实际问题与一元二次方程——利润问题

合集下载

《实际问题与一元二次方程2-销售利润问题》

《实际问题与一元二次方程2-销售利润问题》

一元二次方程标准形式及解法
一元二次方程的标准形式
01
$ax^2 + bx + c = 0$,其中 $a neq 0$。
解法
02
一元二次方程的解法包括因式分解法、完全平方公式法和公式
法(韦达定理)。
公式法中的求根公式
03
$x = frac{-b pm sqrt{b^2 - 4ac}}{2a}$。
判别式与根个数关系
结果展示
将求解得到的最优产品价格和销售量组合进行展示,并计算出对应的最大销售利润。
结果解释
对求解结果进行详细解释,说明最优组合是如何实现销售利润最大化的。
讨论与局限性
讨论模型的适用性和局限性,以及在实际应用中可能遇到的问题和解决方案。例如,市场 需求变化、竞争对手策略调整等因素可能对最优组合产生影响,需要企业根据实际情况进 行调整和优化。
04 建立销售利润问题数学模 型
确定未知数和参数
未知数设定
通常将我们需要求解的量设为未知数 ,如销售量、销售单价、成本等。
参数设定
除了未知数外,问题中还会给出一些 已知条件或参数,如固定成本、单位 变动成本、销售价格等。
根据实际问题建立方程
利润公式
利润 = (销售单价 - 单位成本) × 销售量 - 固定成本。
求解过程
按照所选解法逐步求解方程,得出未知数的值。在求解过程中,需要注意计算准 确性和步骤规范性。
05 案例分析:某企业销售利 润最大化问题
案例背景介绍
企业基本情况
目标市场与消费者需求
某企业是一家生产并销售家居用品的 公司,近年来面临市知名度等方面有较 高要求。
06 总结与展望
本文主要工作及成果总结

21.3实际问题与一元二次方程——利润问题

21.3实际问题与一元二次方程——利润问题
整理,得 x2 30x 200 0 解得 x1 10, x2 20
思考:这两个根都可以取吗?
探究1 :
某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销量, 增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果 每件衬衫降价1元,商场平均每天可多售出2件。若商场平均每天销售这种衬衫 的盈利要达到1200元,每件衬衫应降价多少元?
练习:
2、某童装大世界在销售中发现:“宝宝乐”牌童装平均每天可售出20
件,每件盈利40元. 为了迎接”六一”儿童节,尽快减少库存,商场决定
采取适当的降价措施经调查发现,如果每件童装降价0.5元,那么平均每
天就可多售出4件. 要想平均每天盈利1200元,那么每件童装应该降价多
少元?
每件童装降价1元,多售出
润为 500 元。
所用等量关系为 单件利润×数量=总利润 。
探究1 :
某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销量, 增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果 每件衬衫降价1元,商场平均每天可多售出2件。若商场平均每天销售这种衬衫 的盈利要达到1200元,每件衬衫应降价多少元?
分析:每件衬衫降价0.5元,多售出5件,销售量为 (20+5)件;
每每件件衬衬衫衫降降价价1x元元,,多多售售出出05.55 =1x0件件,,销销售售量量为为((2200++
5) 05.5x)
件 件
0.5
0.5
练习:
1、某童装大世界在销售中发现:“宝宝乐”牌童装平均每天可售出20
件,每件盈利40元. 为了迎接”六一”儿童节,尽快减少库存,商场决定
教学重点: 列一元二次方程解利润问题应用题.

一元二次方程与实际问题--利润问题

一元二次方程与实际问题--利润问题

总利润为 (41-30)×(60-(41-40)) 元。
Байду номын сангаас
4、当售价为x元时,单利为 x-30 元,销量为 60-(x-40) 件,
总利润为 (x-30)×(60-(x-40))
元。
阿克苏市第四中学
精讲实练 例:某电脑批发店的一款鼠标垫现在的售价为每 个30元,每天可卖出100个.经市场调查反映,每 涨价2元,每天要少卖出20个.已知进价为每个20 元,当鼠标垫的售价为多少元/个时,这天的利润 为960元.
阿克苏市第四中学
归纳小结
知识点 列一元二次方程解应用题的一般步骤 (1)审:审题; (2)设:设未知数,设未知数的方法有直接设
和间接设; (3)列:根据题中的等量关系列方程; (4)解:解所列方程; (5)验:检验方程的根是否符合题意; (6)答:回答题目中要解决的问题.
阿克苏市第四中学
作业布置 练习题1、2、3
阿克苏市第四中学
谢谢!
阿克苏市第四中学
精讲实练 例:某电脑批发店的一款鼠标垫现在的售价为每个 30元,每天可卖出100个.经市场调查反映,每 涨 降 价2元,每天要 多少卖出20个.已知进价为每个20元 ,当鼠标垫的售价为多少元/个时,这天的利润为 960元.
阿克苏市第四中学
变式练习 变式1:某西瓜经营户以2元/千克的价格购进一批小 型西瓜,以3元/千克的价格出售,每天可售出200千 克.为了减少库存,该经营户决定降价销售.经调 查发现,这种小型西瓜每千克每降价0.1元,每天可 多售出40千克.另外,每天的房租等固定成本共24 元.该经营户要想每天盈利200元,应将每千克小型 西瓜的售价降低多少元. (只列方程)
一元二次方程与实际问题 -----利润问题

实际问题与一元二次方程(利润问题、表格问题和动点问题)2022-2023学年九年级数学上册(人教版)

实际问题与一元二次方程(利润问题、表格问题和动点问题)2022-2023学年九年级数学上册(人教版)
3)列:列方程;
4)解:解方程;
5)验:根据实际验结果;
6) 答:写出答案。
九年级学生小明在暑假期间进行勤工俭学.
问题一:他每天在村上以每斤2.5元买进黄瓜,到市场以每斤4元卖掉黄瓜,那么
他卖1斤黄瓜的利润是
1.5 元;
问题二:如果他每天买进并卖完300斤黄瓜,则他每天销售利润是
售价-进价=单件利润
解得,x1=40,x2=70
当x=40时, [800-10(x-30)]=800-10 (40-30)=700 >500
当x=70时, [800-10(x-30)]=800-10 (70-30)=400 <500(不符合题意,舍去)
结合题目内容,你觉得这两个结果都符合题意吗?
(利用一元二次方程解决表格问题)
如果设提价x元,你能根据提示信息列出方程吗?
(10+x)(800-20x)=12000
利用一元二次方程解决利润问题
某工厂生产的某种产品按供需要求分为十个档次.若生产第一档次(最低档次)的产品,一
天可生产76件,每件的利润为10元,每提高一个档次,每件的利润增加2元,每天的产量将
减少4件.设产品的档次(每天只生产一个档次的产品)为x,请解答下列问题.
当运动时间为4s时,P,Q两点的距离为多少?
x=2时,由运动知AP=3×2=6 cm,CQ=2×2=4 cm,
∴四边形ABCD是矩形,
3x
∴QE=AD=6,
∴PE=AB﹣BE﹣AP=16﹣6﹣4=6,
根据勾股定理得PQ=

+

= ,
∴当x=2 s时,P,Q两点的距离为6 cm;
16-5x
Q两点之间的距离是10cm?

九年级数学 实际问题与一元二次方程--利润问题

九年级数学 实际问题与一元二次方程--利润问题

(2)在不改变上述关系的情况下,请你帮助商场经理策划每件 商品定价为多少元时,每日盈利可达到1600元?
生活有关一元二次方程的利润问题
例2:百佳超市将进货单价为40元的商品按50元出售时,能卖 500个,已知该商品要涨价1元,其销售量就要减少10个,为 了赚8000元利润,售价应定为多少,这时应进货为多少个?
分析:设商品单价为(50+x)元,则每个商品得利润[(50+x) —40]元, 因为每涨价1元,其销售会减少10,则每个涨价x元,其销售量会减少 10 x个,故销售量为(500 —10 x)个,根据每件商品的利润×件数 =8000,则应用(500 —10 x)·[(50+x) —40]=8000
解:设每个商品涨价x元,则销售价为(50+x)元,销售量为(500 —10 x)个, 则(500 —10 x)·[(50+x) —40]=8000,整理得 x2 40 x 300 0,
解得 x1 10, x2 30都符合题意。
当x=10时,50+ x =60,500 —10 x=400;
当 x=30时,50+ x =80, 500 —10 x=200。
解:(1)100×(100-80)=2000(元). 答:原来一天可获利润 2000 元. (2)设每件商品应降价 x 元,由题意,得 (100-80-x)(100+10x)=2160, 即 x2-10x+16=0. 解得 x1=2,x2=8. 答:商店经营商品一天要获利 2160 元,每件商品应降价 2 元或 8 元.
第21章一元二次方程
21.3实际问题与一元二次方程
复习:
1、一支钢笔的进价为5元,售价为9元,
则一支钢笔获利__4____元。 2、如果购买了10支钢笔则获利__4_0__元。

九年级数学上册(人教版)21.3实际问题与一元二次方程(利润问题、表格问题和动点问题)优秀教学案例

九年级数学上册(人教版)21.3实际问题与一元二次方程(利润问题、表格问题和动点问题)优秀教学案例
4.教师对学生的学习过程和成果进行评价,给予肯定和鼓励,提高学生的自信心。
5.结合评价结果,调整教学策略,为下一步教学提供参考。
四、教学内容与过程
(一)导入新课
1.利用现实生活中的案例,如购物时的折扣问题,引导学生思考图片、动画等形式,直观地呈现动点问题,让学生感受到数学与生活的紧密联系。
(五)作业小结
1.布置具有实际意义的作业,让学生运用所学知识解决生活中的问题。
2.要求学生撰写解题思路和心得体会,培养学生的数学写作能力。
3.鼓励学生进行自我检查和小组互评,提高学生的自我认知和反思能力。
4.教师对学生的作业进行批改和评价,及时了解学生的学习情况,为下一步教学提供参考。
五、案例亮点
1.情境创设贴近生活:本案例背景以现实生活中的实际问题为导入,创设了与学生生活密切相关的教学情境,如购物折扣、企业经营等,使学生在解决问题的过程中,能够更好地理解和运用一元二次方程的知识。这种情境创设的方式,不仅激发了学生的学习兴趣,还增强了学生运用数学知识解决实际问题的能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,激发学生学习数学的积极性。
2.培养学生勇于挑战、克服困难的意志,增强学生自信心。
3.培养学生严谨治学的态度,提高学生对数学知识的敬畏之心。
4.培养学生关爱他人、合作共赢的精神,学会与人沟通交流。
5.培养学生关注生活、学以致用的意识,认识到数学在生活中的重要性。
二、教学目标
(一)知识与技能
1.掌握一元二次方程的基本概念,了解一元二次方程的解法及其应用。
2.能够运用一元二次方程解决实际问题,如利润问题、表格问题和动点问题。
3.理解实际问题与一元二次方程之间的联系,培养将实际问题转化为数学模型的能力。

(完整word版)实际问题与一元二次方程(销售利润问题)

(完整word版)实际问题与一元二次方程(销售利润问题)

课题:实责问题与一元二次方程〔销售利润问题〕星海中学 潘楚驹【学习目标】 1. 会依照详尽问题中的数量关系列一元二次方程并求解。

2. 能依照问题的实质意义,检验所得结果可否合理。

【重点】掌握依照详尽问题中的数量关系列一元二次方程并求解的方法与步骤。

【难点】研究问题中的数量关系 。

【学习过程】 环节一、【师生研学】 一、课前学生研学( 一 ) 回忆:会找出销售问题中的等量关系 1、填空:⑴、某件商品,进价 4 元,售价 6 元,那么利润为元。

这些数量之间的等量关系为 。

⑵、某件商品进价 35 元,售价为 40 元,共卖出 150 件,总合盈利元这些数量之间的等量关系为 。

⑶、某件商品本钱为30 元,假设想盈利 50%,那么售价应该定为元。

这些数量之间的等量关系为。

⑷、某种衣饰,每 .降价 1 元,那么每天可多销售 5 件,假设降价x 元,那么每天多售件。

某种衣饰,每.降价 3 元,那么每天可多销售 5 件,假设降价x 元,那么每天多售件。

2、销售中常有的等量关系售价、进价、利润 的关系式:单件利润 = 售价—进价..进价、利润、利润率 的关系:利润率 = 单件利润100%...进价标价、折扣数、商品售价关系: 售价= 标价折扣数10售价、进价、利润率 的关系:售价 =进价× (1+ 利润率 )...( 二 ) 、研究新知〔 利润问题〕, 列方程解应用题的根本步骤:审,设,列,解,验,作答。

某百货商店衣饰柜在销售中发现:“宝乐〞牌童装平均单件利润销量总利润每天可售出 20 件,每件盈利 40 元。

商场决定采用合适的降价措施, 扩大销售量, 减少库存 ,经市场检查发现:降价前....若是每件童装每降价 1 元,那么平均每天即可多售出2降价后件。

要想平均每天在销售这种童装上盈利 1200 元,那么每件童装应降价多少元?环节二、【难点导学】单件利润销量总利润( 一 ) 、课堂生生交流互评、学生分组显现预习成就,教师谈论。

实际问题与一元二次方程

实际问题与一元二次方程

21.3实际问题与一元二次方程第三课时销售利润问题1.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?2. 某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月卖出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)3.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加_________件,每件商品盈利_________元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?4.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?,5.某单位于“三•八”妇女节期间组织女职工到温泉“星星竹海”观光旅游.下面是领队与旅行社导游收费标准的一段对话:领队:组团去“星星竹海”旅游每人收费是多少?导游:如果人数不超过25人,人均旅游费用为100元.领队:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团浏览“星星竹海”结束后,共支付给旅行社2700元.请你根据上述信息,求该单位这次到“星星竹海”观光旅游的共有多少人?6.某公司投资新建了一商场共有商铺30间,据预测,当每间的年租金定为10万元时,可以全部租出,每件的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原来
现在
课堂练习:
水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为了保证每天至少售出260斤,张阿姨决定降价销售.若将这种水果每斤的售价降低x元,则每天的销售量是______________斤(用含x的代数式表示),销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?当定价为多少时,利润取得最大值?
单斤利润
售பைடு நூலகம்斤数
总利润
原来
现在
课外练习:
1.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,这种冰箱的售价每降低50元,平均就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
单台利润
售出台数
总利润
原来
现在
2.某商场推销一中书包,进价为30元,在试销中发现这种书包每天的销售量p(个)与每个书包销售价x(元)满足一次函数关系式.当定价为35元时,每天销售30个;定价为37元时,每天销售26个.问:如果要保证商场每天销售这种书包获利200元,求书包的销售单价应定为多少元?
(1)每个涨价2元,能卖出__________个,总利润为________________元;
(2)每个涨价5元,能卖出__________个,总利润为________________元;
(3)每个涨价x元,请你写出涨价的金额与销售量之间的关系.
典型例题:
例1.将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个.问:为了赚得8000元的利润,应涨价多少元?
单个利润
售出件数
总利润
原来(涨价前)
现在(涨价后)
例2.商店经销一种销售成本为30元/kg的海鲜产品.据市场调查,若按40元/kg销售,一个月能售出1500kg,销售单价每降2元,月销售量就会增加800kg.商店经理计划既要使月销售利润达到17500元,又要使价格对顾客更具有吸引力,则销售单价应定为多少?
单个利润
售出个数
总利润
原来
现在
实际问题与一元二次方程—利润问题
班级姓名
问题1:将进货单价为40元的商品按a元售出时,则每件的利润为,若可卖出(500—10a)件,商场计划要赚8000元,则每件商品的售价为多少元?(只列方程)
问题2:将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个.
单件利润
售出件数
总利润
原来
现在
例3.百货商店服装柜在销售中发现“宝乐”牌童装平均每天可售出20件,每件盈利40元.经市场调查发现,如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?当降价多少元时,利润取得最大值?
单件利润
售出件数
总利润
相关文档
最新文档