本要求 (1)能快速准确地计算单跨梁的支座反力(悬臂梁除外) 支座反力的正确与否直接影响内力的计算,因此在静力学的学习过程中要打好基础。
(2)能用简便方法求解指定截面的内力 1.1 求剪力的简便方法 某截面的剪力等于该截面一侧所有外力在截面上投影的代数和,即Q= Y 左侧外力 (或) Y 右侧外力 代数和中的符号为截面左侧向上的外力(或右侧向下的外力)使截面产生正的剪力,反之产生负剪力。
(即外力左上右下为正) 1.2 求弯矩的简便方法 某截面的弯矩等于该截面一侧所有外力对截面形心力矩的代数和,即M= M c 左侧外力 (或 M c 右侧外力 ) 代数和中的符号为截面的左边绕截面顺时针转的力矩或力偶矩(或右边绕截面逆时针转的力矩或力偶矩)使截面产生正的弯矩,反之产生负弯矩。
(即外力矩或力偶矩左顺右逆为正) 1.3 举例说明:求图1 中1-1 截面的剪力和弯矩 解:取左侧为研究对象,根据简便方法有: Q 1=25-5×4=5k N M 1=25×2-5×4×2=10kN•m 验证:取右侧为研究对象,根据简便方法有: Q=15-10=5kN M 1=10×4-15×2=10kN•m 1.4 能将梁正确分段,根据各段梁上的荷载情况,判断剪力图和弯矩图的形状,寻找控制面,算出各控制面的Q 和M 弯矩、剪力与荷载集度之间的微分关系如下: dM(x)dx=Q(x) dQ(x)dx=q(x) d 2M(x)dx 2=q(x) 利用弯矩、剪力与荷载集度之间的微分关系及其几何意义,可总结出下列一些规律,用来校核或绘制梁的剪力图和弯矩图,其规律如下表所示: 注意:根据函数图线的几何意义,当q>0(向上)时,弯矩图为开口向下的二次抛物线;反之q<0(向下)一时,弯矩图为开口向上的二次抛物线,即抛物线的凹性和凸性和均布荷载的方向保持一致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此可解出多余力X1
X1
1P
11
ql 4 8 EI
l3 3EI
3ql 8
三、 力法的基本方程
多余力X1 求出后,其余所有反力和内力都可用静力平衡条件确定。超 静定结构的最后弯矩图M,可利用已经绘出的 M 1 和 M 图按叠加原理绘出, P 即
四、 超静定次数的确定与基本结构
从超静定结构上去掉多余联系的方式有以下几种:
1. 去掉支座处的支杆或切断一根链杆,相当下去掉一个联系,
如图 (a) (b) 所示;
四、 超静定次数的确定与基本结构
2. 撤去一个铰支座或撤去一个单铰,相当于去掉二个联系,如 图 (c) (d) 所示;
四、 超静定次数的确定与基本结构
用来确定X1的条件是:基本结构在原有荷载和多余力共同
作用下,在去掉多余联系处的位移应与原结构中相应的位移相 等。 为了唯一确定超静定结构的反力和内力,必须同时考虑静 力平衡条件和变形协调条件
1 11 1P 0
三、 力法的基本方程
若以 11表示X1为单位力(即 成
用点沿X1方向产生的位移,则有 11=
M M 1 X1 M P
X1 M 以 M 倍,再与 P
图如图 (c)所示。 综上所述可知,力法是以多余力作为基本未知量,取去掉多 余联系后的静定结构为基本结构,并根据去掉多余联系处的已知 位移条件建立基本方程,将多余力首先求出,而以后的计算即与 应用上式绘制弯矩图时,可将 M 1 图的纵标乘
X 1=1)时,基本结构在X1作
11X1,于是上式可写
11 X 1 1P 0
X1 - 1P
11
式(a)就是根据原结构的变形条件建立的用以确定X1的变 形协调方程,即为力法基本方程。
三、 力法的基本方程
为了具体计算位移 δ11和△
1p,分别绘出基本结构的单
位弯矩图M1和荷载弯矩图Mp(由荷载q产生),分别如图 (a)、 (b) 所示 :
支座反力和各截面的内力不能完全由静力平衡条件唯一确定,是有
多余联系的几何不变体系。
一、超静定结构的概念
静定刚架
超静定刚架
有多余联系是超静定结构区别于静定结构的基本特性
二、力法的基本原理
1. 力法(force method)的基本结构
去掉多余联系用多余未知力来代替后得到的静定结构 称为按力法计算的基本结构。
二、
力法的基本原理
现在要设法解出基本结构的多余力X1,一旦求得多余
力X1,就可在基本结构上用静力平衡条件求出原结构的所 有反力和内力。因此多余力是最基本的未知力,又可称为
力法的基本未知量。但是这个基本未知量X1不能用静力平
衡条件求出,而必须根据基本结构的受力和变形与原结构 相同的原则来确定。
三、 力法的基本方程
模块三结构力学Leabharlann 本知识超静定结构的内力计算
项目十
任务二十七 单跨超静定梁的内力计算及内力图绘制
教学重点 超静定结构的概念、力法的基本原理、力法的基本方程、超静定 次数的确定与基本结构、力法典型方程、力法的计算步骤
教学难点 力法的基本方程、超静定次数的确定与基本结构、力法典型 方程、力法的计算
模块三
3. 切断一根梁式杆或去掉一个固定支座,相当于去掉
三个联系,如图 (e) 所示;
四、 超静定次数的确定与基本结构
4. 将一刚结点改为单铰联结成或将一个固定支座改为固定铰支 座,相当于去掉一个联系,如图 (f) 所示。
对于同一个超静定结构,可用各种不同的方式去掉多余联 系而得到不同的静定结构。因此在力法计算中,同一结构的基 本结构可有各种不同的形式。但应注意,去掉多余联系后基本 结构必须是几何不变的。为了保证基本结构的几何不变性,结 构中的某些联系是不能去掉的。
四、 超静定次数的确定与基本结构
图 (a)所示超静定结构属内部超静定结构,因此,只能在结 构内部去掉多余联系得基本结构,如 (b)所示。
四、 超静定次数的确定与基本结构
对于具有多个框格的结构,按框格的数目来确定超静定的次数 是较方便的。一个封闭的无铰框格,其超静定次数等于3,故当一个 结构有n个封闭无铰框格时,其超静定次数等于3n。如图 (a)所示结 构的超静定次数等于3x8=24。当结构的某些结点为铰接时,则一个 单铰减少一个超静定次数。图 (b)所示结构的超静定次数等于 3x8-5=19。
四、 超静定次数的确定与基本结构
如图 (a)所示刚架,具有一个多余联系。若将横梁某处改为铰 接,即相当于去掉一个联系得到图 (b)所示静定结构;当去掉 B支
座的水平链杆则得到图 (c)所示静定结构,它们都可作为基本结构。
但是,若去掉 A支座的竖向链杆或 B支座的竖向链杆,即成瞬变体 系[图 (d)]所示,显然是不允许的,当然也就不能作为基本结构。
M
三、 力法的基本方程
用图乘法计算这些位移
11
1P
M1M1 1 l 2 2l l3 dx EI EI 2 3 3EI
M 1M P 1 1 ql 2 3l ql 4 dx l EI EI 3 2 4 8EI
结构力学基本知识
超静定结构的内力计算
项目十
任务二十七 单跨超静定梁的内力计算及内力图绘制
教学内容 一、超静定结构的概念 二、力法的基本原理 三、力法的基本方程 四、超静定次数的确定与基本结构 五、 力法典型方程 六、力法的计算步骤和举例 七、对称性的利用
一、超静定结构的概念
静定结构 (statically determinate structure) 支座反力和各截面的内力都可以用静力平衡条件唯一确定,是没 有多余联系的几何不变体系。 超静定结构 (statically indeterminate structure )
图的相应纵标叠加,即可绘出
静定结构无异。它可用来分析任何类型的超静定结构。
四、 超静定次数的确定与基本结构
超静定次数(degree of static indeterminacy ):多余联系的 数目或多余力的数目 确定超静定次数最直接的方法就是在原结构上去掉多余联系, 直至超静定结构变成静定结构,所去掉的多余联系的数目,就是原 结构的超静定次数。