第十五章结构力学(十四)

合集下载

下篇 结构力学部分 第15章 三铰拱

下篇 结构力学部分 第15章 三铰拱

-0.600 -0.707
0.800 0.707
-25 -25
50 0
-52.5 0
2.5 0
-20 -17.7
18 21.2
-2 3.5
返回
第三节 三铰拱压力线及合理拱轴线
上一页 下一页
返回
一、压力线及合理拱轴线的概念
1. 压力线的概念 由静力学可知,三铰拱任意截面上的三个内力分量 MK、FSK、FNK可以合成为一个合力FRK。因为拱截面上 的轴力通常为压力,所以合力FRK称为该截面的总压力。 三铰拱各截面总压力作用点的连线,称为三铰拱的压力 三铰拱的压力 线。
(b)
FAx FAy
A
B
FBx FBy
5 (c) 7.5 10 7.5 10 9 2.5 _ 2.5 5 46 (e) 9 39 33.5 30.3 30 + 30.3 29 + _
5 Mͼ(kN m)
(d)
3.6 2 +
3.5 + 2
FSͼ(kN)
38 39 38.9 FNͼ(kN)
图15-7
24.8 15 6.7 1.2 0 1.2 2.25
21.2 24 26.8 29.1 30 29.1
6
3.00
-0.50
-0.447
0.894 -25
100
-90
10 -22.3
26.8 -9 11.2 15 17.7 24 21.2 38 39 38.9
上一页 下一页
7 8
1.75 0
-0.75 -1
40kN
(b)
FAx FAy
A
B
FBx FBy
5 (c) 7.5 10 7.5 10 9 2.5 _ 2.5 5 46 (e) 9 39 33.5 30.3 30 + 30.3 29 + _

结构力学-第十四章 结构动力学1

结构力学-第十四章 结构动力学1

动的合成,为了便于研究合成运动,
令 (e)式改写成
y Asin,
v Acos
y(t) Asin( t )......... .......... ...( f )
它表示合成运动仍是一个简谐运动。其中A和可由下式确定
振幅
A
y2
v
2
.............................(g
由初始条件确定C1和C2;

y(0)
y(0)
y v
得 C1 y
C2
v
y r
y(t)
e t
( y
cos r t
v
r
y
sin rt)
21
y(t)
e t
(
y
cos r t
v
r
y
sin
rt
)
y(t) et Asin( rt )
2
其中
A
y2
v
y r
tg1 r y
v y
y
讨论(:a)衰减周期运动
m获得初位移y
m获得初速度 y
研究单自由度体系的自由振动重要性在于: 1、它代表了许多实际工程问题,如水塔、单层厂房等。 2、它是分析多自由度体系的基础,包含了许多基本概念。 自由振动反映了体系的固有动力特性。
要解决的问题包括:
建立运动方程、计算自振频率、周期和阻尼………. 9
一、运动微分方程的建立
(1)低阻尼情形 ( <1 )
1,2 i 1 2 , 令 r 1 2
y(t)
B e( ir )t 1
B e( ir )t 2
eix cos x i sin x
et (B1eirt B2eirt ) eix cos x i sin x

结构力学——第15章悬索结构在集中荷载及分布荷载作用下的计算

结构力学——第15章悬索结构在集中荷载及分布荷载作用下的计算

由几何关系得
2 ds0 dx 2 dy0 1 (
dy0 2 ) dx dx
§15-4 悬索的变形协调方程及初态终态问题求解
ds (dx du) 2 dy 2 (1 du 2 dy 2 ) ( ) dx dx dx du dy 2 ( ) dx dx dx
du 略去微小量 ( ) 2 dx
d2M q( x) 0 —梁的平衡微分方程 2 dx
若两者有相同的边界条件,Байду номын сангаас建立关系式 可得
y ( x) M ( x) (g) FH
FH y( x) M ( x)
对于两端支座位于同一水平线的悬索,其两端边界条 件与相应简支梁弯矩图相同。
§15-3 分布荷载作用下的单根悬索计算
如图a、b
位移与外荷载的关系是非线性的;
按变形后的几何形状和尺寸建立平衡方程。
§15-2 集中荷载作用下的单根悬索计算
悬索AB在竖向集中荷载作用的计算简图如图a所示。
图b为相应简支梁。 将索端张力沿竖向和 弦AB方向分解可得:
0 0 V FA FA V FBV FBV 0 MC FR h
§15-3 分布荷载作用下的单根悬索计算
任意分布荷载作用下悬索曲线的形状与相应简支梁弯矩 图的形状完全相同。
两端等高的悬索曲线:由式(g)直接计算。
M ( x) c 两端支座高差为c的悬索曲线:计算式为 y ( x) F l x (h) H
式(h)的第二项为悬索支座连线AB的竖标,第一项为以 弦AB为基线的悬索曲线竖标y1(x),即 M ( x)
d2 y FH 2 q ( x) 0 (c) dx
单根悬索基本平衡微分方程

结构力学ppt课件

结构力学ppt课件
结构力学ppt课件
目录
• 结构力学简介 • 结构力学的基本原理 • 结构分析的方法 • 结构力学的应用 • 结构力学的挑战与未来发展 • 结构力学案例分析
01
结构力学简介
什么是结构力学
01
结构力学是研究工程结构在各种外力作用下产生的响
应的一门学科。
02
它主要涉及结构的强度、刚度和稳定性等方面的分析
04
有限元法
有限元法是一种将结构分解为有限个小 的单元,并对每个单元进行力学分析的 方法。
有限元法具有适用范围广、精度较高等 优点,但也存在计算量大、需要较强的 计算机能力等缺点。
通过对所有单元的力学行为进行组合, 可以得到结构的整体力学行为。
它适用于对复杂结构进行分析,例如板 壳结构、三维实体等。
结构力学的历史与发展
结构力学起源于19世纪中叶,随着土木工程和机械工程的发展而逐渐形成。
早期的结构力学主。
目前,结构力学已经广泛应用于各个工程领域,包括建筑、桥梁、机械、航空航天等。同时,结构力学 的研究也在不断深入和发展,以适应各种复杂工程结构的需要。
案例一:桥梁的力学分析
总结词
桥梁结构是力学分析的重要案例,涉及到多种力学因素,包括静载、动载、应 力、应变等。
详细描述
桥梁的力学分析需要考虑多种因素,包括桥梁的跨度、桥墩的支撑方式、桥梁 的材料性质等。在分析过程中,需要建立力学模型,进行静载和动载测试,并 运用结构力学的基本原理进行优化设计。
案例二:航空发动机的力学设计
强度理论
01
强度理论是研究结构在外力作用下达到破坏时的强度条件的科学。
02
强度理论的基本方程包括最大正应力理论、最大剪切应力理论、形状改变比能 理论和最大拉应力理论,用于描述结构在不同外力作用下达到破坏时的条件。

结构力学PPT 第15章(2)

结构力学PPT    第15章(2)


两自由度体系自由振动微分方程
15.4.2 频率方程和自振频率
(1)用柔度系数表示频率方程和自振频率 柔度法表示的两自由度自由振动微分方程为:
1 (t ) 11 m2 2 (t ) 12 y1 (t ) m1 y y
1 (t ) 21 m2 2 (t ) 22 y2 (t ) m1 y y
临沂大学建筑学院临沂大学建筑学院结构力学学科组结构力学学科组结构力学154154两个自由度体系的自由振动两个自由度体系的自由振动1541两个自由度体系自由振动微分方程的建立在自由振动过程中任意时刻t质量m当等于体系在当时惯性力作用下的静力位移
结构力学
<Ⅱ>
临沂大学建筑学院 结构力学学科组
第十五章
§15.4 两个自由度体系的自由振动
1 (t ) 21 m2 2 (t ) 22 y2 (t ) m1 y y

2 1 1
21
1
2 22 1
11
12
(2)刚度法
m2 m1
y2(t)
2 m2 y 1 m1 y
m2 m1
K2 K1
y2(t)
K2
k21
1
k22 k12
y1(t)
y1(t)
2 2 Y ( m Y ) ( m Y ) 12 化简得 1 1 1 11 2 2 2 2 Y ( m Y ) ( m Y ) 22 1 1 21 2 2 2 Y1、Y2 是体系按相同频率振动时,由惯性力幅值产生的静位移。 m2 Y2 2 mY 2 2 上式说明:主振型的位移幅值等于主振型惯 m1 Y1 2 性力幅值作用下产生的静力位移。 mY 1 1

结构力学第十五章 结构的塑性分析与极限荷载.ppt

结构力学第十五章 结构的塑性分析与极限荷载.ppt

坏形态才可能实现。
A l/3
B
Mu
B

l/3
FPu
DC Mu
D
l/3
FPu MuB MuD
B

3 l
FPu

M
u
(
3 l

6 l
)
Mu 3Mu
Mu
A
B
FPu

9 l
Mu
(Mu 3Mu )
D

6 l
FPu
D
C
Mu
20
2) A、D截面出现塑性铰。由弯矩图可知,只
解:
为Mu。
塑性铰位置:A截面及跨 A
中最大弯矩截面C。
q
B l
整体平衡 M A 0
FRB

1(1 l2
qul 2

Mu )
qu
A
Mu A
l-x
Mu C C x
B
FRB
FRB

1 2
qul

Mu l
qu
BC段平衡
Fy 0 FQC FRB qu x 0
C
FQC Mux
4
1)残余应变
当应力达到屈服应力σs后,从C点卸载至D
点,即应力减小为零。此时,应变并不等于
零,而为εP。由下图可以看出, ε= εs+ εP, εP是应变的塑性部分,称为残余应变。

s A
CB
o
ε
D
sεεP
ε
s
ε
理想弹塑性模型
5
2)应力与应变关系不唯一
当应力达到屈服应力σs后,应力σ与应变ε之 间不再存在一一对应关系,即对于同一应力,

结构力学(完整资料).doc

结构力学(完整资料).doc

【最新整理,下载后即可编辑】§13-4 连续梁的整体刚度矩阵即传统位移法:根据每个结点位移对附加约束上的约束力{F}的贡献大小进行叠加而计算所得。

一、单元集成法的力学模型和基本概念1.首先只考虑于是其中由前面的单元刚度矩阵所得,则进一步得到所以最终得到2.则这是最后总结如下的形式来作最终的计算§13-5 刚架的整体刚度矩阵思路要点:(1)设各单元已形成了整体坐标系下的单元刚度矩阵;与连续梁相比: (1)各单元考虑轴向变形;(2)每个刚结点有三个位移; (3)要采用整体坐标;(4)要处理非刚结点的特殊情况。

一、结点位移分量的统一编码——总码整体结构的结点位移向量为:相应地结点力向量为:规定:对于已知为零的结点位移分量,其总码均编为零。

其中每个单元的刚度为以下其中定位向量为:最终进行叠加求得整体刚度矩阵代入数字得定位向量:§13-6 等效结点荷载结构体系刚度方程:{F}= [K]{∆} (1)表示结点位移{∆}和结点力{F}之间的关系,反映了结构的刚度性质,而不涉及原结构上作用的实际荷载,并不是原结构的位移法基本方程。

一、位移法基本方程} ={0} (2)[K]{∆} +{FP用图来表达以上思想:二、 等效结点荷载的概念显然 {P }= –{F P }………解决了计算等效结点荷载的问题 等效原则是两种荷载在基本体系中产生相同的结点约束力 三、按单元集成法求整体结构的等效结点荷载{P } (1)局部坐标单元的等效结点荷载(2)整体坐标单元的等效结点荷载(3) 结构的等效结点荷载{P }{}[]{}P T P T=依次将每个单元等效结点荷载中的元素按照单元定位向量在结构的等效结点荷载中定位叠加。

§13-7 计算步骤和算例1 确定整体和局部坐标系、单元和结点位移编码2 形成刚度矩阵(1)形成局部坐标系下的单元刚度矩阵(2)形成整体坐标系下的单元刚度矩阵(3)“换码重排座”,形成整体结构的刚度矩阵3 形成等效结点荷载(1)形成局部坐标系下的单元固端力(2)形成整体坐标系下的单元等效结点荷载(3) “换码重排座”,形成整体结构的等效结点荷载4 解整体刚度方程,求结点位移5 求各单元的杆端内力(1)整体坐标系下的单元杆端位移(2)局部坐标系下的单元杆端位移(3)局部坐标系下的单元杆端内力§13-8 忽略轴向变形时矩形刚架的整体分析14 超静定结构总论§14-1 超静定结构解法的分类和比较超静定结构计算方法分类各种结构型式所选用的适宜解法说明:手算时,凡是多余约束多、结点位移少的结构用位移法;反之用力法。

结构力学——结构的稳定计算1

结构力学——结构的稳定计算1

5 nl
y
2
2
2
得 A Ql 0
BnPQ 0
P
A cn o B ls sn i n 0 l
经试算 nl4.493tannl4.485 1
0
0l n 1 0
Pcr n2EI (4.49)2E 3 I2.0 1E 9/Il2 l
cosnl sin nl 0 稳定方程
n cln o s lsn i n 0 l tanlnl
一.一个自由度体系
P
l EI
A k
k
1
k
MA0
kPslin0
小挠度、小位移情况下: sin
(k P)l0
0
k Pl0
----稳定方程(特征方程)
抗转弹簧
Pcr k /l ---临界荷载
二.N自由度体系
Pk
(以2自由度体系为例)
MB 0 k1y lP (y2y1)0
y1 l EI kB
l
ky 1 ky 2
d2y2(x) d2M dx
dx2
GAdx2
Q
方程的通解
y(x)A co m sB xsim nx
边界条件 y (0) 0 y(l) 0
挠曲微分方程为
d2dy(x2x)E MIG Add2M x2
对于图示两端铰支的等截面杆,有
M P ,M y P y
x
d2dy(2xx)P EyIG PA dd2y2x
d2dy(x2x)E MIG Add2M x2
对于图示两端铰支的等截面杆,有
M P ,M y P y
x
d2dy(2xx)P EyIG PA dd2y2x
P EI y2(x)
y(1P)Py0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四部分超静定结构内力计算
一、超静定结构基本特征
超静定结构的所有反力和内力仅由静力平衡条件不能决定(静力特征)超静定结构是有多余约束的几何不变体系(几何特征)
未知力数大于自立静力平衡方程数,满意平衡方程的解答不唯一。

超静定结构的普通性质
1. 超静定内力与刚度有关
荷载作用——刚度相对值
非荷载因素——刚度绝对值
改变刚度普通将引起内力重分布
有特例
2. 超静定结构可能产生自内力——与刚度的绝对值成正比温度影响
有特例
3. 整体性好、刚度大、防御能力强、内力匀称
4. 超静定结构内力求解基本原则:
平衡条件
几何条件
物理条件
求解主意:力法 位移法 力矩分配法
二、力法
以多余未知力为进本未知量
1. 基本思路
2. 力法要点
挑选力法基本未知量、力法基本结构,建立力法基本体系

基本体系 基本体系
3. 建立力法基本方程——变形协调条件
变形协调条件
4. 超静定次数及力法基本体系
超静定次数=多余约束个数
=变原结构为静定结构所需撤多余约束数
=撤所有多余约束所裸露多余约束力数
注重:须要约束不能撤
多余约束要所有撤除
多余约束的挑选不是唯一的
注重:基本结构不能是几何可变(常变、瞬变)体系。

相关文档
最新文档